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Abstract - Through IoT technology wireless communications experience a fundamental transformation that reshapes various 

industries. Multiple cyberattacks exploit the limited capacity and broad exposure among IoT networks. IDS systems require 

advanced technologies because existing security systems fail to detect new potential threats. This research proposes Long Short-

Term Memory (LSTM)-based deep learning models to develop an intelligent intrusion detection system (IDS) that improves IoT 

security.  The LSTM model performs training on the ToN-IoT dataset data after applying multiple preparation steps, including 

cleaning and normalization and encoding different features. The model's remarkable detection skills are demonstrated by a 

number of evaluations, such as its 99.41% detection accuracy, 99.35% precision, 99.32% recall, and 99.33% F1-score. By 

employing an implemented LSTM model researcher could achieve higher classification success rates than a DBN model serves as 

validation for monitoring threat detection and temporal pattern measurement.  The suggested method provides a strong, scalable, 

and flexible IoT intrusion detection solution, enhancing security for IoT settings that are becoming more intricate and networked. 

 

Keywords - Industrial Internet of Things (IOT), Smart Industry, Big Data Analytics, Real-time Monitoring, Digital Transformation. 

 

1. Introduction 
The IoT established its name in 1999 then evolved into an essential wireless communication paradigm. The field of ICT has 

made IoT a top research priority that receives intense interest from both academia and the industry [1]. A network is the fundamental 

building block of the IoT that connects embedded computers with smart sensors and RFID tags along with automated devices and 

IoT gateways and remote servers. Physical devices using local networks and the worldwide Internet can connect to services and 

devices for data sharing [1]. The IoT now directs a technological revolution through dozens of sectors, spanning automotive 

networks as well as supply chains and retail stores, combined with healthcare facilities and smart residential developments.  The 

increasing number of IoT networks has turned security and privacy issues into critical problems [2]. Intelligent environments may be 

at risk due to the security flaws in IoT-based technologies, making IDS essential to mitigate attacks that exploit these vulnerabilities. 

 

All security protocols struggle to understand and counter the widespread vulnerabilities of IoT networks from device 

interconnections across multiple devices [3]. The limited resources of IoT systems prevent the direct implementation of security 

procedures that succeed in traditional systems. Specialized IDSs for IoT environments have become more sought after due to this 

growing need [4]. Most research on IoT intrusion detection centers on rule-based detection methods that excel at known attacks but 

prove ineffective against new and zero-day threats.  Anomaly-based detection methods have emerged as practical solutions to 

monitor the quick IoT ecosystem growth as well as continuous data flows from various linked devices [5][6]. These methods are 

especially important for detecting previously unknown threats in real time, where traditional rule-based systems fall short. 

 

Security for IoT devices improves through creative approaches enabled by machine learning-based IDS.  Analysis of device 

monitoring and network activity through ML-based information patterns indicates potential threats. These models show excellent 

suitability in IoT environments because they handle big quantities of data beyond human potential analysis [7][8]. Platform attacks 

become detectable through ML methods which also maintain the capability to adapt their detection to new cyberthreat patterns.  

Real-time threat detection using ML-based systems enables prompt application of suitable mitigation techniques and reactions 

[9][10]. The use of ML has great promise for IoT security, particularly in emerging network infrastructures such as 5G, where 

network slicing and complex communication patterns require advanced security measures. 
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Intrusion detection systems that utilize ML have undeniable promise in IoT settings, there remains a lack of comprehensive, 

methodical research addressing key challenges such as scalability, performance optimization, and real-time processing [11][12]. This 

study investigates how to increase the safety of IoT networks by combining anomaly-based intrusion detection systems with ML 

techniques.  Tests of these systems' real-time attack detection capabilities for both known and unexpected threats [13], Improving 

defenses mechanisms and furthering the area of IoT security are the goals of this project capable of securing increasingly complex 

and interconnected environments. 

 

1.1. Motivation and Contribution of Study. 

In reaction to the development of connected devices, which makes IoT networks vulnerable to a wide spectrum of cyber-attacks, the 

IoT has become an increasingly important part of modern life.  Unfortunately, real-time detection of complex and ever-changing 

threats is frequently beyond the capabilities of traditional security systems. This work aims to improve IoT security by protecting 

sensitive data and effectively identifying malicious actions using DL, more especially LSTM networks.  Finding a better, more 

scalable, and adaptable way to secure IoT environments where accurate and rapid threat detection is paramount is the goal of this 

study.  What follows is a list of what the study contributed: 

• Development of an LSTM-based Model: The paper introduces an LSTM DL model trained specifically to identify 

assaults in IoT settings by capitalizing on its capacity to record trends in network traffic over time. 

• Comprehensive Data Pre-processing: A robust data pre-processing pipeline is implemented, including data cleaning, 

normalization using min-max scaling, and categorical feature encoding, ensuring that the ToN-IoT dataset is accessible for 

model training. 

• Evaluation Using Standard Metrics: The model's performance is rigorously examined using a number of standard 

classification criteria, including accuracy, precision, recall, F1-score, and ROC curve analysis, ensuring a comprehensive 

evaluation of its detection capabilities. 

• Demonstration of Effectiveness: The experimental results validated the model's promise for practical use in IoT security, 

as demonstrated by its ability to distinguish between benign and harmful activities in IoT networks. 

 

1.2. Justification and Novelty of the Study 

This study is justified by the increasing demand for strong security measures that are adapted to the particular difficulties of IoT 

networks, which are extremely dynamic and susceptible to a variety of cyberthreats. Utilizing a LSTM DL model, It is particularly 

suitable for finding temporal correlations in sequential network data a feature that typical ML models sometimes overlook is what 

makes the suggested method distinctive. By utilizing the ToN-IoT dataset and applying thorough pre-processing techniques, the 

study ensures realistic and diverse input for training, enhancing the generalizability of the concept across different IoT attack 

scenarios. The integration of LSTM with this comprehensive pipeline offers a more adaptive and intelligent intrusion detection 

solution, advancing the current state of IoT cybersecurity. 

 

1.3. Structure of Paper 

The structure of the paper is as follows: IoT intrusion detection research is reviewed in Section II. The suggested LSTM-based 

technique is explained in Section III. The findings and discussion are shown in Section IV. The paper's conclusion and future 

directions are outlined in Section V. 

 

2. Literature Review 
This section includes relevant research that focus on IoT security via intelligent intrusion detection systems. Table I presents a 

comprehensive summary of the extant literature, summarizing key approaches, methodologies, datasets used, and the outcomes 

achieved in various studies. Huong et al. (2019) suggest a revolutionary DL technique that uses a CNN to detect breaches in IoT 

networks retrieving location and service logs from an IoT system, resulting in a unique feature set, address, and so on. For training 

and detection, the initial feature set is then refined, encoded into a digital matrix, and fed into a CNN.  The suggested technique has 

an average accuracy of 98.9% and is assessed using the cross-validation approach [14]. 

 

Roopak, Tian and Chambers (2019) recommend DL models for cybersecurity in IoT networks. One such technology that might 

link living and non-living objects worldwide is the Internet of Things network. DDoS assaults have impacted a number of IoT 

networks in recent years, resulting in large losses. Using the most recent CICIDS2017 datasets, they assessed their suggested DL 

models for detecting DDoS attacks, which produced the highest accuracy of 97.16% [15]. Alrashdi et al. (2019) suggest that in a 

smart city, IoT cybersecurity threats are addressed by an AD-IoT system, an intelligent anomaly detection system built on RF and 

ML algorithms. The suggested method for locating hacked IoT devices at dispersed fog nodes could work. It evaluated and 

demonstrated the accuracy of their model using a current dataset. According to their findings, the AD-IoT can attain the greatest 

classification accuracy of 99.34% and the lowest FP rate [16]. 
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Roy and Cheung (2018) provide a new DL method that uses a BLSTM RNN to identify assaults in IoT networks. A multi-layer 

DLNN is trained using UNSWNB15, A fresh set of benchmark data. The binary classification of common and harmful actions on 

the Internet of Things network is the main topic of this study. The outcomes of the experiment demonstrate the high performance of 

their suggested model in terms of FAR, F1 score, accuracy, and memory. their suggested BLSTM model has a 95% accuracy rate in 

detecting attacks [17]. Ertam, Kilinçer and Yaman (2017) The data collection process used ML techniques to analyze if online data 

points were normal or abnormal. A study is performed to achieve this goal, NB, BN, RF, and MLP are used in the KDD Cup 99 data 

collection, and SMO classification methods used in the literature study.  

 

The accuracy of classifiers is evaluated through numerical accuracy rates in addition to false rate metrics and precision and 

recall measurements and F-measure metrics. Comparison is also used to provide classifier classification times [18]. Hodo et al. 

(2016) research examines IoT threats while developing ANN-based security solutions. The research uses Internet packet traces to 

develop a multi-level perceptron ANN while evaluating its performance in identifying DDoS/DoS assaults. The study focusses on 

identifying common and risky practices in IoT networks. The simulation of IoT networks serves to confirm ANN operations. The 

testing findings show that they can successfully identify a variety of DDoS/DoS assaults with an accuracy of 99.4% [19]. This 

section examines the body of research on ML-based intrusion detection in IoT environments, with Table I providing an overview of 

the most important works. 

Table 1: Summary of literature review based on IoT Intrusion Detection Using ML Models. 

Author Methodology Data Key Findings Limitation Future Work 

Huong et al. 

(2019) 

Deep learning for IoT 

intrusion detection 

using CNN 

IoT log data 

(location, 

service, 

address) 

Achieved 98.9% 

accuracy using cross-

validation 

Limited feature 

diversity; may not 

generalize well 

across all IoT 

environments 

Expand feature 

extraction and test on 

diverse real-world 

datasets 

Roopak, 

Tian, and 

Chambers 

(2019) 

Deep learning for 

identifying DDoS 

assaults on the Internet 

of Things 

CICIDS2017 Achieved 97.16% 

accuracy in detecting 

DDoS attacks 

Focused only on 

DDoS; lacks 

evaluation for other 

attack types 

Broaden detection to 

include multiple types 

of attacks 

Alrashdi et 

al. (2019) 

Anomaly Detection in 

Smart Cities using 

Random Forest (AD-

IoT system) 

Custom smart 

city dataset 

99.34% accuracy and 

a low false-positive 

rate were attained. 

May not perform as 

effectively on non-

smart city datasets 

Integrate with real-

time fog/edge 

computing 

environments 

Roy and 

Cheung 

(2018) 

Bi-directional LSTM 

RNN for binary 

classification (normal 

vs attack) 

UNSW-NB15 Achieved over 95% 

accuracy in detecting 

IoT network attacks 

Binary classification 

only; does not handle 

multi-class scenarios 

Extend the model for 

multi-class 

classification and 

real-time detection 

Ertam, 

Kilinçer and 

Yaman 

(2017) 

Machine learning 

techniques including 

Naive Bayes, Bayes 

Net, Random Forest, 

MLP, and SMO were 

used for classification. 

KDD Cup 99 SMO and RF 

displayed higher 

accuracy; classifiers 

were examined using 

false rate, accuracy, 

precision, recall, and 

the F-measure. 

Relied on the 

outdated KDD 99 

dataset, which lacks 

recent attack patterns; 

did not explore 

ensemble models. 

Future research might 

involve using more 

recent and realistic 

datasets and 

researching deep 

learning approaches. 

Hodo et al. 

(2016) 

A Neural Network 

Artificially (MLP) to 

identify DDoS/DoS 

assaults 

Simulated IoT 

network traffic 

Achieved 99.4% 

accuracy; effectively 

detects DDoS/DoS 

attacks 

Evaluated on 

simulated data only 

Validate on real-world 

IoT network traffic 

and expand to broader 

threats 

 

3. Methodology 
The proposed IoT threat detection implementation depends on an LSTM DL model as shown in Figure 1. In order to determine 

model compatibility, the ToN-IoT dataset first undergoes cleaning operations, normalization using min-max scaling techniques, and 

categorical transformation processes. Model generalization evaluation utilizes distributed processed data between training and testing 

subsets.  When given data from the training subset, the LSTM model develops the ability to recognize temporal behavioral 

signatures associated with various cyber-attack types. The model's performance is assessed using common classification measures 

such as accuracy, precision, recall, F1-score, and ROC curve analysis after it has been trained on unknown data.  According to the 
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results, the model can successfully differentiate between harmful and benign network activities in Internet of Things contexts. The 

suggested methodology's flow diagram is shown in Figure 1. 

 
Fig 1: Flowchart of the proposed LSTM-based Internet of Things. 

 

The following sections provide each step description that also shows in methodology and proposed flowchart: 

 

3.1. Data Collection (ToN-IoT Dataset) 

In 2019, the ACCS released the ToN-IoT dataset, designed specifically for evaluating cybersecurity solutions in IoT 

environments. The dataset captures network traffic generated within an IoT ecosystem, with a significant portion comprising 

malicious activities. It includes a total of 22,339,021 samples, of which 796,380 are benign (normal) and 21,542,641 represent 

various types of attacks. The dataset features 44 unique attributes extracted using the Bro-IDS (now Zeek) tool. IoT includes a wide 

variety of cyberthreats, including as injection attacks, ransomware, DoS, MITM, and XSS, brute-force password attempts, and 

network scanning. 

 
Fig 2: Data Distribution of the ToN-IoT Dataset. 

 

The ToN-IoT dataset's data distribution is shown in Figure 2, which also shows a notable class imbalance. The majority of the 

data, 65.07%, is labelled as "Normal," while each attack type including Backdoor, Scanning, Injection, Password, XSS, 

Ransomware, DDoS, and DoS accounts for 4.34% of the data. The MITM category has the smallest representation, comprising only 

0.23% of the dataset. This distribution emphasizes the prevalence of normal traffic and the underrepresentation of certain attack 

types, posing challenges for building balanced and efficient models for intrusion detection. 
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3.2. Data Preprocessing 

In the examination of ToN-IoT datasets, preprocessing is crucial since raw data might contain anomalies, incomplete flows, and 

missing or duplicated information.  In order to facilitate the development and training of a model with improved performance and 

fewer mistakes, it aims to provide a cleaner dataset.  As stated below, it involves a number of procedures, such as feature encoding, 

data normalization, and data purification. 

 

3.2.1. Data Cleaning 

Data cleansing involves handling missing, inconsistent, or duplicated entries. This step ensures the integrity and quality of the 

dataset. The ToN-IoT dataset's logs include null values, duplicate flows, or incorrectly formed timestamps that need to be fixed. 

 

3.2.2. Data Normalization (Min-Max Scaling) 

In order to scale numerical characteristics to a standard range and prevent any one feature from dominating because of its scale, 

normalization is necessary. In ToN-IoT, features like packet size, duration, and number of bytes transferred can have widely 

different ranges. Additionally, because the dataset contains several characteristics with values on different scales, it must be 

normalised.  Feature scaling is achieved through the use of Min-Max Scaling normalization.  

This approach scales every feature in their dataset from 0 to 1. Min-Max Scaling Equation (1):  

𝑥′𝑖 = (𝑥𝑖 − 𝑥𝑚𝑖𝑛) ∗
𝑏 − 𝑎

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
+ 𝑎 

 

This formula uses 𝑥𝑖 as the original value and 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥   as the feature's minimum and maximum values inside the dataset 

and a and b define the desired scaling range. The output 𝑥′𝑖  is the normalized value. This technique is extremely helpful in ML to 

make sure that features contribute evenly to the model, particularly for algorithms that rely on distance or when the sizes of the input 

data differ. 

 

3.2.3. Feature Encoding 

The process of transforming categorical variables into numerical values for processing by ML algorithms, which work with 

numbers, is known as feature encoding. The ToN-IoT dataset includes features such as device type, protocol names, and log types 

that need to be encoded. Label Encoder was used for feature encoding. Each category formula is given a distinct number by label 

encoding Equation (2): 

 𝑥𝑒𝑛𝑐𝑜𝑑𝑒𝑑 = 𝐿𝑎𝑏𝑒𝑙𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥) 

 

The formula 𝑥𝑒𝑛𝑐𝑜𝑑𝑒𝑑 = 𝐿𝑎𝑏𝑒𝑙𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥) denotes the conversion of categorical data into numeric form by assigning each 

unique category in 𝑥 a distinct integer value using label encoding. 

 

3.3. Data Splitting  

This method divides the entire dataset into two groups. The remaining 20% of the data is used to test the model after it has been 

trained on 80% of it. 

 

3.4. Proposed LSTM Model 

Long-term dependencies might be remembered because to LSTM, which was initially suggested for language models in 1997. 

The LSTM layers are made up of memory blocks with three multiplicative gates in each that are connected recurrently. For a certain 

amount of time, gates continuously write, read, and reset data to guarantee that the temporary data is used. 

 

Unlike from traditional recurrent unit, LSTM unit keeps the current memory𝑐𝑡 , ∈ ℝ𝑛. The input of the unit,𝑥𝑡 , ℎ𝑡−1, 𝑐𝑡−1 and the 

output of the unit,ℎ𝑡 , 𝑐𝑡are updated as follows in Equation (3-8): 

Gates: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖 

𝑓𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜 

 

Input Transform: 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔 

 

State Update: 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡 
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ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑚ℎ(𝑐𝑡) 

 
Fig 3: LSTM Single Cell Structure 

 

The logistic sigmoid function with multiplication by elements are represented by the symbols 𝜎 and ⊙, respectively, in the 

equations above in Figure 3. The LSTM unit has an input gate 𝑖𝑡, a forget gate 𝑓𝑡, an output gate 𝑜𝑡, a hidden unit ℎ𝑡𝑡 and a memory 

cell 𝑐𝑡 at each time step t. The learnt parameters are W and U, and the additional bias is indicated by b.  It makes sense that the input 

gate regulates the amount of updating of each unit, the forget gate regulates the amount of erasing of the memory cell, and the output 

gate regulates the amount of internal memory state that is exposed. 

 

3.5. Performance Matrix 

The efficacy of the suggested intrusion detection models for IoT security to differentiate between benign and malevolent 

network traffic was evaluated using conventional performance measures. A confusion matrix was applied to compare predicted and 

actual labels, offering insights into precision, recall, and overall accuracy. These metrics were obtained from TP, TN, FP, and FN, 

where FP and FN denote occurrences of misclassified traffic while TP and TN represent correctly recognised traffic.  

 

Accuracy: The system's capacity to classify attack packets as either attack or regular. Forecasts of any proportion are permissible for 

all samples. Equation (9) provides a mathematical expression for accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Precision: defines the proportion of actual assaults found compared to all packets marked as attacks; it is calculated arithmetically in 

Equation (10). 

Precision =  TP / TP +  FP 

 

Recall: The capacity of the system to accurately identify assaults when a security breach occurs is sometimes referred to as the TP 

rate, and it may be mathematically stated as follows in Equation (11): 

Recall =  TP / TP +  FN 

 

F1-Score: In theory, F1 represents the harmonic mean of accuracy and recall. Equation (12) gives a numerical representation of it: 

𝐹1 = 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

ROC: The trade-off at various thresholds between TPR and FPR settings is depicted graphically by the ROC curve, which shows 

how well a binary classification model performs.  AUC, or the model's capacity to distinguish between classes is gauged by the area 

under the ROC curve; a number nearer 1 denotes superior performance. 

 

4. Results And Discussion 
The section on experimental setup, performance evaluation metrics, testing outcomes, and the results of this section offers a 

thorough rundown of IoT intrusion detection using the ToN-IoT dataset. An NVIDIA GTX 960 graphics card, an Intel I5 6300HQ4 

CPU, 12 GB of RAM, and the Python programming language were all installed on a Windows 10 computer for the simulation 

testing. The experiment results of the proposed LSTM model are provided in Table II. The LSTM model’s performance, reaching 

high levels of the ToN-IoT dataset, produces exceptional and well-balanced classification results, including accuracy (99.41%), 

precision (99.35%), recall (99.32%), and F1-score (99.33%). 
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Table 1: Results of Proposed Model (LSTM) 

Matrix LSTM 

Accuracy 99.41 

Precision 99.35 

Recall 99.32 

F1 score 99.33 

 
Fig 4: Accuracy Curve for LSTM 

 

Figure 4 illustrates the accuracy of an ML model's training and testing throughout 60 epochs, where epochs are plotted on the x-

axis, whereas the y-axis shows accuracy. A purple line reflects training accuracy, whereas testing accuracy is depicted in green. The 

accuracy of both curves increases sharply in the first few epochs before steadily improving to around 0.99 for training and 0.96 for 

testing, indicating successful learning and generalization. The close alignment of both curves suggests minimal overfitting and 

effective model performance across the dataset. 

 
Fig 5.: Loss Curve for LSTM 

 

The Figure 5 illustrates the comparison between training and testing loss over 60 epochs for a ML model. The training and 

testing loss curves both show a steady decrease, suggesting that learning was successful in the first 20 epochs. Both losses plateau 

and stay almost consistent after around epoch 20, indicating that the model has converged and that performance is not greatly 

enhanced by additional training. The close alignment of the two curves implies good generalization, with no significant overfitting 

observed during the training process. 
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Fig 6: Confusion Matrix for LSTM 

 

A confusion matrix assessing the effectiveness of a classification model on the ToN-IoT dataset, which includes 10 types of 

network traffic, is shown in Figure 6, encompassing both typical activity and different kinds of cyberattacks.  The number of times 

the projected class (columns) matched or deviated from the real class (rows) is shown in each cell. High values along the diagonal 

represent correct classifications, with particularly strong performance on classes like "Normal" (8923), "Ransomware" (6456), and 

"Injection" (6444). Minimal off-diagonal values suggest low misclassification rates, demonstrating the excellent precision and 

efficacy of the model in differentiating between various assault types and typical behavior. 

 
Fig 7: Roc Curve for LSTM 

 

The ROC curves for an assessed multi-class classification model are shown in Figure 7 on the ToN-IoT dataset, covering 

various attack types and benign traffic. Each colored line represents a different class, with A comparison between the TP Rate and 

the FP Rate. The ROC curves show substantial discriminating power across all classes since they are located considerably above the 

diagonal baseline. The AUC values are impressively high, mostly around 0.99, with the lowest being 0.98 for XSS and Scanning, 

highlighting the model’s excellent overall performance and robustness in detecting both normal and malicious activities. 

Table 2: Comparison Analysis between base and proposed Model performance for intrusion detection system. 

Matrix LSTM DBN[20] 

Accuracy 99.41 80.58 

Precision 99.35 88.10 

Recall 99.32 80.58 

F1-score 99.33 84.08 



Mukund Sai Vikram Tyagadurgam et al. / IJERET, 2(1), 27-36, 2021 

 

35 

 

A comparison of the baseline DBN model and the suggested LSTM model in Table III shows a notable increase in performance 

across all assessment measures. The LSTM achieved a notably higher accuracy of 99.41%, compared to 80.58% for DBN, indicating 

superior overall classification performance. Precision improved from 88.10% with DBN to 99.35% with LSTM, suggesting that 

LSTM produces fewer false positives. The LSTM model showed improved recall performance because it advanced from 80.58% to 

99.32% in identifying pertinent instances. The F1-score which reconciles accuracy and recall values showed significant growth from 

84.08% to 99.33% confirming the strong reliability of LSTM model. These results clearly establish LSTM as a more reliable and 

accurate model compared to the DBN baseline. 

 

The suggested LSTM model searches for and detects long-term temporal relationships, it has essential features for efficient data 

preservation appropriate for sequential pattern recognition applications. F1-score measurement findings, precision, accuracy, and 

recall were the foundation of the model's strength. While the basic DBN is unable to comprehend temporal dynamics, the LSTM 

retains crucial contextual information over time, resulting in worse performance results. As a result, there are fewer false positives 

and negatives, more accurate and consistent forecasts, and a more dependable model for practical applications. 

 

5. Conclusion And Future Scope 
According to research findings, the creation of intelligent automated business systems from conventional industrial settings is 

made possible by the combination of Industrial IoT with cloud computing and sophisticated analytics. The research contributed an 

innovative solution to enhance IoT security through the implementation of LSTM as a part of Deep Learning-based anomaly 

detection methods. The proposed LSTM-based model achieved remarkable performance on ToN-IoT test data by demonstrating 

99.41% accuracy while maintaining 99.35% precision and 99.32% recall and 99.33% F1-score in IoT threat identification. 

According to research findings, LSTM models, which have outstanding scalability and robustness characteristics, can detect IoT 

network activities by differentiating between safe and dangerous operations. The ability of updated LSTM models to identify longer 

network traffic behavior patterns allowed researchers to outperform DBN models in attack detection. Advanced pre-processing 

methods must be implemented to solve class imbalance problems. The ToN-IoT dataset's unbalanced distribution of classes could 

result in incorrect identification of scarce attack types. Large networks face scalability challenges due to computational complexity 

of the model. The model's performance efficiency needs improvement according to future research findings. Total strategies must be 

implemented for tackling class imbalance problems because they pose a fundamental requirement. Testing in real-time IoT 

environments would further validate its robustness. 
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