International Journal of Emerging Research in Engineering and Technology

Y L J ¥ Pearl Blue Research Group| Volume 1, Issue 4, 28-37, 2020
~h o

Tl ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.1JERET-V114P104

Original Article

Threat Modeling in Large-Scale Distributed Systems

Sai Prasad Veluru
Software Engineer at Apple, USA.

Abstract - Since modern digital infrastructure is based on their broad distributed systems which include cloud platforms, global
applications & also connected services the requirement of thorough threat modeling has become even more crucial. These systems
provide a broad variety of possible vulnerabilities because of their size, heterogeneity & more dynamic properties even if they
provide scalability, flexibility & also more resilience. The risk terrain is always changing and consists of improperly set up APIs,
unsecured channels of their communication, insider threats, and sophisticated ongoing attacks. Prior to their spread into actual
breaches, threat modeling provides a methodical technique for finding, evaluating & lowering risks. Still, huge scale
implementation of this raises unique problems like the management of distributed trust borders, the preservation of visibility across
components & the guarantee of consistency in security protocols. To fit the distributed paradigm, data flow diagrams, attack trees,
STRIDE and DREAD models, and any other approaches have been changed or invented. This article investigates many approaches
with an emphasis on their benefits & also disadvantages in pragmatic uses. We provide a case study of a global microservices
architecture used by a financial organization to help to frame the discussion. The case study shows that early discovery of more
vulnerabilities including privilege escalation channels and unsecured data propagation led to significant improvements to the
general security posture of the system by means of their iterative threat modeling & mitigating strategies. The results draw
attention to the need of multidisciplinary collaboration, automation in risk detection & also continuous review as systems grow.
This work finally supports the integration of threat modeling as a continuous, basic activity in the design and administration of
their distributed systems, therefore proposing a culture shift towards proactive security thinking instead of seeing it as a simple
checklist.

Keywords - Threat Modeling, Distributed Systems, Large-Scale Systems, STRIDE, DREAD, PASTA, Trike, Risk Assessment,
Attack Surface, Cybersecurity, Microservices, Cloud Security, Data Flow Diagrams, Attack Trees, Asset-Centric Modeling,
DevSecOps, API Security, Access Control, Security Architecture, Continuous Threat Modeling.

1. Introduction

Large-scale distributed systems (LDS) enable the efficient running of more complex applications and services across
geographically separated environments, hence providing the digital basis of their modern companies. These systems process and
transmit data in actual time by means of their numerous connected components servers, databases, services & user endpoints that
cooperate. Among the examples are cloud computing platforms, microservices architectures, content delivery networks (CDNs) &
major projects including social networking sites, banking systems & also e-commerce sites. An LDS's capacity for horizontal
scalability, ability to satisfy their high demand for availability, and support of millions of concurrent users define it. Still, this great
interconnectedness & more dispersion cause challenging problems, especially with relation to security.

Guaranteeing the reliability & more integrity of LDS depends on their security and risk management, hence they are very
important. These systems' distributed nature causes information to frequently transit over several networks, interfaces, and nodes—
each of which represents a potential vulnerability. Threats in these systems go beyond one boundary; they may come from internal
misconfigurations generating privilege escalations or data breaches or from outside organizations using public-facing APIs.
Moreover, as systems grow in complexity & scale, ensuring data integrity, preserving safe authentication, and resisting denial-of-
service (DoS) attacks is more difficult. Security weaknesses in LDS might have serious consequences including major data leaks,
service outages, financial losses, and damage of reputation.

The field of cyber threats has developed significantly in line with technical development. We are living in a time when
depending simply on simple firewalls and more antivirus programs is extinct. Modern threat actors use sophisticated techniques
like zero-day vulnerabilities, lateral movement, social engineering & more advanced persistent threats (APTSs). Attackers generally
target the most weak point in the distributed network, and with systems that are continually growing and changing everyday that
vulnerability may vary. Moreover, the explosion of cloud-native applications & more containerized systems has brought the latest
attack paths that call for a proactive & more flexible security plan. This changing threat environment emphasizes the growing

requirement of more effective threat modeling a technique that forecasts, shows, and reduces their security weaknesses before they
are used.

This paper attempts to investigate the main purpose of threat modeling in protecting widely scattered systems. The aim is to
clarify how threat modeling serves as a strategic tool for assessing more risks, identifying probable wulnerabilities, and
implementing tailored mitigating solutions fit to the unique characteristics of LDS. The paper clarifies the genuine challenges
experienced during the threat modeling process in practical environments and offers a case study to show the clear benefits of this
approach. It seeks to bring theoretical security ideas into line with practical application in complex, vast settings.

This book is arranged to let the reader explore: It first offers a synopsis of key threat modeling concepts and a modification of
classic models for distributed systems. It then looks at the specific problems with LDS including distributed control, dynamic
scalability, and inter-service communication. It then offers a useful case study from the fintech industry showing the use of threat
modeling techniques and the consequent results. The paper finally covers best practices, lessons learned, and possible paths for
including security-by-design all throughout LDS. This systematic approach aims to provide readers the theoretical foundations and
practical skills required for implementing effective threat modeling in their widely scattered systems.

2. Foundations of Threat Modeling
2.1 Definition and Purpose

A methodical approach used to identify, evaluate & reduce probable security risks within a system is threat modeling. It means
assuming the attitude of an assailant to find their weaknesses before they are used and developing mitigating strategies to improve
the general security situation of the system. Unlike reactive security systems, threat modeling is essentially more proactive; it helps
designers, developers & more security professionals to identify risks all through the design process & across the lifetime of the
system. Threat modeling is very significant in large-scale distributed systems (LDS). LDS's distributed structure consists of many
elements working in different contexts, often marked by different degrees of trust & also exposure. This complexity increases the
likelihood of security weaknesses & accentuates the many attack routes. In inter-service communication, threat modeling helps
participants to define data flows, identify access points, assess risks & rank projects according to effect and exploitability. Threat
modeling ensures that security is intrinsically embedded rather than introduced later in their systems needing fast scalability,
flexibility, and integration that is, those leveraging microservices, containers, and cloud-native technologies.

2.2 Historical Setting

Penetration testing and static code analysis have long been the main tools used post-construction or deployment of a system to
assess system security. Both of these are more essentially reactive approaches. These relatively effective solutions sometimes
emerged too late in the development stage to fix underlying design flaws or architectural shortcomings. Conventional models made
the premise that reliable & untrusted components had a clear border, which breaks under modern dynamic, networked systems.
Threat modeling emerged from the need for a more strategic, design-oriented approach. Originally, threat modeling was primarily
manual & required significant time commitment and topic knowledge. The demand for scalable and repeatable threat analysis
approaches grew as systems became more complex.

Security is now expected to be a shared responsibility ingrained throughout the software development life as DevOps has
changed into DevSecOps. This methodology now includes threat modeling, which fits agile approaches, iterative development &
also ongoing integration. Modern systems encourage shift-left security, in which case early phases of vulnerability reduction are
achieved. Tools and automation have emerged to enable developers to undertake basic threat modeling without sophisticated
security expertise and enable security staff to focus on their advanced risk analysis, therefore facilitating this change.

2.3 Key Models and Approaches
Over time, many approaches each with unique ideas, benefits & also applications have evolved to guide threat modeling
projects. Among the most often used techniques are STRIDE, DREAD, PASTA, and Trike.

2.3.1 STRIDE

Microsoft created STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of
Privilege to classify their security vulnerabilities. It provides a clear structure for identifying their several attack kinds and
evaluating their frequency within a system. Often used with data flow diagrams (DFDs), STRIDE helps to show data movement
within a system and point out possible sites for any kind of attack.

o Benefits: Easy to learn, basic categories, and fits quite well in architectural assessments.

29

e Application: Perfect for systems marked by clearly defined data structures and procedures, such as APIs or corporate
applications.
2.3.2 DREVELUution of Risk
Using five criteria damage potential, reproducibility, exploitability, affected users & discoverability DREAD is a risk assessment
system for ranking threats. Every hazard has a numerical rating in these domains; the scores are more compiled to determine
overall risk.
e Strengths: provides a quantifiable means of risk comparison, therefore benefiting prioritization and resource allocation.
e Limitations: Possible bias has resulted from more criticism on subjectivity and inconsistency in scoring.
e Use Case: Ideal for circumstances where teams have to rank a wide range of risks and decide which need a quick
response.

2.3.3 PASSA

Comprising seven steps, PASTA (Process for Attack Simulation and Threat Analysis) is a risk-oriented method that links
corporate impact with technology threats. It emphasizes the simulation of actual world assault scenarios and the modeling of
attacker behavior in order to understand how an opponent may break through a system.

e Strengths: Thorough and very analytical; she combines technical details with business background.

e Application: Fit for complex or high-stakes environments include government systems, healthcare, or finance.

2.3.4 Tricycle
Trike is a model-driven tool used to provide a consistent risk control system. It emphasizes the definition of acceptable risk
limits & the use of security precautions suitable for this Trike also gives strict audits and responsibility top priority.
e Strengths: Helps with thorough access control modeling and risk tolerance delineation.
e Application: Especially in controlled industries, most suitable for environments where risk governance and compliance
take front stage.

3. Unique Challenges in Large-Scale Distributed Systems

Although they provide great scalability, resilience & more performance benefits, large-scale distributed systems (LDS) also
offer a unique and growing spectrum of security concerns. With multiple independent pieces dispersed throughout various
contexts, LDS's structure hampers the maintenance of consistent visibility, control & trust across the whole system. Emphasizing
the scale, attack surface, technological variety, and dynamic behavior of the system, this part investigates the key issues i mpeding
threat modeling and risk mitigating in LDS.

3.1 Value and Complexity

One obvious feature of LDS is their architectural complexity & great scale. Modern systems often consist of numerous
microservices, each with a different function & network protocol communication with any others. Often set up with a service mesh
an infrastructure layer handling service discovery, load balancing, authentication & more observability microservices are Service
meshes such as Linkerd and Istio provide operational benefits, but they also increase the attack surface of the system & contain
more complexity that has to be considered in threat modeling.

Microservices' complex dependencies often make data flow tracing difficult & make understanding of how a single failure or
breach might spread throughout the system challenging. Moreover, service meshes hide the basic links between their services,
therefore hiding flaws in network rules, authentication tokens, or un-encrypted data. Moreover, some LDS operate within multi-
cloud environments using Google Cloud, Azure, and AWS among many other providers. Although it poses major challenges for
coherent security monitoring & also management, this diversity improves availability & reduces vendor lock-in. Every cloud
vendor has unique settings, Identity and Access Management (IAM) systems, and logging tools. Maintaining consistent security
requirements across many cloud platforms requires more effort and increases the risk of misconfiguration.

3.2 Growth of Attack Surface

The susceptibility of distributed systems to assaults increases greatly as their complexity and size grow. Public-facing APIs,
outside-of-house connectors & remote access methods are the main forces behind this expansion. Distributed systems depend on
their APIs as they enable communication among internal services & provide external users capability. Targets for attackers are
perfectly misconfigured, unsecured, or too permissive APIs. Inappropriate authentication management, credential stuffing, data
scraping & injection attacks might all be among API vulnerabilities. APls commonly interact with more important backend
systems, so a single compromised endpoint may cause a major data leak. Dependency on any other services and integrations such
as open-source libraries, analytics tools, or external payment gateways becomes a key component.

30

These relationships could raise supply chain issues, especially if the third party doesn't have strong security policies. These
dependencies may be used by adversaries to access any other system components laterally, implant damaging code, or extract data
For development, operations, and maintenance as well, LDS might need remote access. Common technologies include VPNs, SSH
access, and remote desktop tools; nonetheless, they provide access points that need careful control & administration. Should access
policies be poorly followed or credentials be stolen, attackers might use these weaknesses to bypass perimeter security and
negotiate the inside network.

3.3 Component Homogeneity

Unlike monolithic systems, LDS has a wide range of components including many architectures, platforms & also security
approaches. Usually combining more virtual machines, containerized services, older systems & serverless processes in a single
distributed application. Because they could rely on their outdated encryption standards or lack compliance with modern security
practices, legacy systems might cause significant problems. Without completely reworking important operations, retrofitting these
systems with further security measures might be difficult or perhaps impossible. They must, however, be combined with modern,
more safe parts to avoid unanticipated vulnerabilities & trust gaps.

On the other hand, containerized environments usually run under platforms like Kubernetes offer more scalability & flexibility
but pose any other security issues. Container security covers image management, database protection & the guarantee that
containers run free from unnecessary privileges. Because containers are by nature transitory, maintaining constant security
monitoring & doing forensic investigations after an event becomes more difficult. The mix of historical and modern technology
within LDS generates a heterogeneous ecosystem that calls for consideration of many other degrees of maturity, exposure & also
operational management in threat modeling. This diversity makes it difficult to apply uniform risk evaluations throughout the
whole system & follow accepted security policies.

3.4 Dynamic surroundings

Large-scale distributed systems are naturally dynamic; components are routinely created, scaled, or terminated in response to
demand. These cover edge nodes operating outside the main infrastructure, transitory services & also auto-scaling techniques. An
essential feature of cloud-native apps, auto-scaling lets systems dynamically assign resources in actual time. Although it also raises
uncertainty, this assures performance and economy of price. When the latest instances are launched, security settings have to be
dynamically applied as any delay or misconfiguration might cause temporary vulnerabilities. Ephemeral services that is, containers
that last only seconds or minutes complicate threat modeling & tracking even more. Conventional security methods based on their
permanent instances or static IP addresses are more insufficient for conditions marked by rapid asset turnover. Auditing, incident
response & intrusion detection may all suffer from this lack of tenacity.

Edge nodes devices or servers close to the end-user for maximum performance add even another level of complexity. Usually
needing distributed control methods, these nodes may operate with little connectivity to their central administration. Edge devices
from core infrastructure are geographically and logically distant, which makes monitoring more challenging & maybe more prone
to physical manipulation or localized attacks. The fluid and ephemeral qualities of these elements call for security to be both
automatic & more flexible. Including service scalability, identity changes & topological evolution in response to usage patterns,
threat modeling has to include both the static architecture and the dynamic behavior of the system throughout time.

4. Threat Modeling Approaches for Large-Scale Distributed Systems (LDS)

Implementing structured & more context-sensitive threat modeling techniques that fit the dynamic & more variable nature of
these architectures is more essential to properly protect large-scale distributed systems (LDS). Conventional static security analysis
is insufficient as LDS might comprise numerous services, platforms, and network constraints. In LDS, threat modeling has to be
iterative, modular, flexible enough to fit constant change. Emphasizing their unique qualities & their combined contributions to a
comprehensive threat analysis framework, this section reviews many current & novel methods for threat modeling in LDS.

4.1 Flow Diagrams (DFD)

Essential tools for threat modeling, data flow diagrams (DFDs) visually show data movement inside a system and the
relationships among its many other components. DFDs help security teams under LDS understand the paths of data across
microservices, APIs, databases, user interfaces & outside systems. Every data flow may be examined for risks related to
availability, integrity & more confidentiality, therefore revealing likely attack paths.

In LDS, DFDs usually refer to: processes including containers or services.
Databases, object storage system, or message queue data repository.
Thirdly systems or end users are external entities.

Data travels among the previously stated entities shown by arrows.

31

e Trust boundaries: lines separating locations with different security criteria (between an internal service and a public API).

-

Large-Scale Data Flow
Distributed System Diagrams
y g
Identify Threats

J

Assess Risks

Validate and Mitigate Risks
Verify

Fig 2: Security Risk Management Process

For identifying unsecured data flow, unvalidated inputs & trust boundary breaches, data flow diagrams (DFDs) are very
successful. A DFD may be used by an LDS monitoring financial transactions to find out if payment data passes unencrypted over
internal microservice communication, therefore allowing eavesdropping. Maintaining updated Data Flow Diagrams (DFDs) all
through the program lifecycle is more crucial since distributed systems are always changing. Maintaining its accuracy and
usefulness, modern DFD solutions may include versioning & connection with CI/CD workflows.

4.2 Terrorist Trees

Attack trees are organized diagrams showing the many ways an assailant could reach a sinister goal inside a system. The root
of the tree represents the main goal of the attacker e.g., "exfiltrate customer data" and the branches define all their practical paths
and sub-steps required to reach that objective. Whereas branches may include logical operators like AND/OR to indicate by their
whether several processes must occur simultaneously or separately, each node represents a threat scenario or strategy. Attack trees
significantly help LDS as they enable the modularity & decentralization of services, therefore supporting the modularity.

e Attack trees mostly provide a clear depiction of complex attack paths.

e Letting security teams evaluate certain risks' feasibility & also consequences.

e By focusing on high-probability or high-impact attack paths, one may help to prioritize defenses.

Branches for credential stuffing, API key leaks, session hijacking & the evasion of multi-factor authentication might comprise
an attack tree for a cloud-based authentication system. This hierarchical study points out weaknesses & evaluates which, among
rate restriction, anomaly detection, secret rotation, would be most successful mitigating strategies.

4.3 Model with Asset-Focused Focus

Emphasizing threat modeling efforts targeted at protecting the most important or sensitive assets of the system personal
information, intellectual property, authentication credentials & more financial transactions asset-centric modeling stresses. This
approach begins with the identification of all necessary assets then defines their access, transport, and storage inside the system.
Assets in LDS might be spread over many microservices, cloud environments & data centers, therefore creating unequal access
limitations & different degrees of risk. Teams using asset-centric modeling can monitor the life cycle of any asset and understand
its system vulnerability.

e This approach guarantees that security focuses on the most important aspects instead of allocating their resources equally

across all the components.
e Encouragement of stringent access limits and least privilege concepts.
e Guaranteeing adherence to data privacy regulations (e.g., HIPAA, GDPR).

32

Asset-centric modeling can focus on user profile information in a distributed e-commerce network. This means simulating the
data flow from user input, to the front-end service, into a customer database & sometimes into analytics tools or outside marketing
systems. Every interaction then is evaluated for risk and exposure.

4.4 Hierarchizing and Evaluating Risk

Following the identification of assets and hazards, the next step is to assess and rank risks with both qualitative & quantitative
criteria. In LDS, this step is more crucial as security resources have to be distributed to the most important hazards even with
continuous architectural change. Using quantitative methods might mean assigning numerical numbers to factors like the
exploitation likelihood.

e Consequences from concessions.

e For reaction or detection, duration

e Discussed in Section 4, the DREAD model computes a risk score by measuring damage potential, reproducibility,

exploitability, affected users & discoverability.

For teams without official risk modeling tools, qualitative approaches including risk category classification (Low, Medium,
High, Critical) are more simple & easily available. For first threat assessment or in the lack of data supporting quantitative models,
they are useful.

e Good risk prioritization involves matching risks to business goals & service level agreements (SLAS).

e Assessing the radius of detonation of a potential attack.

e Evaluating present compensating mechanisms.

In LDS, where multiple hazards may be found, this prioritization helps engineering and security teams to react fast to the most
critical problems without overwhelming themselves.

4.5 Automation and Tools

Especially in LDS environments, manual threat modeling is more frequently challenging & impossible to scale. Fortunately, a
number of tools and platforms exist to maximize the process, include threat modeling into development cycles, and provide their
ongoing improvements as systems evolve.
Notable instruments are:

4.5.1 Microsoft Threat Modeling Tool:

Complementary and essentially based on the STRIDE approach, this tool lets users automatically generate threats drawn from
the model, create more visual representations of systems using pre-defined templates, and export more reports. Teams already
using Microsoft technology and Windows-centric designs would find it very appropriate.

o Benefits: Easily interacts with data flow diagrams; user-friendly.

e Restricted adaptability for modern microservices or cloud-native systems.

4.5.2 OWASP Threat Dragon

An open-source modeling tool fit for desktop and browser-based systems. Designed for teams working on agile development,
it stresses visual diagramming & documentation.

e Benefits: Lightweight, open-source, GitHub- compliant.

e Restraints: Not enough connection with automated security tools.

4.5.3 Irius Risk:

An advanced commercial platform including risk dashboards, security need monitoring, and automated threat generation.
Interacting with DevSecOps pipelines, Irius Risk helps developers, architects, and security analysts to collaborate depending on
their roles.

e Scalable, very flexible, best for huge companies.

e Limitations: Requires licenses and causes smaller teams to have a learning curve.

e By means of these approaches, automation helps to provide constant threat modeling throughout infrastructure

improvements or code changes.

e Integration with Jira and other issue trackers allows tasks to be automatically generated for high-risk findings.

e Tailored threat libraries made for certain industry sectors (such as finance, healthcare).

33

5. Case Study: Threat Modeling in a Cloud-Based Healthcare Platform

In healthcare systems, protecting sensitive information is very vital as patient privacy, data integrity & system availability
directly impact human life. The deployment of structured threat modeling methods in a huge scale, cloud-based healthcare
infrastructure meant for actual time medical data management, patient engagement & more clinical decision support is investigated
in this case study It underlines how proactive threat modeling improved the security posture of the system, lowered risk exposure
& coordinated security projects with respect for healthcare compliance requirements.

5.1 System Commentary

Linking hospitals, clinics, physicians & patients over a distributed architecture, the healthcare platform serves as a complete
digital solution. It is meant to help with electronic health record (EHR) administration, remote consultations, laboratory result
tracking, prescription filling.

5.1.1 Main features of the system consist in:

e Storage available from the clouds: To guarantee availability & the redundancy, securely kept in encrypted cloud databases
located on their AWS and Azure are patient records, diagnostic images, and clinical notes.

e API-driven design offers RESTful APIs for third-party connections like insurance verification, pharmaceutical systems,
data input from wearable health devices.

e Patients and medical professionals use Android and iOS applications to get their personal health information, contact, and
schedule visits.

e Built using microservices, each microservice controls certain business processes like medical history, appointment
scheduling & more authentication and is housed within Kubernetes clusters

e From the beginning, the different user demographics which included patients, general practitioners, IT managers & any
outside partners made job demarcation and access control a top priority.

5.2 Acknowledged Dangers
Many serious hazards were discovered across the surface of the system during the threat modeling stage. Among them the most
notable were:

e Data Modification: Healthcare records have therapeutic & also legal importance, hence data integrity is more crucial.
Using susceptible APIs, threat modeling found various areas of data flow manipulation between mobile clients & the
backend. Should a hostile actor alter a patient's test findings or dosage during transmission to the backend, misdiagnosis
or inappropriate treatment might follow.

e Unauthorized Inaccess: The distributed nature of the platform & its support of multiple user roles have caused concerns
about their unauthorized access. Token reuse, poorly written identity and access management (IAM) policies, or
compromised by their authentication methods might let attackers pass for users, increase access to protected health
information (PHI), or impersonate people.

e Attack using Denial-of- Service (DoS): The public API endpoints & mobile interfaces let the system be easily targeted
by Denial of Service attacks in future. Whether deliberate or unintended, a surge of requests might overwhelm the
authentication of microservice or database backend, therefore rendering the platform useless during more vital healthcare
operations.

5.3 Procedures of Threat Modeling
The team gradually fixed these issues utilizing the STRIDE process, building exact Data Flow Diagrams (DFDs) & closely
reviewing the attack surface.

5.3.1 STRIDE Implementing Techniques
STRIDE helped every component of the system to be investigated:
e Spoofing: Acknowledged the risk mobile apps posed from fake authentication credentials.
Manipulation: See certain inter-service transactions lack data integrity validation.
Repudiation: Not enough monitoring of audits in the patient-facing interface.
Notable poor encryption on API responses including Protected Health Information (PHI).
Elevated risk resulting from insecure API rate limits is denial of service.
Found probable privilege escalation within the Kubernetes cluster via incorrectly set IAM roles.

34

5.3.2 Creating Data Flow Diagrams

For three main processes user authentication including mobile login, token issuing, and session management the team
developed thorough DFDs.

e Medical Record Access: The approach for gathering and displaying patient information across many interfaces.

o Data synchronizing including laboratory data & outside health equipment into the Electronic Health Record (EHR).

The DFDs identified locations where encryption, authentication, and validation were either absent or inconsistently applied &
helped to identify trust boundaries that instance, between cloud APIs and mobile clients, or third-party labs and internal services.

5.3.3 Evaluation of Attack Surface

Comprising developers, security engineers & more compliance officials, the threat modeling team performed an attack surface
research counting all exposed endpoints public APIs and mobile interfaces among them.

e Looked at in Kubernetes for vulnerable services and extra open ports.

o Assessed outside library dependencies in backend systems and mobile apps.

e Analyzed how well firewall rules and network segmentation worked.

This all-encompassing approach helped the team to understand the whole extent of exposure and allocate defensive tactics in
line.

5.4 Techniques for Reduced Effect
Many successful mitigating actions were carried out based on the ideas of threat modeling:

5.4.1 RBAC: Role-Based Access Control
e Ran thorough RBAC policies with JWTs and OAuth 2.0 scopes.
e Maintained strict boundaries of rights across user groups that is, patients, doctors, managers.
o Fortified Kubernetes RBAC rules restrict access to deployment tools and more administrative APIs.

5.4.2 Safeguards for APl Gateways

Apply rate limitation, IP whitelisting & request validation on an API gateway layer AWS API Gateway and Kong.
Across internal services, activated mutual TLS (mTLS) prevents spoofing and eavesdropping.

Use OpenAPI1 specifications' input validation and schema enforcing capabilities.

Encryption at Rest and In Transit Activated TLS 1.3 for all client-server and inter-service interactions.
With AES-256, apply end-to- end encryption for all kept data.

Use digital signatures and checksum validation to assure clinical record data integrity.

Additional actions included the methodical rotation of access keys, the use of a Web use Firewall (WAF), and the inclusion of
AWS GuardDuty and Azure Security Center for instantaneous threat detection.

5.5 Real-world Knowledge Gained
From this effort, the team produced many important results that shaped further security protocols for the platform:

5.5.1 Meaning of Continuous Modeling

Originally, threat modeling was considered a one-sided design effort. Still, it became more clear that a system as dynamic as a
cloud-native healthcare platform depends critically on their continuous threat modeling reevaluated with every feature rollout or
architectural change. This helped to find fresh risks resulting from outside integrations or updates.

5.5.2 Cooperation Across Disciplines

The Information Security team no longer alone had responsibility for security. Promoting group responsibility for the security
posture of the platform, the most important sessions were collaboration between developers, architects, operations & also legal
teams. This also helped technical installations line up with HIPAA and GDPR more compliance requirements.

5.5.3 Automating Security Within Continuous Integration/Continuous Deployment Pipelines
e Included within the CI/CD process were automated solutions meant to provide continuous security.
e Static code analysis to find unsafe dependencies
o Data Flow Diagram development automatically from infrastructure-as-code models.

35

e Dynamic evaluation of operational parameters for misconfigurations or configuration variances.
e During merging requests, use threat modeling tools such IriusRisk to find other hazards.

These links reduced the human effort and made security checks possible to grow in line with the system's development.

6. Conclusion

Large-scale distributed systems (LDS) are becoming more indispensable for modern businesses and public services as digital
infrastructures grow in complexity and scope. Their distributed & connected traits make them wulnerable to a huge and rising threat
environment even if they provide unparalleled scalability, availability & also their performance. Threat modeling is a necessary,
proactive security tool in this context that helps teams identify, evaluate & reduce their risks early in system design and all through
their operational lifetime. It changes the viewpoint from reactive defense to more proactive security so that companies may spot
risks before they become actual world breaches.

Structured approaches such as Data Flow Diagrams (DFDs), attack trees, asset-centric modeling, and risk prioritizing systems
like STRIDE and DREAD provide a whole toolkit for carefully assessing potential LDS wulnerabilities. These techniques provide a
complete awareness of data flow within their systems, the identification of important assets, the possible use of architectural
weaknesses by attackers & the deliberate distribution of defensive resources. Automated threat modeling solutions such as
Microsoft Threat Modeling Tool, Threat Dragon, and IriusRisk have made it more feasible to preserve their ongoing security
assurance in fast development environments.

The case study of a cloud-based healthcare platform shows the obvious advantages of threat modeling in an actual LDS
environment. Using a methodical approach, the developers found that their major threats like data tampering, illegal access & DoS
vulnerabilities; they then efficiently applied mitigations including robust encryption, role-based access control & API gateway
protections. The initiative highlighted the benefits of continuous threat modeling, multidisciplinary collaboration & CI/CD pipeline
automation insights relevant in many fields and system designs.

This paper finally suggests a shift to security-by-design, putting threat modeling as a basic element of the process of system
architecture rather than a reactive, optional fix. Security has to go from a single issue to a shared responsibility included into every
development cycle as systems become more dynamic & more connected. Those that adopt this viewpoint will be better suited in
building dependable, strong & more safe distributed systems. The direction is clear: incorporate threat modeling into the basis of
your design philosophy, provide tools & also training materials, and foster a culture of continuous, group security awareness. Then
alone will we be able to deftly negotiate the challenges provided by modern, complex, high-stakes digital ecosystems.

References

[1] Grabowski, Martha, et al. "Risk modeling in distributed, large-scale systems." IEEE Transactions on Systems, Man, and
Cybernetics-part A: Systems and Humans 30.6 (2002): 651-660.

[21 Breakspear, Michael. "Dynamic models of large-scale brain activity." Nature neuroscience 20.3 (2017): 340-352.

[3]1 Josuttis, Nicolai M. SOA in practice: the art of distributed system design. " O'Reilly Media, Inc.", 2007.

[41 Zhu, Sencun, Sanjeev Setia, and Sushil Jajodia. "LEAP+ Efficient security mechanisms for large-scale distributed sensor
networks." ACM Transactions on Sensor Networks (TOSN) 2.4 (2006): 500-528.

[51 Coulouris, George F., Jean Dollimore, and Tim Kindberg. Distributed systems: concepts and design. pearson education,
2005.

[6] Schroeder, B., & Gibson, G. A. (2009). A large-scale study of failures in high-performance computing systems. IEEE
transactions on Dependable and Secure Computing, 7(4), 337-350.

[71 Yasodhara Varma Rangineeni, and Manivannan Kothandaraman. “Automating and Scaling ML Workflows for Large Scale
Machine Learning Models”. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE),
vol. 6, no. 1, May 2018, pp. 28-41

[8] Sheikh, Hafiz Fahad, et al. "Energy-and performance-aware scheduling of tasks on parallel and distributed systems." ACM
Journal on Emerging Technologies in Computing Systems (JETC) 8.4 (2012): 1-37.

[91 Anusha Atluri, and Teja Puttamsetti. “The Future of HR Automation: How Oracle HCM Is Transforming Workforce
Efficiency”. JOURNAL OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), vol. 7, no. 1,
Mar. 2019, pp. 51-65

[10] Zhou, Yunhong, et al. "Large-scale parallel collaborative filtering for the netflix prize." Algorithmic Aspects in Information
and Management: 4th International Conference, AAIM 2008, Shanghai, China, June 23-25, 2008. Proceedings 4. Springer
Berlin Heidelberg, 2008.

36

(11]
(12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]

Hwang, Kai, Jack Dongarra, and Geoffrey C. Fox. Distributed and cloud computing: from parallel processing to the internet
of things. Morgan kaufmann, 2013.

Yasodhara Varma Rangineeni. “End-to-End MLOps: Automating Model Training, Deployment, and Monitoring”. JOURNAL
OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), vol. 7, no. 2, Sept. 2019, pp. 60-76
Burrows, Mike. "The Chubby lock service for loosely-coupled distributed systems." Proceedings of the 7th symposium on
Operating systems design and implementation. 2006.

Anusha Atluri. “Data Migration in Oracle HCM: Overcoming Challenges and Ensuring Seamless Transitions”. JOURNAL
OF RECENT TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), vol. 7, no. 1, Apr. 2019, pp. 66-80
Ahmed, Amr, et al. "Distributed large-scale natural graph factorization." Proceedings of the 22nd international conference on
World Wide Web. 2013.

Kupunarapu, Sujith Kumar. "Al-Enabled Remote Monitoring and Telemedicine: Redefining Patient Engagement and Care
Delivery." International Journal of Science And Engineering 2.4 (2016): 41-48.

Buyya, Rajkumar. "Economic-based distributed resource management and scheduling for grid computing.” arXiv preprint
€s/0204048 (2002).

Anusha Atluri. “The Security Imperative: Safeguarding HR Data and Compliance in Oracle HCM”. JOURNAL OF RECENT
TRENDS IN COMPUTER SCIENCE AND ENGINEERING (JRTCSE), vol. 7, no. 1, May 2019, pp. 90-104

Dikaiakos, Marios D., et al. "Cloud computing: Distributed internet computing for IT and scientific research." IEEE Internet
computing 13.5 (2009): 10-13.

Ford, Daniel, et al. "Availability in globally distributed storage systems." 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 10). 2010.

Francalanza, Adrian, Jorge A. Pérez, and César Sanchez. "Runtime verification for decentralised and distributed systems."
Lectures on Runtime Verification: Introductory and Advanced Topics (2018): 176-210.

37

	2.1 Definition and Purpose

