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Abstract - The rising sophistication of cyber threats ranging from phishing and synthetic identities to adversarial model 

attacks has made the demand for intelligent, adaptive security solutions in financial systems more urgent than ever. This study 

explores key AI technologies that are shaping the future of secure financial transactions, including Large Language Models 

(LLMs), Federated Learning (FL), Graph Neural Networks (GNNs), and behavioral biometrics. For each technology, we 

outline its core architecture, operational mechanisms, and applicability in real-world fraud detection systems. LLMs enable 

contextual understanding of transaction narratives, aiding in the detection of phishing attempts across various communication 

channels. FL facilitates collaborative model training across multiple financial institutions without compromising user privacy. 

GNNs leverage the relational structure of transaction networks to uncover fraud rings that evade traditional rule-based 

systems. Behavioral biometrics offers continuous authentication by analyzing passive user attributes such as typing patterns 

and device interaction. A comparative analysis demonstrates the advantages of these AI approaches over conventional 

methods, highlighting improvements in detection accuracy, scalability, and privacy preservation. The review also addresses 
critical challenges including data imbalance, latency, model drift, and regulatory constraints. Together, these insights provide 

a comprehensive foundation for understanding how AI, when applied responsibly, can enhance the integrity and resilience of 

financial ecosystems. 
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1. Introduction 
The financial sector's digitalization has picked up speed in the last few years. With as many efficiencies and more access 

to financial services that these technologies brought, these technologies also subjected the industry into an increasing 

sophistication of cyber threats [1][2]. Financial frauds which started off as straightforward phishing and malware have become 

advanced to include synthetic identity frauds [3], adversarial machine learning, and deepfake-supported impersonations [4] . 

The new threats exploit the weaknesses of the Traditional security system, which tends to rely on fixed rules, fixed models of 

detection, and retrospective examination. The growing popularity of synthetic identity fraud may be, perhaps, the most 

subversive trend throughout this period where the offenders establish identities by combining both actual and false personal 

details. These identities are typically unidentified over long periods of time and this enables large-scale fraudulent activities at 

a later stage in time[7]. At the same time, robbers have polished their phishing tricks, thus being nearly official.  

 
Now they rely on artificial intelligence texts, deep-fakes and straightforward social clues to find the past through security 

gates, betray trust and pick up the login credentials. The numbers of business email compromise (BEC), fraudulent wire 

transfer requests and fraudulent transaction approvals are on the rise, according to their volume and impact [5] . Consequently, 

financial institutions such as banks are adopting this kind of adaptive and smarter security due to the emergence of AI 

(artificial intelligence) and ML (machine learning) [6]. The shift in the salient direction to tools that incorporate behavior 

learning, real-time threat modification, and data processing adherent to the culture of privacy is already in progress. Three AI-

powered strategies now stand out as game changers for safeguarding financial deals: large language models (LLMs), federated 

learning, and behavioral biometrics[8]. They have separate and distinct points to attack but through the collective efforts, better 

fraud identification, continuing authentication, and mutual sharing of intelligence between banks and vendors are established. 

The following table 1 gives a glimpse of this changing toolkit. 

Table 1: Evolution of AI Techniques in Financial Security 

Key Advancement Description Application Area 

Rule-Based AI & Supervised 

ML [9] 

Traditional fraud detection using labeled datasets and 

predefined rules 

Transaction risk scoring 

Federated Learning Adoption 

[10] 

Collaborative learning across banks without centralizing 

user data 

Privacy-preserving fraud detection 
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Behavioral Biometrics[11] Use of user behavior traits for continuous, real-time 

authentication 

Identity verification and account 

protection 

Integration of LLM [12] LLMs applied to detect phishing, analyze narratives, 

and enhance automation 

Scam detection, natural language 

fraud analysis 

 

Large language models such as the GPT-3 model developed by OpenAIs, and the BERT developed by Google, which 

were initially designed to process ordinary language, are being used to read and cull bank emails, chat messages, and 

transaction notes.  Their ability to interpret context and linguistic patterns made them suitable for identifying phishing 

attempts, fraud indicators in messages, and anomalies in transaction descriptions. Federated learning enabled multiple 

institutions to collaboratively train models without exchanging sensitive data, thus balancing intelligence sharing with data 

privacy compliance, a key concern in regulated financial environments. At the same time, behavioral biometrics quietly watch 

how each user types, scrolls, and taps on a screen, creating an ongoing, behind-the-scenes ID check.  
 

Together, these tools deliver swift, hard-to-fake fraud alerts that thieves find far easier to dodge in theory than in practice. 

This review focuses exclusively on a defined period of recent technological advancements, deliberately excluding emerging 

innovations that fall outside the scope of the analysis, such as generative agent frameworks and post-quantum cryptographic 

systems. By concentrating on technology that has already gone live, the analysis seeks to deliver a tight yet thorough appraisal 

of proven, AI-led tactics that banks and payment firms now deploy. It centers on core tools and surveys how they have 

measurably strengthened fraud defenses, secured individual transactions, and built wider public trust in online money systems. 

 

1.1. Research Objective:  

Here are the three research objectives: 

 To investigate AI-driven approaches (LLMs, FL, GNNs, behavioral biometrics) for enhancing financial fraud 
detection from 2020 to 2023. 

 To evaluate the performance, privacy, and effectiveness of these AI techniques compared to traditional security 

methods. 

 To assess the ethical, regulatory, and implementation challenges associated with deploying AI in financial transaction 

security. 

 

2. Threat Landscape in Financial Transactions 
The financial services industry remains one of the most attractive targets for cybercriminals due to the high liquidity of 

assets and the sensitivity of transactional data [13]. A new threat added to the already cluttered threat landscape comes in the 

form of digital banking, smartphone wallets, and web-based investment tools. Malwares and denial-of-service attacks, which 

used to be old threats, now come equipped with the benefits of machine learning and AI and security personnel continue to 

update these vintage defense mechanisms. With banks and fintechs cramming more features into mobile apps, the bad guys 

develop more subtle, scalable, and highly targeted plans that sneak through minute software loopholes. 

 

2.1. Traditional Attack Vectors 

The use of traditional methods of financial frauds has also remained a big threat especially in systems that use simple 

methods of authentication. The use of card-not-present (CNP) fraud has persisted in online shopping and e-commerce activities 

and has in most cases dodged normal verification procedures [14] . Phishing attempts are continuing to cause successful 
selections of users after years of sensitization campaigns by presenting realistic spoof emails, pretend websites, and customer 

support scam. Such attacks are often used to steal credentials or initiate fraudulent funds transfer under the pretext of user trust. 

Another form of attack that is persistent in the current mobile-banking era is SIM-swapping. In such an arrangement, the 

criminal convinces a telecommunication expert to port the number of the victim to a SIM that is under their control. After that, 

the scammer receives one-time codes and two-factor prompts, and thus they get access to financial accounts. Likewise, ATO 

raids are still present and are usually perpetrated by credential-stuffing bots which rely on stolen credentials and reoccurring 

passwords. 

 

2.2. Emerging Threats 

Since the application of artificial intelligence and machine learning technologies to attack systems and defence systems, 

fraud has taken new and more sophisticated evasive forms. A remarkable change is the utilization of deepfake technology to 

pose as customers, executives and employees by using synthetic audio or video that doesn't look unreal. Such tools have been 
used to tamper with verification systems to engage in high value social engineering attacks on financial organizations [15]. An 

emerging issue in the fraud space is synthetic identity theft, whereby thieves cleverly combine actual and fabricated 

information to create completely fictional identities. After they have been created, such fake identities can easily pass through 

routine measures of verification and progressively accumulate a virtually legitimate background before initiating fraud. The 
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profiles made need not be based on a real person and are, therefore, not flagged by standard watch lists or background checks 

since they were newly made up and not modified based on someone.  

 

Besides, adversarial machine learning has also resulted in a novel source of weaknesses. The attackers have even more 

power to slightly modify the input to trick the fraud detection programs since the inputs are now more subtle, e.g., metadata of 
transactions or behavioral tells. Such adversarial examples attack the vulnerabilities of the decision boundaries of machine 

learning models and result in the inference of the use of malicious behaviour as benign. This has brought forth deep concerns 

on the effectiveness and explainability of AI-founded security systems in the world of high stakes in the financial industry. 

 
Figure 1. Growth trends in traditional and emerging financial fraud types. 

 

Figure 1 shows the proportionate increase in the different categories of financial fraud where it can be seen that both the 

traditional and emerging threat vectors have shown a proportionate increase. It is important to note that the figure shows the 

increasing popularity of newer threats like synthetic identity fraud, AI-enhanced deception along with older threats like 

phishing, and card fraud still remaining most popular. This comparison depicts increasing attack surface and the requirement of 

adaptive defense mechanisms to deal with older and emerging fraud techniques. Today social engineering, behavioral baiting 

and algorithmic abuse are no longer functioning independently and thus the threat landscape is more intricate than ever. The 

right way to address that challenge would be to implement a mixed approach: real-time behavior monitoring, biometrics, and 
powerful AI models that can detect the smallest deviations, even when adversaries attempt to counter them. 

 

3. Large Language Models (LLMs) for Financial Security 
Large Language Models (LLMs) became an effective way of identifying and preventing language-related threats in 

financial systems. Their performance of reading and creating man-like text allows more sophisticated uses in transaction 

monitoring as well as fraud detection and threat intelligence [16]. 

 

3.1. Introduction to LLMs: GPT-2, GPT-3, T5, BERT, RoBERTa 

The use of Large Language Models (LLMs) is also becoming essential in financial cyber security since these models are 

able to read, parse, and interpret dense natural-language text [18] . Even though such models have initially been designed to be 

applied in mundane pursuits such as machine translation, question-answering and summarising, practitioners are rapidly re-

appropriating them to interpret user chats, transactions notes, and other digital interactions that require a deeper semantic 

understanding. Among the most widely adopted models are GPT-2, GPT-3, T5, BERT, and RoBERTa. These transformer-

based models vary in their construction and training principles (GPT models are autoregressive whereas BERT-based models 

are bidirectional and it is designed to be trained to perform classification tasks). What they have in common is their contextual 

awareness that allows them to analyze unstructured data nuances that cannot be analyzed using the traditional rule-based or 

keyword-matching systems. In financial cybersecurity, LLMs are employed to detect anomalies in messages and transaction 

metadata, monitor communications for suspicious behavior, and flag potential phishing attempts across email, SMS, and voice 
transcripts. Their contextual reasoning capabilities are critical in identifying subtle linguistic manipulations that could signal 

fraud or unauthorized activity. 

 

3.2. LLM Applications in Financial Security 

Large language models (LLMs) can be re-tasked to do a variety of things, and today industry companies are relying on the 

technology in several areas of financial security [17]. Filtering through transfer notes, providing live assistance to frontline 

personnel, or detecting social engineering attacks, these prototypes incorporate intelligent context and badly needed 

automation into the routine defense. 
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3.2.1. Transaction Narrative Analysis 

One of the earliest and most effective uses of LLMs in finance is the analysis of transaction narratives, textual descriptions 

attached to payment transfers or financial logs. Traditional systems often fail to capture suspicious patterns hidden in benign-

looking descriptions [19]. Fine-tuned BERT or RoBERTa-based models, however, will be able to analyze the semantics of the 

transaction notes, identify contradictions, and mark those phrases likely to be used in fraudulent or laundering transactions. 
These models offer a higher-level risk scoring granularity, in particular, for peer-to-peer, or high-volume transactions bulk 

payment, and on the corporate side. 

 

3.2.2. Real-Time Support for SOC Teams 

LLMs have also been deployed to assist Security Operations Center (SOC) analysts by automating routine tasks and 

enhancing decision support. Large autoregressive models such as GPT-2 and GPT-3 have been integrated into internal 

chatbots, enabling natural language querying of system logs, rapid summarization of incident reports, and contextual 

generation of response recommendations. In environments overwhelmed by alert fatigue, LLMs can synthesize incoming 

threat data into concise, actionable insights, thereby improving analyst efficiency and reducing mean time to respond (MTTR). 

 

3.2.3. Phishing Detection Across Email, Voice, and Text 

Phishing has become one of the most widespread attack vectors in the financial sector where the most advanced 
techniques are used with elements of social engineering, impersonation, and using multiple languages. LLMs have also gone a 

long way in identifying phishing across several forms of communication [20]. Even when adversaries hide malicious intent in 

obfuscation or when they adjust their communication behavior to look genuine, fine-tuned variants of BERT and T5 can detect 

manipulative intent in email and messages. In voice-service environments, large language models paired with automatic-

speech-recognition engines listen to calls and translate spoken words into text on the fly. Working together, these tools spot 

voice-phishing scams by marking rehearsed lines, mismatched emotions, and tell-tale impersonation signals-a skill set far 

richer than what older auditing software can offer. 

Table 2. Comparative Analysis of LLM Architectures Used in Financial Security Use-Cases 

Model Architecture Strengths Financial Security Use-Cases 

BERT Bidirectional 

Transformer 

Strong in classification and contextual 

analysis 

Phishing email detection, transaction log 

review 

RoBERTa Optimized BERT 

variant 

Improved robustness and speed Suspicious narrative parsing, anomaly 

detection 

GPT-2 Transformer decoder Fluent language generation Alert explanation, chatbot responses 

GPT-3 Large autoregressive 

model 

Few-shot learning, strong contextual 

retention 

SOC chatbot assistance, summarization of 

threat reports 

T5 Text-to-text transfer Versatile across generative and 
classification tasks 

Policy translation, threat intelligence 
summarization 

 

By enhancing the capacity of financial systems to comprehend and react to textual and linguistic threats, LLMs are 

proving essential in modern security infrastructures. These models provide dynamic and adaptive defenses as their competitors 

employ increasingly advanced narrative manipulation and it is critical that they no longer detect patterns but are semantically 

aware. 

 

4. Federated Learning (FL) for Fraud Detection 
As banks and payment firms lean ever more on artificial intelligence to spot fraud, worries about privacy and security have 

grown-intensifying whenever sensitive material such as transaction logs or behavioral biometrics enters the picture [21].  In 

response, Federated Learning (FL) has appeared as an attractive paradigm that allows carrying out model training in a 

distributed fashion across far-flung data sources without requiring centralization or raw data directly exchange. Such 

decentralized solution goes with the current regulatory and ethical pressure to minimize data storage and with the advantages 

of using data to detect fraudulent activity. 

 

4.1. Motivation for FL 

Traditional centralized machine learning implementations need all the training data to be brought to a centralized point 

and hence is very risky in the financial sector. Sensitive information such as an account activity, biometric patterns and 

payment histories can be compromised in the course of transmission and storage. In contrast, FL enables model training to 
occur locally on edge devices or institutional servers, sending only model updates (e.g., gradients) to a central aggregator. 

Because raw personal data never leaves its original location, exposure risk drops sharply and so does the likelihood of 

breaching GDPR or other financial privacy rules. The financial sector, where confidentiality is paramount, has thus become 

one of the early adopters of FL technologies. In scenarios such as fraud detection on mobile banking apps or biometric 

verification systems, FL provides a method to continuously update models with fresh, distributed data—without ever 

transmitting that data outside the user's device or institutional boundary. 
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4.2. FL Use Cases in Financial Security 

4.2.1. Edge-Device Model Training for Fraud Detection 

FL has been integrated into mobile banking environments to facilitate on-device learning. Each user’s mobile app can 

locally train fraud detection models based on their unique behavioral patterns—such as login times, geolocation consistency, or 

touch dynamics without transmitting this data to a centralized server. Following a brief training period, the new weights are 
encrypted, transmitted back and added to the central server, reinforcing the shared model but leaving sensitive habits 

confidential. This makes the system learn quicker and respond earlier to new scams that exploit known patterns. 

 

4.2.2. Cross-Bank Collaborative Models without Data Sharing 

Another critical application involves inter-bank collaboration in model development without requiring direct data 

exchange. Traditionally, there are legal and competitive obstacles that block bank institutions to share customer records even 

when collaborative fraud detection is likely to be advantageous [22]. FL allows participating institutions to collaboratively 

train powerful models of fraud detection as they provide encrypted model updates based on their own confidential dataset. 

Such a configuration promotes sharing of threat intelligence across the industries and the robustness of these models in the 

detection of fraud patterns where the dimensions of the fraud might cross institutions or boundaries. 

 
Figure 2. Federated vs. centralized model accuracy in detecting financial fraud, highlighting FL's privacy-preserving 

trade-offs. 

 

Figure 2 illustrates the comparative results of federated and centralized learning models with a simulated dataset of fraud. 

Although centralized ones can have a little higher initial accuracy since their communication is based on access to complete 
datasets, federated models show competitive results with minimal privacy risks. The number demonstrates the feasibility of FL 

in practical financial conditions, particularly those in which privacy is important besides the precision of the models. 

 

4.3. FL Frameworks Used 

Several open-source frameworks have facilitated the practical adoption of FL in the financial sector. Google TensorFlow 

Federated (TFF) is a scalable interface with which it is possible to simulate and deploy federated learning workflows. It 

facilitates safe aggregation and different control measures, which implies that it can be applied in financial scenarios that 

require high privacy levels. PySyft, OpenMined-community maintained, emphasizes on secure multi-party computation and 

privacy budgets and can enable multiple banks or edge devices to share models without any raw data ever leaving their walls. 

Collectively, these platforms have fuelled prototypes and production systems of fraud detectors, identity verifiers and 

regulatory reporters. Federated Learning offers a privacy-preserving alternative to centralized data modeling that is well-suited 
for the financial industry. By enabling localized learning and secure collaboration, FL aligns technical innovation with 

regulatory requirements, making it an essential component in the evolving architecture of AI-driven financial security. 
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5. Graph Neural Networks (Gnns) For Transaction Behavior Modeling 
Within any financial system, user actions and transaction flows tangle together in ways that simple lists rarely capture. 

Graph Neural Networks (GNNs) offer a natural tool kit in doing this since nodes become accounts, users, and devices while 

edges can be the transaction or connections between them. Instead, most typical machine-learning models assume that each 

observation is independent, but a GNN learns not about the form of the network, but rather picks up context about domains its 

neighbors inhabit; which makes the technique particularly useful at detecting hidden collusion or fraud that traverses multiple 

accounts. 

 

5.1. Graph-Based Modeling of Financial Transactions 

Financial ecosystems naturally exhibit graph-like characteristics. An individual user may be connected to multiple 

accounts, devices, or merchants, forming a web of interactions. Such interactions are generally dynamic and non-linear in 

nature and hence these kinds of interactions are difficult to model and interpret in terms of flat or tabulation of data. GNNs do 
not have this restriction as they can use nodes in a graph and pass the messages to them and each node can combine what it 

gets in vicinity and update itself accordingly [23]. Graph-based learning stands out in fraud prevention because suspicious 

actions seldom occur in isolation. One transaction might not look untoward, but there can be matryoshka nesting of 

transactions with others that wash out its legitimacy. GNNs thus enables analysts to measure the local neighborhood as well as 

the entire network structure, to provide a more well-balanced view of each account and transfer. 

 

5.2. Applications 

5.2.1. Fraud Ring Detection 

Some promise of GNNs has been demonstrated with respect to detecting fraud rings (i.e. group of interconnected accounts 

committed to collusive activity). Such rings would tend to escape capture by more conventional theories as they are distributed 

and are on the subtle side of interaction. By analyzing multi-hop relationships and cyclic graph structures, GNNs can detect 
hidden communities indicative of orchestrated fraud, improving both precision and recall in complex attack scenarios. 

 

5.2.2. Community Detection and Anomalous Behavior 

GNNs also serve broader community detection goals, sorting nodes with similar behavior into coherent groups. When a 

member suddenly deviates-louder spending bursts, login from new devices, or mismatched identity clues-the system flags it as 

a possible breach. Models such as GraphSAGE or domain-specific heterogeneous nets for example are great at learning these 

patterns into compact embeddings to keep unsupervised track and intervene in time to prevent larger losses. 

 

5.2.3. Transaction Path Scoring 

In transactional graphs, the sequence and structure of connections matter.  GNNs can also rate the transaction paths by 

examining how money flows to the network. As an example, a payment that takes place between a chain of highly risky or 

lightly connected nodes could be an attempt at laundering. GNNs allow construction of higher degree of accuracies and 
context-sensitive fraud detection models due to the consideration of temporal and structural dependencies. 

 
Figure 3. GNN-based model for detecting fraud in transaction networks. 

 

Figure 3 illustrates a standard GNN structure when used on a transaction network. Considering node and edge as input 

features, the model passes the neighborhood information through the message passing mechanism, and provides the output in 
classification scores of a possible fraud node or an edge. 
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5.3. Notable Models 

Several GNN architectures have been adopted for financial applications, each offering specific advantages depending on graph 

complexity and data characteristics: 

 

5.3.1. Graph Convolutional Networks (GCN) 
Suitable for static, homogenous graphs with well-defined neighborhoods. Commonly used in structured financial datasets 

like blockchain graphs. 

 GraphSAGE: It can easily add new nodes by learning examples on the fly, thereby well suited in dynamic services 

such as internet banking or peer-to-peer payment applications. 

 Graph Attention Networks (GAT): Employ attention mechanisms to assign different weights to neighboring nodes, 

enhancing performance in graphs with noisy or unbalanced structures. 

 Heterogeneous GNNs: It  handle many  node and edge types at the same time and represents the sprawling network 

of users, devices, locations, merchants and so on that a modern financial ecosystem is flooded with. 

 

Table 3 presents a benchmark comparison of popular GNN models evaluated on financial datasets, demonstrating their 

effectiveness in tasks like fraud classification, risk scoring, and user profiling. 

Table 3. Different  GNN Models  

Model Task Key Strengths 

GCN Bitcoin fraud detection Efficient in dense transaction graphs 

GraphSAGE Identity fraud detection Generalizes to unseen users/accounts 

GAT Transaction risk scoring Learns importance of neighbors 

Hetero-GNN Multi-entity fraud detection Captures complex entity relationships 

 

By treating financial data as an evolving graph rather than isolated records, GNNs offer enhanced contextual intelligence, 

leading to more accurate and explainable fraud detection outcomes. They are versatile to various financial systems and can be 

used as a technology base to support future much more powerful AI-assisted transaction monitoring. 

 

6. Behavioral Biometrics for Continuous Authentication 
Behavioral biometrics has emerged as an essential backup to classic authentication tools in finance. Instead of relying on 

one-off secrets like passwords or PINs,it closely monitors the minute details of the habits of a user with their device and can 

get their identity confirmed all through a session silently. This monitoring is passive and continuous, and is therefore a secure 

method of tightening security and allowing smooth movement of customers, which makes the method perfect in detecting 

fraud and preventing identity in habitations and payments. 

 

6.1. Overview of Behavioral Biometric Modalities 

Behavioral biometric systems monitor patterns that are difficult to replicate or forge, even by sophisticated attackers. 

Common modalities include keystroke dynamics (typing rhythm, key press duration, and latency), mouse movements, 

touchscreen gestures, devices grip patterns, and gait patterns with embedded sensors. Upon being recorded at consecutive 

instances, these behavioral indicators present exceptional biometric signatures that like one another but are still discernible and 

change gradually per person. Unlike fingerprints or facial scans, which measure fixed body features, behavioral channels are 
always aware of their surroundings and can shift as circumstances change[24]. They show how a person adapts to different 

apps, devices, and lighting, so they resist attack methods like video replay, molded masks, or stolen photos. Since the analysis 

can occur on smartphones, laptops or even smart payment terminals, the analysis can basically be device-neutral, and thus, 

businesses won t have to reinvent the wheel to protect various platforms. 

 

6.2. Integration with AI Models 

Artificial Intelligence, especially machine learning devices such as Recurrent Neural Networks (RNNs) and Convolutional 

Neural Networks (CNNs) are very important in getting meaningful representations out of behavioral data. RNNs are well-

suited for modeling sequential inputs such as keystroke timings or swipe gestures, while CNNs are employed to capture spatial 

patterns in touch heatmaps or pressure points[25]. It is common to pair these architectures with anomaly detection where the 

system will be able to update the normal pattern of each user in real time and highlight any perceptible deviation to be 

investigated further. The easiest one to list an example of a banking app: in case the typing pattern of a person changes in 
stressful situations or as the result of an apparent hacking attempt, the service may begin additional verification procedures or 

shut down the session automatically. This ongoing artificial intelligence-driven supervision reduces strain on one-time-shot 

logon passwords and provides organizations with an early warning line of defense.Table 4 below presents a comparative 

overview of behavioral biometric modalities, their typical applications, and effectiveness in financial security contexts. 
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Table 4. Behavioral Biometric Modalities and Their Effectiveness in Financial Applications 

Modality Common Use Case Detection Focus AI Technique 

Used 

Effectiveness 

(Reported) 

Keystroke 

Dynamics 

Web-based logins Account takeover 

attempts 

RNNs High 

Touch Dynamics Mobile banking apps Synthetic identity usage CNNs High 

Mouse Movements Online transaction validation Bot detection Hybrid models Moderate 

Device Grip Smartphone payments Session hijacking RNNs Moderate–High 

Gait Recognition Wearables and mobile 

platforms 

Continuous 

authentication 

RNNs/CNNs Emerging 

 

6.3. Deployment Examples in Financial Applications 
Leading banks and security vendors have already rolled out behavioral biometric tools with clear success. Noteworthy 

solutions include: 

 BioCatch: A pioneer in the field, this provider reviews more than 2,000 interaction traits to flag online fraud in real 

time. 

 Zighra: Designed for mobile devices, its on-phone machine learning delivers fast, low-power authentication without 

noticeable delay. 

 BehavioSec: Focuses on enterprise-grade behavioral biometrics, integrating seamlessly with existing identity and 

access management systems. 

 

These systems have demonstrated measurable improvements in fraud detection rates, particularly in identifying account 

takeover attempts and synthetic identity misuse, without introducing user friction. 

 

7. Privacy, Ethics, and Regulatory Considerations 
As banks and payment platforms increasingly lean on artificial intelligence to safeguard transactions, new questions arise 

about privacy, compliance with the law, fairness in algorithms, and the responsible handling of personal information. 

Technologies such as large language models, federated learning, graph neural networks, and behavioral biometrics can 

noticeably boost fraud detection, yet their use must still weigh strong security against clear reporting, sound data safeguards, 

and the publics confidence. 

 

7.1. Data Privacy Regulations and Their Implications 

AI-driven fraud detection systems often process sensitive financial and biometric data that fall under the jurisdiction of 

major data privacy regulations.General Data Protection Regulation (GDPR) in the European Union proposes the principles of 

data minimization, limit of purpose, and user authorization that directly affect the collection process, storage, and usage of the 

training data. On the same note, PSD2 (payment services directive 2) introduces strong customer authentication (SCA) and 

establishes security innovation in a controlled environment[26]. In the United States, California Consumer Privacy Act 

(CCPA), which provides consumers even a direct right of accessing their data, deleting it, and the right to opt out of the 

collection entirely. This legal transition pressurizes the existing opaque AI systems that monitor behavior in the long term and 

by extension, pressure on financial institutions that are using them. The requirement to respect privacy has made banks and 

fintech companies turn to privacy-first algorithms like differential privacy, homomorphic encryption, and federated learning, to 
ensure their AI does not raise consumer suspicion and expose them to lawsuits. 

 

7.2. Explainability and Algorithmic Bias in AI Models 

One of the most pressing ethical challenges is the lack of explainability in high-capacity AI models like LLMs and GNNs. 

While these models are powerful, their decision-making processes often remain opaque, raising concerns when used in high-

stakes environments such as fraud risk assessment or identity verification. Explainable AI (XAI) capability is therefore no 

longer optional; regulators are setting it as a requirement, and boards insist on it as a deployment dependent precondition. 

Machine-learning tools like SHAP (SHapley Additive explanations), LIME (Local Interpretable Model-agnostic Explanations), 

and attention heat maps convert abstract features to down-to-earth narratives delivered to help auditors and compliance teams 

produce more accurate results. Bias is another ethical risk. AI systems trained on skewed or non-representative datasets may 

exhibit discriminatory behavior, such as falsely flagging certain user demographics as high-risk. Addressing this requires bias 

audits, diverse training data, and fairness constraints embedded directly into model objectives. Figure 4 illustrates the AI 
Tradeoff Triangle on financial security- with the focus on the fact that security, privacy, and explainability are linked as 

opposite goals.  
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Figure 4. Tradeoff Triangle in Financial AI Systems: Balancing Security, Privacy, and Explainability. 

 

7.3. Risks of Federated Attacks and Model Inversion 

Even systems that seem privacy-friendly, such as federated learning, can fall prey to clever adversaries. With model 

inversion, a hacker is able to reverse-engineer important inputs- including log in particulars or latest transactions-via analysing 
the shared weights. Gradient leakage, membership inference, and other related attacks filter the updates posted by the local 

nodes to extract the privacy of habits or identities. Poisoning assaults add another layer of danger: a compromised smartphone 

or laptop feeds false examples into the network and slowly spoils the global model. Defenders can also restrict the destruction 

by employing secure aggregation protocols, integrating differential privacy in each move, and executing sensitive code in the 

so-called trusted execution environments (TEEs) when passing on updates. Protecting decentralized AI platforms from hostile 

intrusions thus remains vital if the privacy promises of those systems are to hold. Regulators around the world are growing 

more aware of the issue and may soon demand tougher proof of adversarial strength from any AI unit serving finance. 

 

8. Comparative Evaluation 
Arrival of large language models (LLM), federated learning (FL), graph neural networks (GNNs), and behavioral 

biometrics has taken fraud detection to a whole new level, leavingdated, rule-based engines and predetermined feature sets in 

the back seat. These AI-first gambits are contrasted in the section below with the conventional approach in terms of accuracy, 

false positive rate (FPR), speed of detection, scalability, and privacy in their regard to them. Established systems usually rely 

on manually written rules, fixed cut-offs, or lightweight classifiers such as decision trees or logistic regression. These models 

are both fast to operate and simple to describe, but they cannot stay abreast of changing strategies of fraud hence produce loads 

of false flags and require infinite human modifications. Theirs is a short perspective on every transaction and cannot draw 

larger charts of their patterns of purchases, and so are helpless against rings, synthetic identities, or phishing schemes that 

operate in the gray. 
 

The LLMs also have the capacity to read and parse unstructured communications in the financial sphere and online 

phishing or social engineering attempts, and the narratives of transactions. Federated Learning allows training of a model on 

distributed banks or mobile devices without needing to centralize sensitive data, making it able to comply with privacy 

regulations. The strength of GNNs is that they identify structural abnormalities within the networks of transactions, 

discovering undisclosed connections between malicious individuals. Behavioral biometrics When combined with neural 

networks, behavioural biometrics can offer continuous, frictionless user authentication on the basis of user interaction patterns. 

Table 5 below presents a consolidated view of how these AI techniques perform across various evaluation metrics relevant to 

financial security applications. 

 

This evaluation shows that while traditional systems may still offer value in specific low-risk scenarios due to their 

simplicity, they fall short in the face of modern fraud vectors that demand adaptability, contextual reasoning, and cross-
platform intelligence. Among the AI approaches, federated learning and GNNs particularly stand out for their ability to detect 

subtle fraud patterns while maintaining user privacy. However, latency and deployment complexity remain challenges for 

large-scale implementations. Overall, a hybrid deployment strategy, combining rule-based logic and AI models could well 

provide the best of both worlds in the sense of allowing customers to interpret the model, but take advantage of the adaptive 

capabilities of a deep learning system. Fractional analysis: These trade-offs will need to consider the level of risk tolerance of 

the organization, regulatory requirements, and the level of technical maturity financial institutions must address when 

considering modernization of its fraud detection infrastructure. 
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9. Challenges and Limitations 
While AI-driven techniques have significantly advanced the detection and prevention of fraudulent financial activities, 

their deployment in real-world environments remains fraught with challenges. operational and systemic levels, and are 

associated with the long-term effectiveness and sustainability of models. It is important that practitioners and researchers 

understand such barriers to maximize the AI-based solutions in the financial contexts. 

 

9.1. Data Scarcity and Imbalance 

Effective AI models rely on large volumes of high-quality, labeled data. In financial fraud detection, this requirement is 

often hindered by data scarcity, particularly for rare or novel fraud cases. Fraudulent transactions typically constitute a small 

fraction of all financial activities, leading to high class imbalance. This skews learning algorithms toward the majority class 

(legitimate transactions), reducing sensitivity to minority class anomalies. Even advanced architectures like GNNs or LLMs 

may underperform without adequate representation of evolving fraud patterns. Techniques such as oversampling, SMOTE, and 
cost-sensitive learning partially address this, but the fundamental challenge of limited ground truth persists. 

 

9.2. Real-Time Processing Constraints 

In real-time fraud detection scenarios—such as those encountered by financial institutions or retail systems—decision-

making must occur with minimal latency. However, many state-of-the-art models, including large-scale transformers and graph 

neural networks, are computationally intensive and memory-demanding, thereby introducing delays that can erode user trust. 

The need for low-latency inference imposes significant constraints on the deployment of such complex architectures in time-

sensitive environments. This challenge is particularly pronounced in edge devices such as mobile phones or point-of-sale 

gateways, which typically possess limited processing capabilities. As a result, there is a growing preference for lightweight or 

quantized models that strike a balance between inference speed and predictive accuracy. Achieving this balance remains a 

central concern for development teams working with large language models or multimodal biometric systems in operational 
settings. 

 

9.3. Model Drift and Fraud Evolution 
AI-based fraud detection systems are inherently vulnerable to concept drift, wherein the statistical properties of input data 

evolve over time. Since these models are often trained on historical datasets, their performance may degrade as adversaries 

adapt their techniques in response to deployed detection mechanisms. Attackers frequently employ strategies such as 

generating adversarial examples or exploiting rare patterns not adequately represented in the training data. Consequently, 

models that were once highly effective may become obsolete unless they undergo continuous retraining and evaluation. To 

maintain detection efficacy, organizations must implement adaptive learning pipelines capable of integrating recent data and 

deploying model updates rapidly and efficiently. 

 Table 5. Comparative Performance Metrics of Different AI-Based Techniques 

Technique Accuracy False Positive Rate Latency Scalability Privacy Compliance 

Rule-Based Systems Moderate High Low Limited Basic 

LLMs (e.g., BERT, GPT) High Low–Moderate Moderate High (with tuning) Moderate 

Federated Learning High Low Moderate–High High High 

Graph Neural Networks High Low Moderate Moderate Moderate 

Behavioral Biometrics Moderate Low Low High High 

 

9.4. Federated Learning Communication Overhead 

While Federated Learning (FL) addresses privacy and data locality concerns, it introduces communication overhead 

between client devices and the central aggregator. Frequent model updates, particularly in large networks of mobile devices or 

cross-bank collaborations, strain bandwidth and increase synchronization delays. Additionally, heterogeneous data 

distributions across clients (non-IID data) may reduce model convergence speed and accuracy. Solutions like model 

compression, asynchronous updates, and personalized federated learning have been proposed, yet communication inefficiency 

remains a barrier to the widespread adoption of FL in latency-sensitive financial systems. 

10. Conclusion 
The integration of artificial intelligence into financial security systems has marked a significant paradigm shift in how 

institutions detect, analyze, and respond to fraudulent activity. By leveraging cutting-edge approaches such as Large Language 

Models (LLMs), Federated Learning (FL), Graph Neural Networks (GNNs), and behavioral biometrics, the financial industry 

is gradually moving toward more intelligent, context-aware, and privacy-preserving security frameworks. These technologies 

enable not only higher detection accuracy but also the ability to adapt to evolving threat patterns and deliver more seamless 

user experiences. Large language models (LLMs) now power advanced language understanding, letting them read transaction 

notes on the fly and flag phishing in email, chat, and SMS streams. Federated learning (FL) walks the tightrope between 

performance and privacy by letting banks train a shared model without sharing raw customer data. Graph neural networks 

(GNNs) then map the connections between accounts and devices, revealing tangled fraud rings that standard rule engines 
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usually miss. Add in behavioral biometrics-passive keystroke, touch, or mouse movement checks-and firms gain seamless 

security that hardly interrupts a legitimate user. 

 

However, the adoption of these AI technologies is not without limitations. Data imbalance, real-time processing 

constraints, and the dynamic nature of fraud introduce persistent challenges. Federated learning systems face significant 
communication overhead and require optimization to perform effectively at scale. Moreover, the ethical and regulatory 

landscape shaped by frameworks such as GDPR, PSD2, and CCPA, demands that AI systems remain interpretable, auditable, 

and fair, especially when applied to sensitive domains like finance. The comparative analysis presented in this review 

underscores that no single artificial intelligence technique consistently outperforms others across all fraud detection scenarios. 

Consequently, the adoption of stacked or hybrid models where multiple algorithms operate in a modular and complementary 

manner emerges as a robust and versatile approach to countering the diverse and rapidly evolving threats within the financial 

domain. Future research should prioritize enhancing model interpretability, optimizing architectures for real-time deployment, 

and developing adaptive systems capable of learning from limited, imbalanced, or adversarial datasets. Ultimately, the 

intersection of AI and financial security represents both an opportunity and a responsibility. When carefully designed and 

ethically deployed, these technologies hold the potential to redefine trust, safety, and transparency in the global financial 

ecosystem. 
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