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Abstract - At the moment, epileptic disease (ED) is regarded as one of the progressive disorders that affect brain function over a 
number of months or years. The main prevalent cause of eating disorders is a seizure state. This study employs a Convolutional 

Neural Network (CNN)-based method to predict epileptic seizures by analyzing EEG data. The approach utilizes the UCI Epileptic 

Seizure Recognition dataset, with preprocessing steps including outlier removal and Min-Max normalization to enhance data 

quality. Raw time-series EEG data were used directly for classification, removing the requirement for feature engineering by hand.  

The suggested CNN model achieved 99% accuracy, 99% precision, 99% recall, and 99% F1-score, demonstrating outstanding 

performance. Comparative analysis with baseline models Fully Connected Neural Network (FCNN), Random Forest (RF), and 

Support Vector Classifier (SVC) demonstrated the superior accuracy of the CNN model. These results highlight its potential for 

integration into real-time smart healthcare systems, enabling proactive patient monitoring and timely intervention in clinical 

settings. 

 

Keywords - Epileptic Seizure Detection, EEG Signal Analysis, Convolutional Neural Network (CNN), Machine Learning, Seizure 

Prediction, UCI Epileptic Seizure Dataset. 
 

1. Introduction 
The combined strains of an ageing and growing population, a growing need for high-quality treatment, and constrained 

resources are driving the rise of smart health care in the digital era [1]. wearables have traditionally been used to promote overall 

wellness, smart health is also beginning to include the Although treatment of acute illnesses. The automated real-time control of 

seizures using smart health care is one example of such an endeavor [2]. Frequent, unplanned seizures are a hallmark of epilepsy, a 
neurological disorder. An aberrant hyper-synchronous disruption of a population of neurons causes a seizure, which can cause 

convulsions, sensory abnormalities, and even loss of consciousness. The human brain is a non-linear, very complicated structure.  

Numerous physiological and pathological illnesses, including the cause of epileptic seizures is anomalies in the human brain [3]. 

Seizures in epilepsy are brought on by serious electrical abnormalities in the brain pattern [4]. The EEG signal is a useful clinical 

tool for identifying brain activity in humans. Diagnosing epilepsy starts using EEG signal data to detect epileptic seizures. 

 

The EEG serves as a vital instrument for brain activity evaluation [5]. The device measures brain electrical signals to provide 

essential information about brain function and unusual activity patterns. The detection of abnormal electrical patterns signaling 

seizures in epilepsy patients depends on EEG signals for essential diagnosis [6]. Epileptic seizure detection through EEG requires 

medical experts to perform visual inspections, yet proves both time-consuming and error-prone during continuous monitoring 

sessions, according to research [7]. Human-based EEG analysis turns out to be both burdensome and inefficient for real-time seizure 

detection because signals contain complex patterns. 
 

The difficulties within seizure detection and prediction have led to an increasing necessity for automated systems that precisely 

analyze EEG signals. ML and DL approaches show great promise in automating seizure detection and prediction with enhanced 

precision, according to research in [8]. Modern algorithms analyze extensive EEG datasets by locating intricate data patterns that are 

tough for human experts to detect independently [9]. The application of ML and DL methods by researchers yielded successful 

results in seizure event classification, which strongly improved detection efficiency [10]. 
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1.1. Motivation and Contribution of the Study 

The research goal emerges from an urgent demand to create non-invasive data-driven approaches for early seizure detection and 

monitoring. Worldwide, millions of people live with epilepsy, yet this neurological condition often receives a delayed diagnosis 

because seizures occur sporadically. The current diagnostic methods depend on clinician-led manual EEG evaluation, but this 

analysis requires extensive time to perform and displays human subjectivity along with error rates that reduce diagnostic accuracy. 
Epileptic seizure detection capabilities powered by the combination of massive EEG signal access and ML technology show great 

promise to benefit clinical decisions and patient outcomes.  

 

The research develops a reliable seizure detection system through deep learning applications applied to EEG signal data analysis. 

This work introduces the following key findings: 

 Development of a CNN-based Seizure Prediction Model: This paper introduces a DL model using the CNN algorithm 

enables precise epileptic seizure anticipation through EEG signal evaluation to improve early seizure detection elements for 

smart healthcare applications. 

 Innovative Data Pre-processing Techniques: The study uses advanced pre-processing techniques combined with outlier 

detection and Min-Max normalization, and feature extraction to achieve enhanced data quality and uniform scaling of EEG 

signal features for improved model training efficiency. 

 High Performance and Robust Evaluation: The usefulness of the suggested CNN model in Its exceptional performance, 

precision, recall, accuracy and F1-score show that it can distinguish between epileptic and non-epileptic EEG data with low 

false positives and false negatives. 

 Comparative Analysis with Baseline Models: The study presents a detailed comparative analysis with traditional ML 

models (FCNN, RF, SVC), highlighting the superior performance of the CNN approach, particularly in capturing temporal 

patterns of EEG signals for seizure detection. 

 

1.2. Justification and Novelty of the Paper 

The justification and novelty of this paper lie in the application of CNN using the UCI Epileptic Seizure Recognition dataset to 

determine if EEG patterns are epileptic or non. This study contributes to the domain of smart healthcare by offering an accurate, 

automated approach to seizure detection, which is necessary for early diagnosis and treatment planning in the management of 

epilepsy. Using unprocessed EEG time-series data as input instead of feature engineering enables the CNN model to autonomously 
learn complex temporal and spatial patterns associated with seizure activity. 

 

1.3. Structure of Paper 

This paper is structured as follows: Section II reviews related work, Section III describes the dataset and CNN methodology, 

Section IV presents results and analysis, and Section V concludes with key insights and future work. 

 

2. Literature Review 
This section reviews and highlights advancements in EEG data analysis for epileptic seizure identification with an emphasis on 

using ML and DL techniques in intelligent medical care.  

 

2.1. Some of the notable reviewed works are: 

Grabat et al. (2019) features are taken from the EEG signals' S-transform across predetermined time intervals. These 

characteristics are taken from three states: ictal (seizures), pre-ictal, and normal. Calculations are made to determine the powers of 

the various EEG-retrieved characteristics. SVM uses analysis to differentiate between specified time periods of certain states 

following its implementation. The simulation's results show that S-transform performs well in detection, 94.481% sensitivity and 

70.315% specificity on average with the prediction method works accurately, with an average of 72.944% specificity and 96% 

sensitivity [11]. 

 
Billeci et al. (2019) in order to develop seizure prediction systems an initial patient-specific research combining EEG and ECG 

is presented. The study team collected synchronization patterns, Recurrence quantification analytic metrics from the RR inter-beat 

series using EEG data, along with time and frequency aspects. The SVM classifier included the properties that were derived from 

both signals to differentiate midway between the interictal and preictal stages. Predictive results from the proposed integrated 

analytical approach allowed for the identification of epileptic seizures with 93.3% sensitivity and 80.6% specificity over a 20-minute 

prediction period.  Using wearable and portable electronics, researchers have discovered ways to implement real-time patient-

tailored seizure forecasts [12]. 
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Gaho et al. (2019) in order to determine the cause of seizures, spikes, and anticipated epileptic problems in individuals with 

epilepsy who are sleeping at night, the study team examined these phenomena. The results show that the whole EEG data contains 

several strong spikes or seizures, especially in the brain's frontal sensory region. According to the research, the left front-central 

region of the brain, which has large amplitudes at the electrode positions (FC1, Cz), is responsible for sharp waves, polyspikes, and 

spikes in beta band activity, especially while the patient is asleep.  Additionally, for a certain time period, this region has a fixing 
goodness rating greater than 95% [13]. 

 

Rajendran and Kumar (2019) develop a model for an ANN that can identify and forecast seizures before they happen. Using a 

sensitivity rating of 91.15%, the suggested ANN model predicts and detects seizure events using an easy-to-use and effective 

architecture. Experiments on the data reveal that, with a significant calculation time (630 seconds), the prediction accuracy is 91%. A 

common neurological condition known as epilepsy or epileptic seizures affects a large number of people. It happens suddenly and 

without any indications, which raises the human mortality rate [14]. 

 

Acharya et al. (2018) this method is restricted in detecting irregularities, can be time-consuming, has technical artefacts, and 

yields inconsistent findings depending on the reader's degree of skill.  Therefore, it is crucial to create a CAD system that uses ML 

techniques to automatically determine this EEG data's kind. This is the first attempt to use CNN to analyze EEG data. This study 

distinguishes between the normal, preictal, and seizure classes using a 13-layer deep CNN approach. The recommended method's 
sensitivity, specificity, and accuracy were 95.00%, 90.00%, and 88.67%, respectively [15]. Table I presents a comparative analysis 

of the background literature, categorized by author, methodology, data used, key findings, limitations, and proposed future work. 

 

Table 1: Smart Healthcare and Prediction of Epileptic Seizures Disease Using EEG Signal Analysis 

Author(s) Methodology Data Key Findings Limitations Future Work 

Grabat et al. 

(2019) 

S-transform for EEG 

feature extraction; 

SVM classification 

EEG signals 

(normal, pre-

ictal, ictal 

states) 

Sensitivity: 94.481%, 

Specificity: 70.315% 

(detection); Sensitivity: 

96%, Specificity: 

72.944% (prediction) 

Moderate 

specificity 

Enhance specificity 

and validate on 

larger datasets 

Billeci et al. 

(2019) 

Combined EEG and 

ECG features; SVM 

classifier 

EEG and 

ECG data 

(patient-

specific) 

Sensitivity: 93.3%, 

Specificity: 80.6%, ~20-

minute prediction 

window 

Preliminary 

study with 

limited dataset 

Incorporate wearable 

and portable 

technology for 

practical applications 

Gaho et al. 
(2019) 

Pre-processing and 
source localization 

using EEG 

Night-time 
EEG data 

from 

epilepsy 

patients 

Identified spikes in the 
left fronto-central region 

with >95% localization 

accuracy 

Requires 
extensive pre-

processing 

Streamline 
processing for real-

time or clinical 

applications 

Rajendran 

and Kumar 

(2019) 

Artificial Neural 

Networks (ANN) for 

the detection and 

prediction of seizures 

EEG data Prediction accuracy: 

91%, Sensitivity: 

91.15%, Computation 

time: 630 seconds 

High 

computation 

time 

Optimize ANN 

architecture for 

improved speed and 

performance 

Acharya et 

al. (2018) 

Classifying EEG data 

using a 13-layer CNN 

model 

EEG signals 

(normal, 

preictal, 

seizure) 

Accuracy: 88.67%, 

Specificity: 90%, 

Sensitivity: 95% 

Time-

consuming and 

subject to 

artifacts 

Develop real-time 

CAD systems and 

expand validation 

across diverse 

datasets 

 

3. Methodology 
This project aims to create a precise DL-based model for EEG signal analysis-based epileptic seizure prediction. The aim is to 

enhance early detection capabilities for integration into smart healthcare systems. This work uses EEG data processing in a 

methodical manner to anticipate epileptic episodes. The Epileptic Seizure Recognition dataset is where the procedure starts, which 

undergoes preprocessing involving outlier detection and removal to enhance data quality. Following this, Min-Max normalization is 

applied to scale the EEG features uniformly within a range of 0 to 1. Features are extracted directly from the normalised time-series 

EEG data points. To facilitate the model evaluation process, the dataset is then separated into training and testing subsets. A CNN 
architecture is employed for categorization by leveraging its ability to recognize temporal patterns in EEG data. The model's 
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performance is evaluated using standard measures, such as F1-score, recall, accuracy, and precision. The outcomes are then 

examined to confirm that the suggested approach works. The suggested methodology's flowchart is shown in Figure 1. 

 
Fig 1: Data Flowchart Diagram for Epileptic Seizure Disease 

 

The flowchart's general steps for epileptic seizure disease are shown below: 

 

3.1. Data Collection 

The UCI Epileptic Seizure Recognition dataset was developed. This work uses data from the original Bonn EEG dataset. It 

includes 500 EEG recordings with 4,097 data points per recording.  These recordings were split into 23 non-overlapping segments, 

each with 178 data points, to yield 11,500 one-second samples. Five classes are created from the dataset: Class 1 denotes the 

presence of epileptic seizures, whereas Classes 2–5 reflect different non-seizure states. For binary classification purposes, Class 1 
was labeled as 1 (epileptic), while Classes 2–5 were grouped and labeled as 0 (non-epileptic), facilitating the development of seizure 

detection models. 

 
Fig 2: Histogram Representation of the Epileptic and Non-Epileptic Seizures in the Dataset 
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Histogram showing the distribution of EEG signal values for class labels 0 and 1, shown in Figure 2. Class 0 signals are densely 

concentrated at lower amplitudes (around 50–100), while class 1 signals are more spread out, indicating higher variability. The 

overall distribution is right-skewed. 

 
Fig 3: Distribution of EEG Signal Classes (y) 

 
The distribution of EEG signal classes (y), showing a nearly uniform distribution across all five classes shown in Figure 3. Each 

class has roughly the same number of instances (around 2200), indicating balanced data. This uniformity supports fair training of 

ML models without class bias. 

 
Fig 4: Distribution of Classes in y 

 

Figure 4 shows a donut chart of an equal distribution of EEG signal classes, each representing 20% of the dataset. The classes 

include eyes closed, eyes open, seizure activity, EEG from the tumor area, and the tumor region identified. This balanced 

distribution ensures unbiased model training and reliable classification across all EEG conditions. 

 

3.2. Data Preprocessing 

The initial stage of preparing EEG signal data for ML is identified as preprocessing. The study required the systematic 

preprocessing of raw EEG samples to increase data quality, along with the ability to work with learning algorithms. The first step 
involved the detection and then the removal of outlier measurements that indicated extreme or unnecessary data points. The 
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algorithm applied Min-Max normalization for feature value scaling in order to standardize all data points within a specific range. The 

following steps of preprocessing are given below: 

 Outlier Detection and Removal: Finding and removing unusual data points is known as outlier identification and removal, 

and it guarantees clean, reliable input for model training. 

 

3.3. Data Normalization with Min–Max Scaling  

The preprocessing technique known as normalization enables data feature value transformation that produces specific value 

ranges to achieve better model results and training stability. Through normalization, the larger quantity values remain in check 

alongside smaller values to achieve an equal input influence from all features. The study utilized Min-Max scaling on EEG signal 

features to adapt all value ranges from 0 to 1.  

 

The normalization process follows Equation (1) as its definition: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
(𝑥 −  𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛)
 

where X is the data point's initial value and 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  is its normalised value. 𝑥𝑚𝑖𝑛 is the minimum value of the variable, while 

𝑥𝑚𝑎𝑥 is the maximum value of the variable of the data set. 

 

3.4. Feature Extraction  
In order to fulfil user intent, feature extraction is the process of extracting task-specific information from the signal. Each data 

instance comprises 178 raw EEG signal values, representing brain electrical activity recorded over a 1-second interval. These time-

series values were directly utilized as input features without additional manual feature engineering. Prior to model training, the 

signals were preprocessed and normalized to ensure consistency across samples, facilitating effective learning of temporal dynamics 

by both ML and DL models. 

 

3.5. Data Splitting 

The process of dividing a dataset into discrete subsets for model training and assessment is known as data splitting. To ensure 

accurate model learning and unbiased evaluation, the dataset utilized in their work 80% training and 20% validation sets in this 

work.  

 

3.6. Classification with Convolutional Neural Network (CNN) Model 
CNN, a DL subtype, has garnered significant interest recently and is employed in image-related applications. recognition, which 

includes computed tomography analysis, histopathology, fundus, magnetic resonance, and x-ray medical pictures. However, the 

application of CNN with physiological signals has received very little attention. Therefore, CNN was applied to ECG data in the 

authors' earlier publications in order to examine how well the CNN algorithm performed signal analysis [16]. Recently, CNN was 

utilized to automatically identify myocardial infraction and coronary artery disease based on ECG data. The CNN model uses the 

weights and biases of the network structure's preceding layers to determine its final output, just like the ANN does.  As a result, each 

layer's weights and biases are adjusted using Equations (2) and (3), respectively. 

 △ 𝑤𝑙(𝑡 + 1) = −
𝑥𝜆

𝑟
𝑤𝑙 −

𝑥

𝑛

𝜕𝐶

𝜕𝑤𝑙
+ 𝑚 △ 𝑤𝑙(𝑡) 

 △ 𝑤𝑙(𝑡 + 1) = −
𝑥

𝑛

𝜕𝐶

𝜕𝐵𝑙
+ 𝑚 △ 𝐵𝑙(𝑡) 

The individual letters represent weight, bias, regularization parameter, layer number, learning rate, total training sample count, 

momentum, update step, and cost function, in that order. Figure 5 below depicts the CNN model architecture proposed in this study. 

 
Fig 5: CNN Architecture of the Proposed Method 
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Three distinct layers make up the CNN architecture three layers: convolutional, pooling, and fully linked. 

 

3.6.1. Convolutional Layer:  

The EEG signal is traversed by kernels, also known as filters. Stride determines how much the matrix that will convolve with the 

EEG signal is called a kernel, and the input signal is convoluted by the filter. As Equation (4), it appears: 

 𝑦𝑘 = ∑ 𝑥𝑛ℎ𝑘−𝑛
𝑁−1
𝑛=0  

 

3.6.2. Pooling Layer:  

This layer is sometimes referred to as the down-sampling layer. The convolutional layer's output neurons are shrunk in size 

using the pooling technique to avoid overfitting and save processing power.  

 

3.6.3. Fully Connected Layer:  
This layer is completely linked to all of the activations in the layer above it.  

 

3.7. Performance Matrix 

Several common assessment indicators were used to gauge how well the seizure prediction models performed. A thorough 

understanding of these measures provide ability of the model to distinguish between EEG data from epileptic and non-epileptic 

subjects. By comparing the actual and anticipated labels, a confusion matrix was utilized to assess the categorization results. The 

results are divided into four main groups: TP, TN, FP, and FN. To make it easier to comprehend the model's efficacy, these 

categories serve as the foundation for computing performance indicators recall, F1-score, accuracy, and precision. These are briefly 

explained below.  

The fundamental parameters are: 

 True Negative (TN): The quantity of executables with incorrect diagnoses of epilepsy and non-epilepsy. 

 True Positive (TP): The quantity of executables with mild epilepsy and properly diagnosed. 

 False Negative (FN): The quantity of executables with epilepsy that are classified as non-epilepsy. 

 False Positive (FP): The quantity of executables that are considered to be epileptic but are actually innocuous. 

 

3.7.1. Accuracy 

Accuracy is by far the most used performance statistic.  The computation and identification process are easy and convenient, as 

shown in Equation (5).  

Accuracy =
TN +  TP

TP +  TN +  FP +  FN
 

 

3.7.2. Precision 

The precision shows how accurate the classification is.  Both high precision and poor accuracy lead to fewer false positives and 

lower accuracy. It is calculated using the Equation (6):  

Precision =
TP

TP + FP
 

 

3.7.3. Recall 

Recall shows the proportion of actual positive cases that the model accurately forecasted. When there is a chance of FN, it is 

beneficial, it is given blow Equation (7). 

Recall =
TP

TP + FN
 

 

3.7.4. F1-Score 

F1-Measure combines accuracy and sensitivity. This is the weighted harmonic approach for sensitivity, accuracy, and precision. It 

has been demonstrated that the F1 measurement is just as accurate as the F1 rating is derived from the following Equation (8): 

F1 =
2 ∗ (precision ∗ recall)

precision + recall
 

 
3.7.5. ROC 

The connection between the percentage of TP and FP classifications that arise from each potential decision threshold value in a 

two-class classification problem is shown by an ROC curve.  

 



Srikanth Reddy Vangala et al./ IJERET, 2(3), 61-70, 2021 

 

68 

These performance matrices are utilized for comparative analysis and to evaluate the model performance for the UCI Epileptic 

Seizure Recognition dataset. 

 

4. Result Analysis And Discussion 
The experimental analysis was performed on a high-performance computing system to ensure efficient handling of the EEG 

dataset and precise evaluation of model performance. The machine, running Windows 11 Pro, has an Intel Core i9-13900K CPU (3.0 

GHz), 64 GB of DDR5 RAM and a 24 GB VRAM-equipped NVIDIA RTX 4090 GPU. According to Table II's assessment results, 

the suggested CNN-based method for real-time epileptic seizure prediction is robust and successful, which supports its possible 

incorporation into intelligent healthcare applications. 

Table 2: Performance matrix for Convolutional Neural Networks (CNN) model  

Matrix CNN Model (%) 

Accuracy 99 

Precision 99 

Recall 99 

F1-Score 99 

 

 
Fig 6: Confusion Matrix of CNN Model 

 

Figure 6 shows the CNN model's confusion matrix.  With 18 FP and 9 FN, it accurately diagnoses 488 instances of epilepsy and 

1,785 non-epileptic cases.  When separating epileptic from non-epileptic cases, the model performs exceptionally well and with high 

accuracy. 

 
Fig 7: ROC-AUC Curve of CNN Model 
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Figure 7 displays the ROC-AUC curve for the CNN model. Strong classification capacity is indicated by the curve's high true 

positive rate and low FPR. With an AUC of 0.98, it is clear that people with epilepsy may be distinguished from those without. 

 
Fig 8: Classification Report of CNN Model 

 

Figure 8, the CNN model's categorization report. Recall, F1-score, and class 0 precision are all 0.99 with 1803 samples. For 

class 1, these metrics are 0.96, 0.98, and 0.97 with 497 samples. The weighted and macro F1-score averages were 0.98 and 0.99 for 

accuracy, recall, and F1-score and 0.99/0.99, respectively, for a total of 2300 samples, yielding an overall accuracy of 0.99. 

 

4.1. Comparative Analysis  

In this section, the baseline models and the suggested CNN model are compared. FCNN [17], RF [18], and SVC [19] applied to 

predicting epileptic seizures using EEG data. Table III summarizes the classification accuracy of different models, demonstrating 

their exceptional capacity to detect patterns in EEG data over time and differentiate between seizure and non-seizure episodes. 

Table 3: Comparative Analysis Between Base And Proposed Model Performance On Epileptic Seizures Disease Detection 

Matrix FCNN RF SVC CNN 

Accuracy (%) 97 96 97.1 99 

 

The dataset analysis for seizure detection presented in Table III demonstrates which model shows the highest accuracy among 
various baseline models. The suggested CNN model outperformed all baseline models on the dataset, achieving 99% accuracy. In 

contrast, the baseline models FCNN, RF, and SVC achieved accuracies of 97%, 96%, and 97.1%, in turn. The suggested CNN 

model performs exceptionally well in detecting seizure events from EEG data, according to research findings. 

 

The suggested approach offers several benefits for epileptic seizure warnings derived from the analysis of EEG signal data. The 

implementation of CNN leads to a high accuracy rate of 99%, surpassing traditional ML approaches for seizure identification. The 

automatic extraction of features eliminates manual engineering work, which reduces preprocessing complexity while improving 

model operational speed. The performance stability of the system improves while its precision remains high because of data 

normalization with the integration of outlier removal and noise filtering processes. The CNN model performs precise and dependable 

predictions because it successfully detects temporal relationships in EEG signal data. The model's capability enables real-time 

seizure detection to generalize while maintaining low overfitting rates, which brings enhanced patient healthcare solutions to clinical 
settings. 

 

5. Conclusion And Future Scope 
Hospital systems implementing modern healthcare require predictions about seizures because they advance safety measures and 

improve treatment response. ML-based approaches implementing CNN represent robust systems for identifying early signs of 

epileptic seizures. The CNN model operates with performance metrics for training-validation that yield 99% accuracy for identifying 

epileptic and non-epileptic signals. The analysis demonstrates that CNN produces better results than RF and SVC when detecting 
complex temporal patterns in EEG signals. The model exhibits high performance but has shown minor errors when detecting 

unusual seizure occurrences. Future research will concentrate on enhancing the model's generalization, incorporating multimodal 

data, and enhancing real-time monitoring capabilities for broader clinical applications. 
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