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Abstract - Predictive maintenance leverages machine learning and real-time data analytics to anticipate equipment failures before 

they occur, thereby reducing downtime and optimizing operational efficiency. However, the deployment of such systems in edge 

computing environments introduces challenges related to latency, scalability, and resource constraints. This paper presents a 

scalable architecture for data pipelines that enables real-time predictive maintenance at the edge. We propose a modular pipeline 

design combining lightweight edge processing, efficient data streaming, and cloud-based model orchestration. The architecture is 
evaluated using industrial sensor data and edge devices in a simulated smart manufacturing environment. Our results demonstrate 

significant improvements in latency reduction, system scalability, and fault prediction accuracy, validating the effectiveness of the 

proposed approach for real-world edge deployments. 
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1. Introduction 
1.1. Background on Predictive Maintenance 

Predictive maintenance is a data-driven approach that leverages real-time and historical data to anticipate potential equipment 

failures before they happen. Unlike reactive maintenance, which occurs after a failure, or preventive maintenance, which follows a 

fixed schedule, predictive maintenance uses analytics, sensor data, and machine learning models to detect patterns and anomalies 

that precede faults. This approach enables organizations to reduce unplanned downtime, lower maintenance costs, and extend 

equipment life. As industrial systems become increasingly complex and reliant on automation, predictive maintenance has emerged 

as a critical component of smart manufacturing and Industry 4.0 initiatives. 

 

1.2. Rise of Edge Computing and IIoT 

The convergence of Industrial Internet of Things (IIoT) technologies and edge computing has significantly transformed how 

industrial systems operate and communicate. IIoT introduces a wide range of connected sensors and devices capable of generating 
vast amounts of real-time data. However, transmitting all of this data to centralized cloud systems for processing is often inefficient 

due to latency, bandwidth limitations, and privacy concerns. 

 

 Edge computing addresses these challenges by enabling data processing and analytics closer to the source at the network’s 

edge. This localized computing capability reduces latency, allows for faster decision-making, and supports continuous operations 

even when cloud connectivity is intermittent. Edge computing, therefore, complements predictive maintenance by making it 

feasible to analyze and act on sensor data in real time without relying solely on cloud infrastructure 

 

1.3. Challenges in Real-Time Analytics at the Edge 

Despite its advantages, implementing real-time analytics at the edge comes with unique challenges. Edge devices often operate 

under constrained computing resources, such as limited CPU power, memory, and energy availability. Managing real-time data 
streams from multiple heterogeneous sensors while ensuring low-latency processing requires highly optimized and lightweight 

systems. Additionally, deploying and updating machine learning models at scale across distributed edge nodes can be complex, 

particularly in environments with varying hardware configurations. Ensuring data reliability, maintaining synchronization across 

nodes, and handling partial network failures further complicate the development of robust edge-based predictive maintenance 

solutions. 

 

1.4. Motivation and Contributions of This Paper 

Motivated by the need for efficient and scalable predictive maintenance solutions in resource-constrained environments, this 

paper proposes a modular and scalable data pipeline architecture tailored for edge computing environments. Unlike traditional 
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architectures that rely heavily on centralized data processing, our approach enables distributed, real-time analytics through 

intelligent workload partitioning across edge and cloud resources. The primary contributions of this paper include: (1) the design of 

a lightweight, scalable data pipeline that supports real-time predictive maintenance on edge devices, (2) an evaluation of different 

stream processing and messaging frameworks suitable for constrained environments, and (3) experimental validation using 

simulated industrial data to assess performance in terms of latency, scalability, and fault prediction accuracy. 

 

2. Related Work 
2.1. Existing Approaches to Predictive Maintenance 

A variety of predictive maintenance strategies have been explored in both academic research and industry practice. Traditional 

methods often rely on rule-based systems or statistical models that use historical failure data to estimate the remaining useful life 

(RUL) of components. More recent approaches leverage machine learning and deep learning models, such as random forests, 

support vector machines, and recurrent neural networks, to detect anomalies and forecast failures. These models are typically 

trained on large datasets in cloud environments and then applied to streaming sensor data for real-time inference. While effective in 
centralized settings, these solutions often lack adaptability and scalability when deployed in distributed or edge-based 

environments. 

 

2.2. Edge Computing in Industrial Settings 

Edge computing has gained traction in industrial contexts where low latency and high reliability are essential. Use cases 

include real-time quality control, anomaly detection in production lines, and automated response systems. Studies have shown that 

edge-based architectures can significantly reduce the round-trip latency associated with cloud communication, thereby enabling 

faster decision-making.  Frameworks like EdgeX Foundry, Azure IoT Edge, and AWS Greengrass have been developed to support 

edge deployments, but integrating these with predictive maintenance systems remains a work in progress. There is a growing need 

for architectures that not only support real-time analytics but are also lightweight, fault-tolerant, and scalable across diverse 

industrial edge devices. 
 

2.3. Limitations of Current Data Pipeline Architectures 

 Current data pipeline architectures for predictive maintenance are often built with cloud-centric assumptions, including 

abundant computational resources, high bandwidth, and consistent connectivity. As a result, these architectures are not well-suited 

for edge environments where resource constraints and network variability are common. Additionally, most existing pipelines are 

monolithic and lack modularity, making them difficult to scale or adapt to heterogeneous edge devices. There is also a gap in 

integrating efficient model serving and updating mechanisms for machine learning workflows in edge settings. These limitations 

highlight the need for a new architectural paradigm that is edge-first, modular, and capable of balancing local and global 

processing intelligently. 

Table 1: Key Components of Scalable Data Pipelines For Real-Time Predictive Maintenance 

Component Description Example Technologies Scalability Consideration 

Data Sources Sensors on machines collecting temperature, 

vibration, etc. 

IoT Devices, PLCs High-frequency data 

generation 

Edge Processing Initial data filtering, aggregation, or ML 

inference at the edge 

NVIDIA Jetson, Azure 

IoT Edge 

Reduces data transfer latency 

Data Ingestion Moving data from edge to central system for 
further processing 

MQTT, Kafka, Apache 
NiFi 

Handles bursty and continuous 
streams 

Stream Processing Real-time anomaly detection or health 

scoring 

Apache Flink, Spark 

Streaming 

Low-latency, high-throughput 

Storage Layer Storing raw and processed data for historical 

analysis 

InfluxDB, TimescaleDB, 

S3 

Supports both fast write/read 

and archiving 

Predictive Models ML models that predict equipment failure TensorFlow, Scikit-learn, 

EdgeML 

Deployed both centrally and at 

the edge 

Visualization & 

Alerts 

Dashboard and real-time notifications to 

operators 

Grafana, Power BI, ELK 

Stack 

Must support multiple data 

streams 

Orchestration & 

Scaling 

Manages deployment, scaling, and reliability 

of pipeline components 

Kubernetes, Docker 

Swarm 

Auto-scaling, fault tolerance 

 

Table 2: Model Accuracy (Precision & Recall) by Failure Type 

Failure Type Precision (%) Recall (%) 

Bearing Failure 92 93 
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Motor Overload 90 91 

Vibration Anomaly 94 90 

Temperature Spike 91 92 

 

 
Fig 1: Model Accuracy 

 

3. System Architecture 
3.1. Overview of Proposed Scalable Pipeline 

The proposed architecture is designed to support real-time predictive maintenance by distributing data collection, processing, 

and inference tasks across edge and cloud environments. The system follows a modular microservices approach, ensuring 

flexibility and scalability. At the core, the architecture enables edge devices to collect sensor data, perform initial preprocessing, 

and conduct lightweight inference using locally deployed machine learning models. These results can then be transmitted via 

efficient messaging systems to stream processors that aggregate and analyze data at a broader scale. The cloud layer is responsible 

for centralized model training, long-term storage, and performance monitoring, ensuring that models deployed at the edge stay 

updated and relevant. 

 

3.2. Components 

3.2.1. Edge Nodes (Data Ingestion & Preprocessing) 

Edge nodes are physical or virtual devices deployed close to the industrial equipment. They are responsible for capturing data 

from various sensors, such as temperature, vibration, pressure, or current sensors, and performing preprocessing tasks like filtering, 
normalization, and noise reduction. Since these nodes operate under resource constraints, preprocessing must be computationally 

light and optimized for real-time execution. Some edge devices may also perform feature extraction, allowing them to send only 

the most relevant information to downstream components. 

 

3.2.2. Message Brokers (e.g., MQTT, Kafka) 

Message brokers are essential for decoupling data producers (edge devices) from consumers (stream processors, dashboards, 

cloud services). Lightweight protocols like MQTT are well-suited for constrained networks, supporting publish-subscribe patterns 

with minimal overhead. Kafka, while more robust and high-throughput, is more suitable for powerful edge gateways or fog nodes. 

These brokers ensure reliable, low-latency data transmission across the pipeline, handling buffering, topic management, and fault-

tolerant message delivery. 
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3.2.3. Stream Processing Frameworks (e.g., Apache Flink, Spark Streaming) 

Stream processing frameworks consume data from message brokers and apply real-time analytics, such as anomaly detection, 

pattern recognition, or aggregations. Apache Flink and Spark Streaming offer distributed processing capabilities, with Flink being 

particularly strong in handling stateful stream operations and event time semantics. Depending on resource availability, these 

frameworks can run either on edge gateways or in cloud/fog layers. They form the analytical core of the system, enabling real-time 

insights and triggering alerts based on ML model outputs. 
 

3.2.4. Model Inference Engines (e.g., TensorFlow Lite, ONNX Runtime at Edge) 

To enable real-time predictive maintenance, machine learning models must be deployed directly on edge devices. Inference 

engines like TensorFlow Lite and ONNX Runtime are optimized for low-resource environments, supporting quantized and 

compressed models that can run efficiently on ARM-based processors. These engines allow edge nodes to perform local 

predictions, minimizing the need for continuous cloud communication and enabling faster response times to potential failures. 

 

3.2.5. Cloud/Central Coordination for Training & Updates 

While inference happens at the edge, model training typically requires large volumes of historical data and high computational 

power, which are better suited to centralized cloud environments. The cloud layer orchestrates model training, validation, and 

periodic updates. Trained models are then pushed to edge devices through secure update mechanisms. The cloud also maintains a 

global view of system performance, enabling centralized logging, dashboarding, and optimization across the entire predictive 
maintenance ecosystem. 

 

4. Pipeline Design Considerations 
4.1. Data Ingestion and Preprocessing at Edge 

Efficient data ingestion is the first step in any real-time pipeline. In edge environments, this process must be optimized for 

bandwidth and power consumption. Sensor data is typically ingested through GPIO interfaces or industrial protocols like Modbus, 
OPC UA, or CAN. Preprocessing at the edge includes time-windowed sampling, noise filtering, and simple statistical 

computations. This localized approach reduces the amount of raw data transmitted over the network and enables faster anomaly 

detection. 

 

4.2. Model Deployment and Inference at Edge 

Deploying machine learning models at the edge requires converting and optimizing them to run efficiently on constrained 

devices. Techniques like model quantization, pruning, and the use of compact neural architectures (e.g., MobileNet, TinyML) are 

essential. Once deployed, these models can perform inference locally, classifying operational states or predicting faults in near 

real-time. Local inference drastically reduces latency and dependency on network connectivity, making it ideal for mission-critical 

industrial scenarios. 

 

4.3. Data Streaming and Handling Latency 
Stream processing is central to achieving low-latency analytics. Data must be continuously streamed with minimal buffering to 

ensure timely responses. Message queues help manage backpressure and ensure ordered delivery. Stream processors must be able 

to handle out-of-order data, network jitter, and micro-batching efficiently. Techniques such as windowing, watermarking, and 

event-time processing are critical for handling these challenges and maintaining accurate, real-time analytics. 

 

4.4. Scalability across Heterogeneous Devices 

A scalable pipeline must support diverse edge devices with varying capabilities, from microcontrollers to industrial PCs. To 

achieve this, the architecture should abstract hardware differences through containerization (e.g., Docker) or platform-agnostic 

runtimes. Orchestration tools like Kubernetes (via K3s or KubeEdge) can help manage large-scale deployments. Scalability also 

involves elastic resource allocation, allowing the system to adapt to changing workloads without compromising performance. 

 

4.5. Fault Tolerance and Recovery 

In industrial environments, system reliability is paramount. Edge devices may experience power loss, network failure, or 

hardware faults. Therefore, the pipeline must be designed with fault-tolerant mechanisms such as local data caching, checkpointing 

in stream processors, and automatic reconnection protocols in message brokers. Redundancy at both the hardware and software 

levels ensures continued operation even when parts of the system fail. Additionally, health monitoring and self-healing strategies 

can be employed to restore normal functioning quickly. 
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5. Implementation 
5.1. Use Case: Smart Factory Predictive Maintenance 

To demonstrate the feasibility and effectiveness of the proposed architecture, a smart factory scenario is used as a reference 

implementation. In this setting, industrial machines such as motors, pumps, or conveyor belts are equipped with vibration and 

temperature sensors. These sensors continuously generate time-series data, which can indicate signs of wear, imbalance, or 

overheating precursors to mechanical failure. Predictive maintenance models are deployed to detect these early warning signs, 

allowing maintenance teams to intervene before a breakdown occurs. The smart factory environment thus serves as a representative 

and practical use case for evaluating the performance of real-time edge analytics. 

 

5.2. Hardware and Software Stack Used 

The edge layer of the pipeline is implemented using low-cost, widely available hardware platforms like Raspberry Pi 4 and 

NVIDIA Jetson Nano. These devices were chosen due to their balance of processing power and affordability, making them ideal 

for industrial edge deployment. Sensor data is captured through GPIO interfaces, and data processing tasks are handled by Python 
scripts or lightweight containerized services. On the software side, Apache Kafka is used as the messaging backbone for data 

transmission, while Apache Flink serves as the primary stream processing engine. Machine learning inference is performed using 

TensorFlow Lite and ONNX Runtime, with model training and version control handled in the cloud using TensorFlow or PyTorch. 

 

5.3. Simulated Dataset and Real-Time Setup 

To evaluate the system in a controlled but realistic environment, publicly available datasets such as the NASA Turbofan 

Engine Degradation Simulation Dataset (C-MAPSS) and the MIMII (Malfunctioning Industrial Machine Investigation and 

Inspection) dataset are used. These datasets provide time-series sensor data labeled with failure events, making them suitable for 

both model training and testing. In the real-time setup, these datasets are streamed in a time-accelerated fashion to simulate 

continuous machine operation. Edge devices receive this stream, perform preprocessing, and apply inference using deployed ML 

models, mimicking a live factory floor. 
 

5.4. Deployment of ML Models at the Edge 

The machine learning models used for failure prediction are trained in the cloud using historical data from the simulated 

datasets. These models are then optimized using quantization and pruning techniques to reduce their size and computational 

requirements. Once optimized, models are deployed to the edge using lightweight containers or directly as binaries running on 

inference engines like TensorFlow Lite. The edge devices then use these models to perform live inference on incoming sensor data, 

allowing for immediate anomaly detection and failure prediction. 

 

6. Evaluation and Results 
6.1. Performance Metrics: Latency, Throughput, Accuracy, Scalability 

The system is evaluated based on four core performance metrics. Latency measures the time taken from sensor data generation 

to inference output. In the proposed pipeline, end-to-end latency remained under 200 milliseconds on average, demonstrating real-

time responsiveness. Throughput refers to the number of data points processed per second, which remained stable across varying 

loads, thanks to the scalability of the streaming and messaging components. Accuracy is measured by comparing model 

predictions to ground truth labels from the datasets, with precision and recall above 90% for most failure types. Scalability is tested 

by gradually increasing the number of simulated machines and edge devices, with the system maintaining performance up to 50 

concurrent nodes. 

 

6.2. Comparative Analysis with Cloud-Based and Hybrid Solutions 

To highlight the advantages of the edge-based architecture, a comparative analysis is conducted with two other approaches: 

fully cloud-based and hybrid (edge + cloud) pipelines. The cloud-only setup showed higher latency (up to 800ms) and increased 

network usage due to constant data transmission. The hybrid model offered a balance, with moderate latency and reduced 

bandwidth, but still required consistent connectivity for decision-making. In contrast, the edge-first architecture excelled in 

responsiveness, offline capability, and network efficiency, though it was slightly more complex to manage at scale. 

 

6.3. Limitations and Edge Cases 

While the proposed system performs well in most conditions, it has limitations. Resource-constrained edge devices may 

struggle with very large or complex models, even after optimization. Network disconnections can lead to data loss if not properly 

buffered. Another limitation is the static nature of deployed models—while model updates are supported, real-time adaptation (e.g., 

online learning) remains a challenge. Additionally, performance may degrade in high-noise environments where sensor data quality 
is poor. 
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Fig 2: The Continuum of Computing and Relations 

 

7. Discussion 
7.1. Trade-Offs: Edge vs Cloud vs Hybrid 

The decision between deploying AI or analytics workloads on the edge, in the cloud, or through a hybrid architecture requires 

careful analysis of application requirements, infrastructure availability, and operational goals. Edge computing is particularly 

effective for industrial applications that demand ultra-low latency, high reliability, and real-time responsiveness, such as predictive 

maintenance, machine vision, or robotics. Because computation is localized, edge systems can continue functioning even when 

network connectivity is intermittent or lost entirely. However, edge devices are typically limited by power, processing capacity, 

and memory, which can restrict the complexity of models or algorithms they can run. Cloud computing, on the other hand, 

provides virtually unlimited compute power, scalable storage, and streamlined model lifecycle management. This architecture is 

ideal for applications that involve large-scale data aggregation, long-term analytics, model training, and centralized oversight. 

However, cloud-based solutions rely heavily on continuous network availability and sufficient bandwidth, which can be 

problematic in remote or constrained industrial environments. Latency is another major concern when quick decision-making is 

necessary. 

 
Hybrid architectures seek to combine the best of both worlds by distributing workloads between the edge and cloud. For 

instance, critical real-time decisions may be made at the edge, while more complex analysis or model updates are performed in the 

cloud. While this improves flexibility and scalability, it also introduces additional challenges, such as ensuring data consistency,  

managing orchestration between local and remote systems, and handling version control for distributed models. The ideal 

architecture depends on specific use cases. For instance, autonomous vehicles, remote oil rigs, or smart factories may benefit more 

from edge or hybrid approaches due to low-latency requirements and intermittent connectivity. Conversely, centralized cloud 

models may be better suited for applications like supply chain analytics or enterprise-wide performance monitoring. Ultimately, 

factors such as response time requirements, infrastructure maturity, regulatory constraints, and cost considerations play critical 

roles in determining the most effective architectural strategy. 

 

7.2. Impact on Network Usage and Power Consumption 
Edge computing offers a transformative shift in how data is processed in industrial environments, particularly by significantly 

reducing the volume of data that must be transmitted to the cloud. In traditional setups, raw sensor streams are often sent 

continuously to cloud servers, leading to high bandwidth consumption, network congestion, and increased costs. By processing 

data locally at the edge, only actionable insights, inference results, or summarized reports need to be transmitted. This not only 

reduces the strain on industrial Wi-Fi or LTE networks but also enhances operational efficiency by preventing delays caused by 

data transfer bottlenecks. For example, in a smart manufacturing plant, vibration data from motors or temperature readings from 

ovens can be analyzed locally to detect anomalies.  

 

Only alerts or relevant metrics are sent to the cloud, thereby saving considerable bandwidth. This is particularly important in 

remote or rural installations where high-speed connectivity may be limited or expensive. However, this shift in data processing 

responsibility to edge devices brings with it increased power consumption challenges. Many edge devices operate in power-
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constrained environments, such as battery-operated sensors or solar-powered gateways. Continuous data analysis, especially using 

AI models, can lead to significant energy drain. This makes power efficiency a critical design consideration. To address this, 

developers must adopt energy-aware programming practices and utilize hardware acceleration when available, such as leveraging 

GPUs, FPGAs, or dedicated AI chips optimized for low power consumption.  

 

Techniques like quantized models, event-driven computation, and workload scheduling during low-power windows can also 
help manage energy use. Moreover, modern edge hardware often includes sleep and wake cycles that can be intelligently managed 

to conserve energy without compromising responsiveness. These optimizations are essential for maintaining sustainability, 

especially in large-scale industrial deployments with hundreds or thousands of edge nodes. In summary, while edge computing 

dramatically reduces network usage and associated operational costs, it requires thoughtful power management strategies to ensure 

reliable, long-term operation in diverse environments. 

 

7.3. Security and Privacy Considerations in Edge Environments 
Security and privacy are critical considerations in edge computing environments, particularly in industrial settings where 

systems are often deployed in physically accessible or harsh locations. Unlike centralized data centers that benefit from robust 

physical and network security, edge devices are more exposed to risks such as tampering, theft, or unauthorized access. Therefore, 

implementing multi-layered security mechanisms is essential to safeguard both the data and the operational integrity of these 

systems. One of the foundational security measures is secure boot, which ensures that a device boots only using firmware that is 
cryptographically verified. This helps prevent the execution of malicious code at startup. Additionally, all communications 

between edge devices and cloud services must be encrypted using strong protocols like TLS (Transport Layer Security) to prevent 

eavesdropping, data manipulation, or man-in-the-middle attacks. 

 

Because edge devices often operate autonomously for long periods, they must include lightweight intrusion detection systems 

(IDS) and real-time monitoring tools capable of identifying suspicious activities without overwhelming system resources. These 

tools can help detect unauthorized access attempts, firmware alterations, or unusual data patterns indicative of malware or 

cyberattacks. From a privacy standpoint, edge computing can offer significant advantages. By processing data locally, sensitive 

information such as personally identifiable information (PII) or proprietary business data can remain on-premises and never leave 

the local environment. This approach aligns with data protection regulations like GDPR or HIPAA, which emphasize minimizing 

data exposure and ensuring local data sovereignty. 
 

However, maintaining privacy and security requires robust access control mechanisms. Role-based access, multifactor 

authentication, and encrypted local storage are essential to prevent unauthorized access. Furthermore, secure update mechanisms 

must be in place to ensure that patches and model updates are delivered without compromising the system. This includes verifying 

the authenticity and integrity of software updates before installation. In conclusion, while edge computing offers benefits in terms 

of privacy and autonomy, these advantages come with increased responsibility for device-level security. A proactive and layered 

approach to cybersecurity is essential to protect assets, ensure compliance, and maintain trust in edge-based industrial systems. 

 

8. Conclusion 
In conclusion, this study introduces a robust and scalable real-time data pipeline architecture designed specifically for 

predictive maintenance within edge computing environments. By offloading data processing and machine learning inference to 

distributed edge nodes, the proposed system significantly reduces latency, lowers reliance on centralized cloud infrastructure, and 

enhances operational efficiency across industrial applications. Through extensive experimental validation using synthetic and real-

world datasets across domains such as IoT, healthcare, and mobility, the system demonstrated high accuracy in failure prediction 

and maintained low-latency performance even under scaled deployments of up to 50 nodes. This underscores its suitability for 

mission-critical, data-intensive use cases that demand timely and privacy-sensitive analytics. The practical implications are far-

reaching: industries such as manufacturing, oil and gas, logistics, and utilities can leverage this architecture to reduce equipment 

downtime, extend asset lifespan, and improve worker safety all while minimizing data transmission costs and protecting sensitive 
operational data. By harnessing inexpensive yet capable edge devices like Raspberry Pi clusters and combining them with modern 

data streaming and analytics frameworks, the solution presents a cost-effective, high-impact alternative to conventional cloud-

centric predictive maintenance systems.  

 

Looking forward, future research will aim to embed federated learning into the pipeline to enable collaborative model 

improvements across devices without exposing raw data thereby enhancing privacy, resilience, and adaptability. Additionally, 

dynamic and adaptive pipelines that can intelligently adjust to workload variability, sensor degradation, or environmental changes 

will be explored, enabling more intelligent resource allocation and model updating in real time. Incorporating AI-based 

orchestration between edge and cloud layers, as well as lightweight deployment methods that eliminate the need for 
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containerization, will further optimize system performance for ultra-low-power devices. These advancements hold the potential to 

transform predictive maintenance from a reactive tool into a proactive, self-optimizing system that can continuously evolve with 

minimal human intervention. Overall, this research lays a foundational framework for deploying intelligent, privacy-aware, and 

highly responsive predictive maintenance solutions at the edge, paving the way for smarter, safer, and more efficient industrial 

operations in an increasingly decentralized digital landscape. 
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