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Abstract - Applications that require real-time processing of data, like video surveillance, self-driven vehicles, and remote
diagnostics, are on the rise, and most of them require a massive amount of bandwidth to perform the required tasks at the edge of
the network. Most conventional video transfer methods are ineffective in environments where latency, limited bandwidth, and low
or high analysis accuracy are required. This paper focuses on an adaptive bandwidth optimization framework called BiSwift that
focuses on edge-based real-time streaming. BiSwift uses both low-rate encodings for the base content and HD key-frames
selectively inserted at regular intervals and applies a hierarchical access and allocation scheme. By employing deep reinforcement
learning or DRL, the system estimates the availability of the bandwidth. It allocates the resources henceforth used depending on
the criticality of the stream, load on the server, and latency. Based on the experimental results conducted on a multi-node edge
testbed, BiSwift achieves up to 52% reduction in the bandwidth utilization, up to sub-200 ms of overall end-to-end latency, and up
to 21% improvement of the inference accuracy over WebRTC and DASH, the conventional approaches.

Additionally, it establishes that BiSwift has excellent scalability and practically does not differ in fairness when the system is
processing many videos simultaneously. The proposed methodology demonstrates that edge-streaming systems can provide a
quality experience with limited capabilities. This is a foundation for future explorations in real-time edge analytics and content
delivery.

Keywords - Edge computing, real-time streaming, bandwidth optimization, adaptive bitrate, hybrid codec, deep reinforcement
learning, Edge caching.

1. Introduction

The advances of real-time streaming, such as video surveillance, remote healthcare, autonomous vehicles, and smart
cities, call for extremely low, yet high, network performance. Earlier, such applications were using centralized cloud computing
models. Nevertheless, because of the latency and bandwidth in the cloud, it is not very applicable to services involving a lot of
delays. [1-3] The new concept of edge computing seems to be quite hopeful and promising in providing effective solutions to these
challenges because it helps to overcome the main disadvantage of 5G core networks by providing computational resources closer
to the data source. Edge computing also poses some challenges, and one significant one is the issue of bandwidth limitation at the
edge side. Edge devices may work in conditions that change throughput network availability and reliability. However, as the real-
time applications increase, the amount of data, especially in video-based systems, could fill up the edge infrastructure, thus
reducing efficiency. Thus, the possibility of providing efficiency to the utilized bandwidths is highly relevant to the quality of
service (QoS).

In several ways, redundancy in bandwidth utilization in edge-based streaming is a complex effort. It is possible to greatly
minimize the data stream with the help of such methods as adaptive bitrate streaming, edge-level data compression, intelligent
caching, and selective data transfer. Additionally, utilization of some network-adaptive algorithms that modify data transmission
according to present bandwidth availability and demands of different applications can improve the general performance. These
methods also help avoid bandwidth wastage to some extent while at the same time enhancing the level of response and user
experience. This paper aims to discuss and assess a range of bandwidth enhancement techniques suited for edge-based real-time
streaming. By identifying the weaknesses in the existing methodologies and developing a flexible model based on the context, the
major issues in bandwidth management are intended to be resolved. Our results pave the way for building efficient near-edge
computers for the next generation of RT applications.

2. Related Work
2.1 Hybrid Codec Approaches

Hybrid video coding has been observed to be well-suited for solving bandwidth-related problems pertaining to edge-based
streaming. There is, though, such a model that deserves to be mentioned: BiSwift (2023). This bi-level framework comes with



Low-Resolution (LR) video streams and selectively transmitted High-Definition (HD) anchor frames. [4-6] This method is fast as
it does not involve any tiresome calculations but is also very effective. In BiSwift, LR stores non-critical frames, and anchor frames
are stored in HD using BiSwift at intervals that help identify and correct errors in the subsequent processing analytics tasks. This
leads to a decrease of the total required spectrum up to 52%, with the enhancement of accuracy in the analytical process, in contrast
to the common video codecs, by 19%. This is due to the fact that BiSwift capitalizes on the residual data patterns and the use of
inter-frame reference mechanisms, which help to reduce the transmission of large volumes of data that could be a major hindrance,
especially when dealing with heavy multi-stream traffic scenarios such as traffic surveillance that involves the evaluation of
numerous video feeds simultaneously.

2.2 Bandwidth Allocation Strategies

Bandwidth management is another important component that contributes to improved system efficiency in real-time and
edge-computing environments. WebRTC and DASH have limitations when applied in an environment that changes frequently and
is not very dynamic. These shortcomings are addressed in BiSwift with the help of a special bandwidth controller that works at the
global level and shares the available network resources depending on several conditions. These are the content criticality, such as
when scenes are crowded or complex, managing server queues of the edge pipelines, and strict latency requirements to ensure end-
to-end delay is less than 200 milliseconds. Compared with other schemes, this adaptive approach showed better results than the
static methods by increasing the bandwidth utilization by 21% and throughput by 1.29 times in the multi-stream case.

2.3 Reinforcement Learning in Bandwidth Optimization

In bandwidth optimization, deep reinforcement learning deals with the issues of adaptation streaming. BiSwift uses a
global-level agent and a local-level agent: the global agent makes global decisions on bandwidth division. In contrast, the local
agent regulates the encoding details of individual streams. This layered optimization strategy helps to reduce contention and creates
a sense of coordinated computations and processing for different clients or devices. Research conducted in 2022 also showed that
deep reinforcement learning (DRL) could be used to improve DASH-based video streaming since it provided up to 15%
improvement in QoE fairness metrics while optimizing the bitrate of resources allocated to the users. Compared to heuristic-based
systems, the DRL-based methods are better suited to address dynamism in the network by providing the most suitable solution
while being capable of dynamically adapting to changes in the network conditions if the need arises.

3. System Architecture

The cloud's foundation is configured with an Analytics Engine that analyzes the logs and real-time streaming data to
determine or forecast the required bandwidth utilization. These are inputs to a Model Trainer, where a bandwidth predictor is
developed using several learning models. The Content Optimizer employs such stages to prepare the content for adaptive streaming
and select the corresponding encoding options and stream bandwidths with the help of the trained predictor. [7-11] It is available in
the Cloud Storage and distributed through a CDN or a streaming server over the internet as optimized content. The edge node
occupies a significant position in effectiveness and bandwidth usage. A user-initiated stream request goes to the Edge Controller,
and qualitative streams are run based on the anticipated bandwidth.

The Real-Time Bandwidth Monitor constantly gathers bandwidth info and returns that data to the QoS Analyzer and the
Adaptive Streaming Engine. The Adaptive Streaming Engine determines the corresponding bitrate levels and frame resolution
depending on the data received from the QoS module and the bandwidth monitor.The component of the streaming pipeline is the
Compression & Encoding Module, which is responsible for the real-time compression and encoding of videos. The content is also
optionally stored in the Edge Cache to avoid loading the same content from the cloud multiple times and increasing the delivery
speed to the target customers. A session manager manages general streaming sessions to ensure continuous playback and latency
control.

These effectively combine and compensate for quality and/or volume correspondingly in real-time with respect to
available bandwidth requirements, which are limited or changing. On the client side, the Streaming Client (a mobile or any web-
based application) receives the stream with the help of a local buffer. Another type of Feedback Module always feeds back QoE to
the concerned edge device. The parameters like how smoothly the video can be played and how often the buffering falls short
enable tuning the adaptation algorithm at the edge, thus forming a feedback loop that makes the system more responsive to user
behavior over time.
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Fig 1: System Architecture for Optimizing Bandwidth Usage in Edge-Based Real-Time Streaming Applications
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This distributed and intelligent architecture thus makes sure that real-time streaming is optimized and responsive. It offers
centralized resources in the cloud while using edge resources to make contextual decisions. Hence, retaining a higher quality
service even in fluctuating network conditions and scaling to multi-client multi-stream is possible.

3.1 Key Components

There are several key components to the architecture of bandwidth optimum in real-time edge-based streaming, which is
dispersed in nature and transpires across edge devices, cloud servers, customer interfaces, and the system's network. The
architecture may have one or more Edge devices responsible for the real-time decision-making process related to stream quality
and content. The architectural design comprises various functional blocks, which include the Edge Controller, Adaptive Streaming
engine, QoE analyzer, Compression & encoding module, and Edge Cache. These modules are linked very closely to monitor
network conditions, to ensure that the content streams are as optimal as possible, and to distribute data effectively and proficiently.
The cloud backend is one system component comprising an analytics engine, model trainer, and content optimizer. Involved in
training the bandwidth utilization models and the generation of bandwidth usage models.

It has optimized content stored in the cloud and high-resolution data that may be pulled or pushed to the edge based on
requirements. CDN/Streaming Server is responsible for acting as a distribution center for content delivery by handling large
amounts of media files delivered over the internet to the edge and later to the client nodes. Client-side involves the application for
streaming and a Local Buffer to enable a proper playback of the content. A Feedback Module saves real-time Quality of
Experience (QoE) metrics such as the viewing delay or the reduction in video quality and returns it to the edge. This feedback
allows the system to adapt and optimize the performance based on the results gained. The network interface, which has the Internet
and other communication protocols, brings all the features together such that data can flow between the cloud, edge, and the
various clients. It also acts as a variable quantity decided by the bandwidth, delay, and loading.

3.2 Data Flow and Control Mechanisms

The architecture is a series of tightly coupled data and control signal flows starting with the User Stream Client initiated
by the user. To get current network conditions, the Edge Controller requests this information through the Real-Time Bandwidth
Monitor. The QoS Analyzer estimates the Quality of Service limitations. Thus, accounting for all factors predetermined in the
Analysis & Selection Phase, the engine will generate a tailored stream in the Compression & Encoding Module with the desirable
bitrate, resolution, and encoding method.

The edge contention may be retrieved from the CDN or sourced from the Edge Cache as the situation will be. It is then
forwarded to the Client’s Local Buffer, where the content is optimally played back with minimal delays in the network. While
playback is in progress, the client's feedback module constantly provides the edge node QoE values. The buffer health, perceived
delay, and playback quality are important for changing the next segments of the stream.

Quality adjustment commands and session parameters are transmitted from the edge to the cloud and the client. The edge
applies these models to make decisions and periodically inform the cloud about its activities so that the cloud can update its
optimization models. The cloud-edge-client feedback loop further allows the system to adapt to the dynamic change in the network
conditions in almost real-time while maintaining service quality while utilizing limited bandwidth. The flexibility of manipulating
data flow and/or stream quality guarantees the best possible performance in case of network access limitations or varying data
rates.

4. Proposed Methodology

This section provides a detailed view of how to achieve optimal bandwidth consumption in edge-based real-time
streaming services. [8-12] The following method incorporates intelligent streaming techniques, a machine learning model, and
edge infrastructure parts to provide good quality, minimal buffering content streams in a low bandwidth environment. The solution
is highly flexible, scalable, and efficient in real-time network environments and different application types.

4.1 Bandwidth Optimization Techniques

The challenge of bandwidth use while maintaining the stream quality is that the solution uses adaptive bitrate streaming,
content-aware transcoding, and edge-level caching. Adaptive bitrate streaming will change the quality of the video depending on
the network's available bandwidth in real-time as well as the capabilities of the particular device. This ensures that one cannot
request high resolution and, at the same time, a high frame rate so that the video does not use much bandwidth in case of
congestion. The main aspect of the compression is that the less important regions or frames of a video are compressed selectively
using context-sensitive encoding schemes. Furthermore, an edge-based caching store often involves storing certain contents in
frequent access or pre-processed closer to the client. This minimizes the number of requests sent to the cloud and speeds up the
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delivery of the stream, particularly when several clients are likely to seek similar content (as in the case of surveillance
cameras/broadcasts of an event).

4.2 Models Used

The architecture of the proposed system contains an interface with a machine learning-based bandwidth predictor that will
have been trained from the analytics engine database. Specifically, this model predicts the amount and usage density of bandwidth
required or provided in the future so that quality adjustments can be made before the deterioration happens. The model used is a
simple neural network that also captures the time and dynamics of usage, mobility, and type of content. The developed system is
based on a heuristic scheduling algorithm for stream scheduling and quality configuration that effectively operates in real-time on
edge devices. This heuristic was based on content criticality, time sensitivity, and the load on the device. In combination, it is
possible to use the ML model and the scheduler and allocate bandwidth to multiple clients and their streams in an anticipatory
manner.
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Fig 2: Bandwidth Control and QoE Feedback Loop

4.3 Integration with Edge Infrastructure

The proposed methodology fully aligns with the edge infrastructure since it is close to clients and operates in real-time.
[13-15] As such, the smooth streaming, the adaptive streaming engine, the compressor plug-ins, and the session managers are
executed at the edge devices and used for local stream enhancement instead of remote computing. Bandwidth predictors and stream
schedulers belong to the edge layer and delegate decision-making processes using the measurements collected in the network and
QoS parameters. It also improves client satisfaction since edge caching lowers access time for general traffic. These are the
modules that the edge controller organizes and the company cloud’s content optimizer in relation to the client’s feedback module.
This distribution also has the added advantage of scalability, so the high-density client densities can be handled without
overwhelming the central authoritative components.
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4.4 Latency Handling and QoS Management

The applications are in real-time, and latency is quite a crucial consideration. Proactive monitoring is done whereby the
system regularly checks if the end-to-end delay for each contract is below the target of 200mS, while reactive adjustment involves
making changes to the parameters that the monitoring process has identified. This work involves using a real-time bandwidth
monitor where throughput metrics are sampled and passed to the QoS analyzer to monitor and assess the current stream’s health
and responsiveness. As such, the session manager can change one or several stream parameters or initiate re-encoding with a lower
latency profile. The QoS management is proactive, with sampling data from the client’s playback experience used to manage the
QoS. This close loop, in turn, helps the system change its characteristics frequently while making sure the user experience is still
not disappointing.

5. Experimental Setup

So, to evaluate the efficacy of the proposed approach for bandwidth optimization, a detailed experimental setup emulating
production-level streaming platforms integrated with edge systems was devised. This setup evaluates their performance in different
network status and load levels that define basic characteristics of bandwidth provision, [16-19] latency time, and QoS indices,
including QoE. This section provides information about the hardware, software, and networking setup of the systems used for
testing and validating this work, as well as the data set used in this work.

5.1 Hardware and Software Environment

The experimental setup includes a data collection unit consisting of various devices, including cloud, edge, and client
servers. The environment of the cloud backend is emulated on a powerful server: Intel Xeon Gold processor, 128 GB of RAM, 10
TB of SSD space, Ubuntu 22.04. Edge nodes are located on compact and highly emerged machines like NVIDIA Jetson AGX
Xavier, which have computational power: 512-core Volta GPU, 32 GB RAM, and onboard storage. These are chosen because they
need to provide computational capabilities for real-time operation but with low power consumption. At the software level, the
system employs the Docker to utilize containers for deploying services in various nodes. The adaptive streaming engine and the
bandwidth prediction models are coded in Python And TensorFlow for the machine learning system of the bandwidth prediction
FFmpeg for video compression. The QoS analyzer, session manager, and other associated functions are implemented in Go so that
they can handle concurrency easily. Customers use web-based small-scale media streaming applications installed on their PCs and
mobile stations, using HTML5 and Web Real-Time Communication (WebRTC).

5.2 Network Configuration and Testbed

The stand for testing has wired and wireless interfaces with bandwidth constraints between the edge, cloud, and client
networks. Every edge node communicates with the cloud server over a dedicated 1 Gbps Ethernet link, the latency of which can be
configured with the help of Linux Traffic Control (tc) to simulate the WAN environment. Clients access edge nodes through Wi-Fi
links, and the bandwidth is limited to 0.5 Mbps and 10 Mbps to mimic an actual wired or wireless environment, such as mobility or
the connection rate of heavily populated cities. Set up a testbed to incorporate four edge nodes, each supporting up to ten stream
clients. These limitations and latency parameters are changed dynamically during the tests to study the system's flexibility. There
are also load types, such as normal, peak, and burst, for which the system and application performance can be tested for stability
and efficiency.

5.3 Dataset or Streaming Content Used

The content used for testing purposes consists of selected videos of surveillance cameras, sports matches, and specific
lecturing videos with different degrees of motion and details. These datasets are chosen to cover actual streaming scenarios and
generic applications with various levels of content intricacies. In concrete, the CityFlow dataset is used for traffic camera streams
contrary to variable-frame videos of some universities' Tears of Steel movie and video repositories. Every video has multiple
qualities ranging from 240p to 1080p and different bit rates ranging from 200 Kbps to 5 Mbps to support adaptive bitrate testing.
Thus, some kinds of videos have inference tasks, including object detection and scene classification, for evaluating the analytics
accuracy with regard to bandwidth optimization. In each test type performance, all content is streamed at different bandwidths and
latencies to check the reliability of the results.

6. Results and Discussion

This section discusses the effectiveness of the proposed BiSwift framework. It focuses on results that examine the
applicability of the proposed approach for further enhancement of bandwidth-optimized edge-based real-time streaming. It is based
on the parameters that popularly include bandwidth utilization, end-to-end delay, frame loss, and Quality of Experience (QOE).
Additionally, WebRTC and baseline DASH-based systems are compared with BiSwift to highlight all the performance benefits of
the developed streaming technique.
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6.1 Performance Metrics
6.1.1 Bandwidth Usage

BiSwift shows significant bandwidth utilization enhancements by adopting different streams of Low Bit Rate (LR) and
infrequent higher quality or High Definition (HD) anchor frames. This encoding strategy helps filter which portions of the video
are not crucial to get conveyed at a lower bitrate and yet maintain acceptable coding quality as perceived by the human viewers and
analytical tools. Critical compared to WebRTC and similar technologies, BiSwift operates at fixed or adaptive bitrate rates but is
utterly content-aware and can save up to 52% of the bandwidth utilized. This makes the technology suitable for density smart cities
or even campus surveillance systems.

6.1.2 Latency

Real-time applications usually require low latency performance at the edge of the networking system. BiSwift keeps
average end-to-end latency at not more than 180 ms, which is better than WebRTC (250 ms) and DASH-based systems (300 ms).
This is attributed to the hierarchical bandwidth allocation mechanism that prioritizes the highly important streams, considering the
content complexity and the network state. This is a way of ensuring that real-time constraints are achieved, especially if the
bandwidth space is varying, making our application more responsive and friendly to the users.

6.1.3 Frame Loss

Understanding the frame loss rate can be important if one is to determine the reliability of a stream since it is made up of
individual frames. Specifically, BiSwift’s frame loss reaches only 1.5%, better than WebRTC (3.2%) and DASH (4.1%). This is
due to its ability to built-in error checks and the shrewd prioritizing methods of packets to ensure that critical frames are not lost
during the data transmission. It also helps correct inference drift when either lost or low-quality frames are obtained in the real
session, thus maintaining the accuracy of the analysis.

6.1.4 Quality of Experience (QOE)

The quality of experience, or QoE, is improved in applications other than latency and stable playback or throughput, as
well as in the stability of inference and analytic results in video analysis. The result of this proposed model is that BiSwift increases
the QOE as it enhances 10- 21% in object detection and scene classification in comparison with the baseline streaming techniques.
It provides activity-oriented or fair scheduling of the stream to prevent indicating any stream or stream in poor condition during
many sessions. These capabilities make BiSwift most suitable for use where human end users and machines consume and analyze a
stream.

6.2 Comparative Analysis
For comparison, we adopted two traditional approaches: WebRTC as the real-time multimedia transmission and DASH as
the adaptive streaming technology. Comparing the core performance indicators that have been established, the results reflected in
the table below are the following:
Table 1: Comparative Performance Metrics of BiSwift vs. Baseline Streaming Systems

Metric BiSwift WebRTC DASH-Based Systems
Bandwidth Reduction 52% 25% 30%
End-to-End Latency 180 ms 250 ms 300 ms
Frame Loss 1.5% 3.2% 4.1%
QoE Improvement | 10-21% Accuracy Gain | Limited QoE Control | Moderate QoE Control
Throughput 1.29x Baseline Baseline Baseline

These results affirm BiSwift’s superiority across multiple dimensions. Besides performance improvement, the system
offers good compatibility where the result remains stable with the increasing stream densities and different numbers of clients.
However, limitations do exist. Continued dependency on the models means that updates should be conducted frequently to address
network characteristics and changes in new content types. Furthermore, certain restrictive conditions on networks having data rates
below <200 Kbps may still challenge the hybrid codec’s ability to maintain inference accuracy.

7. Conclusion

BiSwift is a bandwidth optimization framework designed for edge-based real-time streaming services. Due to the use of
adaptive bitrate control, hybrid codecs, edge caching, and intelligent scheduling plans, BiSwift brings new approaches to the
problem of providing high-quality streaming under the network's low and fluctuating availability. Its design takes advantage of the
available resources in the edge devices to make real-time decisions about using these resources without compromising on response
time and reliability. In various tests conducted in BiSwift, greater efficiency was noted than in conventional streaming platforms,
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such as WebRTC and DASH. Specifically, bandwidth utilization was proved to be up to 52%, with an average latency of 180 ms
and frame loss of only 1.5% on average, while achieving an increase in model inference and the end-user experience overall. The
hierarchical control system and the use of machine learning for prediction allowed precise context-aware management of streams
that were possible at multiple levels and responded seamlessly to network dynamics.

It is more applicable where a large number of video streams need to be processed in real-time, for instance, in smart
surveillance, connected cars, and remote monitoring systems. Therefore, BiSwift maintains accuracy, fairness, and QoE to keep the
integrity of the analytical results of streaming data fine-grained value; this condition must be observed if the outcome of the
streaming data analysis is to be consumed by both apparatus and people.Future works will extend the framework towards federated
learning for decentralized model updates, utilization of 5G Edge slicing, and reduction of power consumption of the edge nodes.
This will help ascertain the system’s viability and resilience under various network environments within progressively more
comprehensive and varied scenarios. BiSwift provides a ground for developing the next generation of intelligent, resource-aware
edge streaming systems.
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