
International Journal of Emerging Research in Engineering and Technology

Pearl Blue Research Group| Volume 6 Issue 2 PP 71-80, 2025

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V6I2P109

Original Article

Code Reviews That Don’t Suck: Tips for Reviewers and

Submitters

Bhavitha Guntupalli 1, Venkata ch 2

1 ETL/Data Warehouse Developer at Blue Cross Blue Shield of Illinois, USA.
2 Software Developer at Northern Trust Bank, USA.

Received On: 22/03/2025 Revised On: 17/04/2025 Accepted On: 01/04/2025 Published On: 20/05/2025

Abstract: In collaborative software development, code reviews

are essential; yet, oftentimes they seem difficult, useless, or

even hostile. This paper presents acceptable suggestions to

increase the relevance and efficiency of code reviews,

therefore addressing the typical problems found by submitters

and reviewers. The statistics mostly support a paradigm

change: seeing code review as a developmental conversation

among peers rather than as a gatekeeping tool. This entails

focusing on clarity rather than wit for reviewers, replacing

help with sarcasm, and stressing the goal of the code rather

than only its syntax. For submitters, it means aggressively

clarifying design decisions, embracing comments with their

openness, and viewing review as an opportunity for

development rather than just a procedural need. The article

offers ideas and techniques to handle these recurring

problems, including unclear remarks, too much inspection,

long review times, and false expectations. Typical motifs are

clarity, empathy, technique, and tools. Empathy is learning the

humanity concealed under every set of rules. Clarity is writing

even for your future self clear, understandable comments and

commitments. The procedure includes well-defined policies

and timetables to help assessments stay on their intended route

or avoid stretching too long. From linters to review templates,

tooling can help to reduce friction and direct focus on these

critical issues. Regardless of your experience level as an

engineer, this piece offers sharp analysis and useful advice to

turn code reviews from unwelcome chores into major team

building, trust, and technical knowledge possibilities.

Keywords: Code review, pull request, software development,

peer review, code quality, submitter tips, reviewer guidelines,

DevOps, continuous integration, engineering best practices,

collaborative programming, version control, GitHub, merge

request, productivity.

1. Introduction
Code reviews are very important in today's software

engineering. If you work for a big company on ancient systems

or a startup on new ones, code reviews are a great method to

make sure your code is good. They make it easy to change

code, find errors before production starts, and hold team

members accountable for their work. They are more than just a

technical review; they are a big part of engineering culture

since they help people learn, mentor, and work together. Code

reviews are good for the code and the people who work on it

when they are done right. If done wrong, they could look like

bureaucratic obstacles or fights between people with enormous

egos, which would be bad for everyone.

1.1. A Brief History of Code Review Practices

It's not a new notion to evaluate codes. It derives from the

time of early mainframes, when tests were done in controlled,

formal settings known as "inspections." Most of the procedures

were mechanical and focused on checklists. The most

important items were meticulous analysis and documentation.

As software development changed from waterfall to agile to

DevOps, code reviews changed too. Version control

technologies like Git and platforms like GitLab, GitHub, and

Bitbucket made things easier, more consistent, and sometimes

even asynchronous. Right now, the pull request (PR)-based

review is the most used standard. It campaigned for constant

integration methods, comments in line, and peer reviews. This

shift made things run more smoothly, but it also caused new

difficulties, such as informality, inconsistency, and disputes

between workers, which often made the benefits of code

reviews less evident.

1.2. Why Code Reviews Often “Suck”

Many engineers find code reviews unpleasant even with

their best of intentions. Tickets can create challenges in the

development process since they lie waiting for clearance by

any one person. Reviewers may rapidly evaluate their work or

exhibit too much pedantry, stressing aesthetic problems and

neglecting structural defects. Sometimes they follow personal

tastes as rigid guidelines. On the other hand, submitters may

become defensive, judgment-oriented, or terrified about the

predicted encounters. Reviewing takes gatekeeping as its first

importance above development. Ego, tone, and ambiguity

make things worse. Saying something like "this is incorrect"

lacks weight in the absence of context or alternatives.

Bhavitha Guntupalli & Venkata ch / IJERET, 6(2), 71-80, 2025

72

Particularly in a sprint cycle with high stress, direct or

imprecise comments could be interpreted as an insult. Add

remote teams, diverse time zones, and changing criteria to

generate a formula for malfunction.

Fig 1: Effective Code Review Process: Best Practices for

Reviewers and Submitters

1.3. Setting the Stage for Better Reviews

It is not necessary this way, though. Code reviews

shouldand should be cooperative, polite, and quick. They are

about creating a shared knowledge of the codebase, uncovering

better solutions, and training less experienced developers, not

only about spotting mistakes. Fixing code reviews fixes the

processfrom tooling to communication styles to review

techniques. Empathy first drives it: realizing that every

comment has a human on the opposite side. It develops clearly

with language that guides rather than inflames. It scales with

process by means of agreed rules and expectations meant to

lower uncertainty.

Toolinglinters, templates, bots, and integrations that

simplify the humdrum so individuals may concentrate on what

countshelps to assist this as well. We will discuss in the parts

that follow how both reviewers and submitters could make

little but significant changes to make code reviews suck less

and turn into a force multiplier for team cohesion, individual

development, and product quality. Whether you want your

team to work more cooperatively or you have review burnout,

it's time to consider how we review codeand why.

2. Foundations of a Good Code Review
Code reviews are cultural events influencing team

chemistry, cooperation, and development instead of merely

technical procedures. When done consciously, they are

indispensable members of good engineering teams. This part

examines the fundamental concepts of effective code reviews,

emphasizes the relevant values they support, specifies the

features of quality, and looks at the pitfalls many teams come

across.

2.1. Purpose of Code Reviews

Code reviews have mainly three connected purposes

mentoring, knowledge exchange, and quality assurance:

 Quality Assurance (QA): The First and most

important goal is quality assurance (QA). Reviews

assist in locating design faults, mistakes, or unplanned

results before codes are utilized. Human reviewers,

unlike machines or linters, provide context and

intuition to find logical errors, edge cases, or usability

issues that they usually overlook.

 Shared Knowledge: The reviewing of the codes

makes it possible that the members of the team are

exposed to the areas of the codebase that they might

be personally involved in. This, in turn, facilitates the

reduction of "bus factor" problems and the

improvement of cross-functional awareness. This

exposure gradually advances a huge shared

understanding of architectural patterns, coding

standards, and system design.

 Mentorship & Growth: The code reviews are the most

effective learning method for brand-new engineers. It

gives opportunities for seasoned engineers to confirm

that their practices are correct and they can be

mentors and guides. A thorough review not only

enables submitters to repair their code but also to get

to the very root of changes, thus being able to

contribute more effectively in the future.

A code review done successfully means it not only finds

and solves issues but also establishes good habits and team

spirit and reaps benefits through collective action.

2.2. Attributes of High-Quality Reviews

Though the "ideal" review has no clear criterion, outstanding

reviews usually show a few basic traits:

 Constructive: Productful: Crucially important are the

tone and context of feedback. Instead of saying,

"This is incorrect," "This could be simplified to X due

to..." One aims to empower rather than to limit. Pay

closer attention to the code than the programmer

would.

 Respectful: Reviewing something cannot ever seem to

be a personal attack. Respect consists in knowing

tone, avoiding sarcasm, and assuming good

intentions. Even when one is solving issues, empathy

and compassion greatly improve the outcomes of

conversations.

 Timely: A slow assessment can affect a sprint even

in five days. Timely comments help teams to stay free

from obstacles and to keep a high growth speed. A

simple "I will review more thoroughly by the end of

the day" shows awareness.

 Context-Aware: Context-awareness of the overall

background of a pull request (PR)including the

functionality, the business justification, and the

constraints"helps to prevent misaligned comments."

Reviewers should closely review the PR description,

probe clarifying questions, and make sure their

Bhavitha Guntupalli & Venkata ch / IJERET, 6(2), 71-80, 2025

73

comments complement the scope and intent of the

change.

 Balanced: Just as important for identifying issues is

stressing strengths. Encouragement of well-

organized projects, suitable titles, or complete test

coverage helps to promote good behavior and renders

evaluations more positive than aggressive.

2.3 Common Pitfalls

Even codes that operate with good intentions can still go

wrong. Examples of anti-patterns that negatively affect team

performance are presented here.

 Over-Commenting: Reviewers who are overly

focused on pointing out every line of the code,

especially minor stylistic details, become unneeded

distraction sources. Submitter can be overloaded by

this, the iterative process can be disturbed, and the

really significant input can be hidden.

 Nitpicking: Getting rid of unclarity, if one point is

definitely true, arguing endlessly over whether to use

spaces or tabs, the location of the curly braces, as well

as the length of the variable name, takes away

attention from the main problems. Instead of human

dispute, automation with linters and formatters should

solve many issues.

 Slow Responses: Deferred assessments lead to

lowered output.

Usually, they are the source of merging troubles,

context switching, or the creation of outdated

branches. Choosing "actual work" over code review

reduces its value and transforms it into an

inconvenient bottleneck for teams.

 Unclear Feedback: Such comments as "requires

improvement" or "that is not what I expected" are too

vague to be useful. Clearly, they offer neither a

direction nor pinpoint exactly that which has to be

done. Good comments precisely and practically,

thereby clarifying the need for adjustment.

 Reviewing Without Understanding: Reviewers are at

times rushing through the review of a PR or they do

not accept reasoning fully and therefore criticism is

created. In this way, omitted problems or errors in the

comments are a consequence of that. Good comments

depend on knowing the process, particularly for big

pull requests.

3. Tips for Code Submitters
Turning in codes for review could make one sensitive to

criticism, exposed, and vulnerable. Code contributing can turn

into a fun and helpful hobby with the correct mindset and few

reasonable guidelines. This section looks at achievable plans

for submitters to enable more efficient review cycles, lower

conflict, and raise code quality.

3.1. Write Clean, Self-Explanatory Code

Fewer comments in a code review will come from writing

code needing no justification. Clear, concise, understandable

codes simplify the review process and reduce the cognitive

load on testers.

3.1.1. Clean Code Means

 Clean codes seek unambiguous variable and function

names.

 Keeping precise, focused abilities.

 Eliminating duplicate TODAYs or commented-out

codes.

 Using the style guide of the project, keep consistent in

your writing.

When clarity will work, be innovative. Describe your goal

more precisely using more words than with a convoluted one-

liner. Think about your future colleagues (or perhaps your

future self) responsible for upholding the code six months

hence; neat code is a modest act of compassion toward them.

3.2. Use Meaningful Commit Messages

Committed messages are one underappreciated instrument

available during the submission process. They enable

reviewers to grasp your perspective and the reasoning behind

the modifications.

Notes on good commitment:

 Begin with a brief overview. Build a retry mechanism

in the API client.

 Retries help to lower sporadic 503 errors coming

from upstream systems.

 Sort important modifications into several commits

with various purposes.

Avoid using such language as "fix," "changes," or "oops."

Reviewers should not have to go through every file to grasp the

changes done. A good commit statement acts as a guide; it

facilitates appropriate negotiation of your PR by reviewers.

3.3. Keep Pull Requests Small and Focused

With 1,200 lines, the most demanding pull request for a

reviewer touches a fair portion of the codebase. Examining

more takes more time; comprehensive pull requests are more

difficult to grasp; typically, they suffer delays or disregard.

Simplify your pull requests by:

 Dissecting big ideas into little adjustments.

 Staying with one task each pull request helps to

reduce scope creep.

 Unless absolutely requiredthat is, adjusting irrelevant

formattingavoid doing surface repairs.

If your reviewer needs a pot of coffee and a three-hour

interval to review, generally speaking, your pull request is too

Bhavitha Guntupalli & Venkata ch / IJERET, 6(2), 71-80, 2025

74

big. Apart from their simplicity of evaluation, small pull

requests are also more under control for debugging or reversal

should an issue develop.

3.4. Add Context: PR Descriptions, Diagrams, Links

One of the most untapped resources in a submitter's

arsenal is the pull request description. A well-crafted

description not only allows reviewers to get a better and more

focused understanding of the main issues but also saves them

time.

What to include:

 A statement of the purpose of the PR

 The reason it was necessary (the issue it addresses)

 The way it fixes the problem (main design decisions)

 Visuals or test results for UI or performance changes

 References to tickets, discussions, or design docs

This information provides reviewers with a mental picture

of the situation before they dig into the code. But even a clever

PR can seem like a mystery without these supplementary

details.

3.5. Preemptive Comments: Explain Design Choices

Predict questions before they even come. If there is a

design decision that could be perceived as questionable, a short

explanatory note in the code or PR description would be

enough to clarify it. Besides building trust, this also enables the

review to be done faster by cutting out unnecessary

clarifications. It clearly demonstrates that you have considered

possible concerns and that you are ready to discuss them.

Moreover, it also allows reviewers to concentrate on the real

issues, not on confusions.

This method can be particularly helpful in the following

situations:

 Making a choice between competing patterns or

libraries

 Applying a workaround due to a known bug

 Non-obvious optimizations writing

3.6. Don’t Take Feedback Personally

This issue is actually more about the mindset than the

mechanics, but it is very important. Code reviews are not a

verdict of your intellect, character, or skills they are a

discussion on the code, not the person. Each developer,

regardless of seniority, gets feedback. And every piece of

feedback, even if it is not perfectly expressed, is a chance to

become better.

To keep a positive outlook:

 Take a moment before you react in a defensive way to

the comments.

 Give reviewers the benefit of the doubt and assume

that they have a good intention.

 Consider reviews as cooperationrather than fighting.

In case you feel that it is unfair or ambiguous, then no

problem, you can ask for an explanation or argue with

politeness. Feedback is a shared responsibility; however, it is

most effective if both parties are not focused on winning but

rather on learning.

3.7. Respond Promptly and Professionally

When you get remarks, reply quickly and gently. This

involves appreciating comments, asking questions when

necessary, and changing the pull request instead of suggesting

the unthinking acceptance of every idea.

Best practices:

 Use checkboxes or threading to track feedback

resolution.

 Thank reviewers for helpful suggestions.

 Explain you’re reasoning if you choose not to make a

change.

 Avoid ghosting if you’re blocked, say so.

Professional answers sustain momentum and demonstrate

respect for the reviewer's time. Good communication fosters

respect among people despite probable variations. Remember

also that a reviewer could not have the same contextual

knowledge as you; hence, make time to clarify as necessary

and provide them with the necessary tools to aid in better codes

generally.

4. Tips for Code Reviewers
Beyond basic problem identification, a competent code

reviewer addresses establishing confidence, peer guidance, and

impact on the direction and quality of a codebase. Your

remarks might motivate, direct, or discourage. Your

communication style is equally as vital as the words you

choose. This section presents reasonable recommendations for

readers that investigate the essence of good, sympathetic

assessment and surpass simple ideas.

4.1. Read with Empathy and Curiosity

Review every pull request knowing that the code you are

looking at has been given considerable thought by a real

human. They may have been negotiating unexplored code

pathways, juggling edge events, or under deadline. See it as a

coworker seeking knowledge and support rather than as

something to "evaluate."

 Consider moral goals. The code could be faulty even

if the person in charge most definitely made a great

effort.

 Exude excitement. You criticize, then ask, "What

could have motivated their approach?"

 Think of the tone. Even with technical precision, a

negative remark or direct criticism can impair morale.

Bhavitha Guntupalli & Venkata ch / IJERET, 6(2), 71-80, 2025

75

Empathy sharpens teamwork. It implies that you are there

not merely to point out flaws but also to be helpful.

4.2. Focus on Functionality First, Style Later

Not all problems are the same. Prioritize your energy

accordingly.

 Firstly, make sure the program is working. Has it been

checked against the requirements? Are the edge cases

covered? Does it introduce any regressions?

 After that, focus on the structure: Is the code

organized logically? Is it testable and modular?

 Finally, if your linter or formatter hasn’t made these

changes, stylistic changes are acceptable.

Don’t make it hard for someone to find functional issues

amidst a lot of very small ones about indentation or naming.

And if those issues are already taken care of by tooling, there

isn’t much point in manually flagging them. An insightful

reviewer supports the submitter in concentrating on the main

thingsfirst of all, correctness, then clearness.

4.3. Prioritize High-Risk Areas (Security, Architecture)

Not all lines of code have the same properties. Learn to

identify and examine his impact-rich areas, such as:

 Security: Is the system secure or are there potential

security breaches that can come from user input that is

not safe, missing validations, or hardcoded secrets?

 Architecture: Are there any issues that can be caused

by the change in architecture, such as high coupling or

hidden dependencies?

 Data handling: Have the data models been utilized in

a proper way? Is there any potential for the data to be

corrupted or lost?

 Performance: Is there any chance that this

implementation can become a reason for latency

spikes or the database being loaded unnecessarily?

Concentrate your detective energy on those parts of the

codebase that have a large impact in case something goes

wrong. For less risky or isolated changes, a more lightweight

review may be sufficient. The triage approach makes your

reviews not only more efficient but also more valuable.

4.4. Provide Actionable, Concise Feedback

An ideal code review does not leave the submitter

confused or overloaded with unnecessary information. Use

clear language. Use short sentences. Use polite words.

Explicit feedback means:

 Examples: “Rename this to userEmail” is a more

correct statement than “Naming could be improved.”

 Giving the reason: “This method could be async to

avoid blocking the main thread.”

 Suggesting other options: “Could we use a map

instead of a loop here for better lookup performance?”

Moreover, cluster similar issues. If the same issue pops up

in other files, do not repeat yourself but write a summary

instead. Furthermore, if implementing the suggested behavior

in the present moment is not the top priority, it is better to give

an example such as a TODO or a follow-up ticket. Using each

PR for the removal of clutter is not recommendable.

Lastly, don’t make vague statements, e.g.,

 “Hmm.”

 “Interesting.”

 “I don’t like this.”

They make the submitter uncertain about how to change

the code and the reasons. The one who understands the most

becomes the one who most clearly expresses the intention.

5. Process and Tooling Best Practices
Even with conscientious workers on both sides, code

reviews might fail in the absence of well-defined policies and

accompanying instruments. Goodwill cannot maintain

quality and efficiency in review systems; they also need a

methodical approach. This section describes optimal

strategies teams could apply to raise code review consistency,

fairness, and efficiency. Code review implemented well

becomes a team scalable resource as well as a quality

checkpoint.

5.1. Code Review Checklists for Teams

One uniform checklist not only minimizes the risk of

errors but also ensures that the code review process is thorough

and consistent with the priorities of the team. On the other

hand, without a standardized process, reviews can be very

different in the amount of depth and focus depending on the

reviewer. However, this inconsistency could result in the team

being unclear about the standards, a bug going unnoticed or

even frustration among the team.

What to include in a code review checklist:

 Correctness: Is the code capable of fulfilling

functional requirements? Are all the edge cases taken

care of?

 Security: Does it come to your mind that there are

some inputs that need validation? Is there any

sensitive data that may be leaked?

 Readability: Is the code understandable at a glance?

Are variable names and comments informative?

 Testing: Are there any unit/integration tests? Are they

working?

 Performance: Can you spot some inefficiencies? Will

this be able to work under a heavy load?

 Style: Is the code consistent with the formatting and

the way of naming agreed upon?

Bhavitha Guntupalli & Venkata ch / IJERET, 6(2), 71-80, 2025

76

The checklists should not be too heavyand more of a guide

than a strict form. It is desirable that teams initially make them

and then continuously develop them together, ensuring they are

always up to date as the projects increase in size.

5.2. Using GitHub/GitLab Tools Effectively

Platforms like GitHub and GitLab are filled with

numerous review features that sometimes users don't fully

utilize. These features can help a reviewer greatly simplify the

process and minimize the conflicts with co-workers if they

know how to use them.

Best practices for using platform features:

 Draft PRs/MRs: Allow people who submit work to

indicate that they do not consider it to be complete yet

but they would like to get some early feedback.

 Code owners: Tell specific individuals which parts of

the code they should review in order to be sure that

their expertise will be used most effectively.

 Suggested changes: Reviewers can do this instead of

writing a lot of comments. They make the changes

they suggest to the code, and submitters accept those

changes with one click.

 Review summaries: Utilize comments or checklists

located at the top of PRs to reiterate the outstanding

issues or give approvals.

 Required reviews: Have branch protection rules in

place to stop merges without at least one review.

Moreover, as labels, review status indicators, and

notifications are all interconnected,Wrong usage of them can

lead to misunderstandings and hence it is very important to use

them in a correct way. Tools are only as good as the team's

discipline in using them effectively.

5.3. Automated Linting, Formatting, and Static Analysis

Clearly, even some things do not require human

judgmentautomation can take care of repeated and style-related

issues; hence, it cannot be a burden to the reviewers as they

can focus on logical and architectural problems only. These are

some automation tools commonly used:

 Linters (e.g., ESLint, Flake8): Find out syntax errors

and style violations.

 Code formatters (e.g., Prettier, Black, gofmt): Keep

formatting consistent.

 Static analysis (e.g., SonarQube, CodeQL, Pylint):

Spot bugs, complexity and security issues that might

appear.

 Pre-commit hooks: Make sure that there is no

problematic code in the repo.

The main point is to make these tools work along with the

CI/CD pipeline so that code cannot be merged before it passes

the automated verification. Doing so will not only reduce the

friction between submitters and reviewers but also eliminate

unnecessary comment churn over style. It would be great if

teams would not only record the list of available tools but also

provide the configuration files that are necessary to get

everyone on the same page. In this case, automation will play

the role of “the bad cop,” and human beings will be those who

have more meaningful discussions.

5.4. SLOs for Review Time and Quality

Slow or irregular reviews have been known to damage

morale, cause late releases, and also decrease the quality of the

product. The use of Service Level Objectives (SLOs) for code

reviews has the potential to not only define team-wide

expectations but also ensure that the reviews continue to flow

smoothly without any backlogs.

For example, a typical set of review SLOs might be

 PRs should get a first review within 24 hours.

 A PR should never be left without an update for more

than 48 hours.

 Reviews should give feedback that can be acted upon

within one round (if possible).

 A PR should never be merged with unresolved critical

comments.

SLOs should be considered as a guide rather than strict

rulesi.e., building healthy habits instead of putting pressure.

Methods like publicly available dashboards or Slack bots can

enable teams to track review statistics (e.g., average time for

review, PRs in queue) and recognize bottlenecks early. If the

introduction of SLOs is done in a thoughtful manner, it can

lead to a situation wherein the team members become

responsible and their cognitive load decreases, along with an

improvement of their reaction speed.

5.5. Rotations and Review Load Balancing

Reviewer burnout is one of the major reasons for the long

delays in review. Such a situation occurs when a few senior

developers are reviewing the majority of the PRs and others are

not contributing. So, to prevent such a situation, teams ought to

set up structured review rotations and load balancing.

Strategies to distribute review workload:

 Rotating “review captain”: Each week one person is

in charge of review triage; this makes sure that all PRs

get a first pass or are assigned appropriately.

 Peer-review pairings: Change parts of the team

members to bring in new eyes and reduce the number

of silos of the tribal knowledge.

 Tool-assisted assignment: Employ bots (e.g.,

Reviewable, Review Roulette) to distribute work

randomly or logically among people based on the last

activities or the ownership.

 Set limits: Limit the number of concurrent reviews per

person so he/she does not get overloaded.

Bhavitha Guntupalli & Venkata ch / IJERET, 6(2), 71-80, 2025

77

Such intentional distribution not only increases the quality

but also prevents burnout and provides equal learning

opportunities especially for the new personnel.

6. Psychological Safety and Communication

Culture
A human being supports every line of codeconsidered,

learned, and sometimes questioned choices. Review of codes is

basically a human event, technical as they are. Especially for

first-year engineers or team newcomers, one rude comment or

harsh phrase might have long-lasting effects. Therefore, a good

engineering culture depends heavily on psychological safety,

which is not only helpful but also quite necessary. This part

explores how teams could create a communication climate that

supports learning, welcomes criticism, and improves

cooperation by means of which one might support another.

6.1. Building a Safe Environment for Feedback

Psychological safety refers to a situation where team

members have sufficient trust and confidence to be able to

freely express their thoughts, admit mistakes, and exchange

feedback without fearing humiliation or retaliation. With code

reviews, this notion of safety is the following:

 Reaffirming the fact that the discussion can be open

and disagreement can occur without the need for

shame.

 Providing a situation where all voicesespecially

quieter onesare important.

 Set an example of being open: it is very effective

when senior engineers say, “I don’t know either” or

“Thanks for giving me the new angle to look at this.””

6.1.1. In order to make such an atmosphere exist:

 We can expect that reviewers should initiate the

process with the idea of helping, not judging.

 Submitters should be allowed to explain the decisions

without any fear and even ask for clarification.

 All the people who participate should always adhere

to the assumption of positive intent.

After safety becomes a fact, people are more willing to

share their good ideas, ask questions, and go against the

common belief which is, of course, better code as well as

stronger teams.

6.2. Training Juniors without Micromanagement

Mentoring code review from less experienced developers

can be a very tricky situation. The question here is how to be

both a teacher and a guide without losing the interest of the

recipient.

The most effective practices for mentoring through the code

reviewing process:

 Initially, focus on what they got right.

 Give concrete examples in your feedback. “Avoid

magic numbers” is much more appropriate than “this

looks wrong.”

 When you propose changes, do it with examples or

short parts of the code.

 Do not force them to agree with your whole point but

create a condition where they can come up with

different ideas on their own.

Remember, don’t use the review session as a personal

checklist of how you would’ve done the task. Instead, be on

the lookout for teachable moments that instill confidence in the

new ones. Allow them to take full responsibility for their

mistakes, correct them, and benefit from the experience.

Micromanagement is the mother of dependence. Mentorship is

the source of independence.

6.3. The Role of Engineering Managers

Engineering managers lead largely in the creation of

review culture. Their work is to establish the tone, model

behavior, and build systems enabling development and safety

rather than to review every line of code.

Key responsibilities include:

 Setting expectations: Mostly you are responsible for

creating guidelines for timely, pleasant, and

constructive assessments.

 Intervening early: Quickly handling when they reveal

unfavorable dynamics or repeated conflicts

 Balancing feedback: Ensuring that juniors are not

only under criticism while seniors are also suitably

challenged guarantees fair comments.

 Monitoring metrics: Does reality show in the reviews?

Are certain particular people prone to overwhelm?

Are any voices absent?

Sometimes managers can provide a model of leadership by

showing up for evaluations, praising great work, and leaving

comments for others. Encouragement of empathy, curiosity,

and equity in the evaluation process helps managers to transmit

a clear message: feedback is not a threat; it is a tool for group

excellence.

7. Case Study: Transforming Review Culture at

DevCraft Inc
The code review process at DevCraft Inc., a mid-sized

product engineering business that focuses on cloud-native SaaS

apps, had become a constant source of problems. The

development team was good at what they did, but there was

tension in the engineering teams because the reviews weren't

always good, there were communication problems, and the

organization relied too much on a few senior engineers. This

caused features to be released later than planned, and junior

developers were getting burned out and losing morale.

Bhavitha Guntupalli & Venkata ch / IJERET, 6(2), 71-80, 2025

78

7.1. Initial State: Siloed Teams and Broken Feedback Loops

Before any intervention, DevCraft's code review tool

found unrelated processes and poor alignment. Every team has

their unwritten rules on the standards for a "good review."

While some critics point out thorough, pedantic remarks on

little problems, others approve large pull requests (PRs)

without closely reviewing the content.

The PR study found no consistent SLA. Often more than a

week, developers regularly ran with delays of many days that

caused cognitive dissonance and stopped progress for

feedback. From this came longer review cycles, merging

delays, and growing team discontent.

Moreover, the approach of communication applied during

the tests had become somewhat unpleasant. Junior developers

hesitating to question concepts or challenge regulations were

fearful of exposing themselves or breaking rules. Many times

lacking clarity or obvious dismissiveness, statements erode

confidence and motivation. Internal engagement polls revealed

that many engineers felt the appraisal process added more

stress than value.

7.2. Intervention: Process, Empathy, and Tooling

Recognizing the mounting cost of these issues, DevCraft’s

engineering leadership launched a three-pronged initiative

aimed at revitalizing the review culture: standardizing process,

fostering psychological safety, and introducing supportive

tooling.

7.2.1. Checklists for Consistency

Responding to the growing costs associated with these

challengesstandardizing methods, promoting psychological

safety, and deploying supporting toolsDevCraft's engineering

leadership began a three-pronged approach to rejuvenate the

review culture. The first phase consisted in using all-team

comprehensive code review checklists in reduced form. These

lists contained guidelines for:

 Operational excellence

 Assessment of test completeness

 Problems concerning performance and security

 Openness and environmentally friendly behavior

 Clearly state your pull requests and commit messages.

Today's reviewers follow a uniform code evaluation

process, which allows younger engineers to grasp the

expectations placed upon them and helps to lower subjectivity.

7.2.2. Empathy and Communication Training

DevCraft collaborated with an external facilitator to

conduct “Empathy in Engineering” workshops and thus they

fostered emotionally positive interactions in the reviews. These

meetings comprised

 Acting out various review situations

 Finding negative communication habits

 Giving feedback in the form of questions instead of

commands

 Making praise and positive reinforcement a habit

The leadership and senior staff were quite urged to set the

example of being open emotionally by requesting feedback and

owning former wrongdoing in the review process.

7.2.3. Tooling and Automation

DevCraft has also improved its tooling:

 Reached out to the GitHub saves feature to make sure

conversations with the team are dealt with less.

 Configured pre-commit hooks and linting via CI so

that formatting and style are always updated

automatically.

 Added a “review load dashboard” that showed the

number of PRs still open, average response times, and

the workload of reviewers.

Such changes not only made the work of reviewers less

boring but also allowed them to concentrate on more

meaningful and higher-level feedback.

7.3. Outcomes: Faster Merges, Happier Teams

Six months after rolling out the initiative, DevCraft

experienced concrete and measurable improvements in several

areas:

 Time-to-merge had dropped by 40%. PRs that were

still open days prior to this were now reviewed and

merged within 24–48 hours; thus, teams were able to

ship features faster and with fewer merge conflicts.

 Developer satisfaction went up a lot. Response

surveys indicated a 35% increase in positive feelings

about the review process, with juniors identifying

“more approachable feedback” and “less fear of

asking questions.”

 More review participation. The mid-level developers

who were reluctant earlier started reviewing PRs

regularly as per the checklist guidance and the change

in the tone of the conversation.

 Defects in the QA had become fewer. The

improvement of review hygiene and the involvement

of more people in monitoring high-risk changes

helped identify problems at an earlier stage of the

cycle, resulting in higher-quality releases.

7.4. Lessons Learned: Culture Change Is a Marathon, Not a

Sprint

The transfiguration at DevCraft was not an instance of instant

success. The next lessons are described in a list below:

 Balance is the main thing. Automation assisted to

implement consistency and at the same time, human

judgment was still crucial. The reviewers had to learn

where to be strict and where to be flexible.

Bhavitha Guntupalli & Venkata ch / IJERET, 6(2), 71-80, 2025

79

 Empathy must be a part. If there is no training and

continuous encouragement, the old habits can appear

again. Managers kept the theme of empathy on their

minds when they had retros and 1:1s.

 Culture change is indeed a process. The initial

resistance came from both sides: the reviewers and the

submitters. It needed repeated reinforcement, visible

leadership support, and small wins to build

momentum.

 Feedback should be reciprocal. Developers were

given not only the opportunity to receive feedback but

also to leave comments for reviewers; thus, a two-way

learning loop was created.

8. Conclusion and Key Takeaways
Code reviews offer chances for group enhancement,

mentoring, and cooperation instead than being milestones in a

development cycle. This guide has looked at methods in which

submitters and reviewers could help to foster higher relevancy,

respectfulness, and output of code reviews. First for those

submitting codes, organization and clarity are important. Write

simple, self-explanatory code; keep focused and brief pull

requests; use major commit messages; and carefully and

professionally react to comments utilizing PR descriptions and

comments to set the backdrop. See remarks as an opportunity

for growth rather than as a jab directed personally.

Reviewers should especially be deliberate and

compassionate. View assessments from the eye of research

instead of judgment. Give usability first priority; next, give

automated tools artistic considerations. Ask inquiries; point out

problems like design or security; and regularly offer brief,

perceptive remarks instead of instructions. Reward exceptional

performance. Not to dominate a discussion, the goal is to

enable a colleague to improve in coding. On a team, structure

is really important. Lists guarantee consistency. Automaton

silence noise: Together, established techniques, fair allocation

of the review load, and psychological safety taken build a

stronger review culture. Managers are mostly responsible for

creating this climate since they ensure that comments in all

directions are freely and politely flowing.

A good code review is a conversation instead of a conflict.

Under this cooperative atmosphere, developers help each other

in professional development, improve product quality, and

coordinate around uniform coding standards. Properly done,

code reviews become more than just a tool for learning, trust,

and continuous developmenta source of concern as well.

Remember that every word you say gently shapes culture, not

only changes code when you next open or review a pull

request.

References
[1] Laurvik, Torgeir Sandnes. Design process behind an

educational review system for student submissions-

applying knowledge from professional code reviews to an

educational assessment setting. MS thesis. NTNU, 2021.

[2] Pasupuleti, Vikram, et al. "Impact of AI on architecture:

An exploratory thematic analysis." African Journal of

Advances in Science and Technology Research 16.1

(2024): 117-130.

[3] Lalith Sriram Datla, and Samardh Sai Malay.

“Transforming Healthcare Cloud Governance: A Blueprint

for Intelligent IAM and Automated Compliance”. Journal

of Artificial Intelligence & Machine Learning Studies, vol.

9, Jan. 2025, pp. 15-37

[4] Radez, Jerica, et al. "Why do children and adolescents

(not) seek and access professional help for their mental

health problems? A systematic review of quantitative and

qualitative studies." European child & adolescent

psychiatry 30.2 (2021): 183-211.

[5] Cohen, Jason, Steven Teleki, and Eric Brown. Best kept

secrets of peer code review. Smart Bear Incorporated,

2006.

[6] Talakola, Swetha. “Transforming BOL Images into

Structured Data Using AI”. International Journal of

Artificial Intelligence, Data Science, and Machine

Learning, vol. 6, no. 1, Mar. 2025, pp. 105-14

[7] Platt, David S. Why software sucks--and what you can do

about it. Addison-Wesley Professional, 2007.

[8] Syed, Ali Asghar Mehdi. "Zero Trust Security in Hybrid

Cloud Environments: Implementing and Evaluating Zero

Trust Architectures in AWS and On-Premise Data

Centers." International Journal of Emerging Trends in

Computer Science and Information Technology 5.2

(2024): 42-52.

[9] Zanjani, Motahareh Bahrami, Huzefa Kagdi, and Christian

Bird. "Automatically recommending peer reviewers in

modern code review." IEEE Transactions on Software

Engineering 42.6 (2015): 530-543.

[10] Allam, Hitesh. “Intent-Based Infrastructure: Moving

BeyondIaC to Self-Describing Systems”. International

Journal of Artificial Intelligence, Data Science, and

Machine Learning, vol. 6, no. 1, Jan. 2025, pp. 124-36

[11] Jabbar Mohammad, Abdul. “Integrating Timekeeping and

Payroll Systems During Organizational

TransitionsMergers, Layoffs, Spinoffs, and

Relocations”. Los Angeles Journal of Intelligent Systems

and Pattern Recognition, vol. 5, Feb. 2025, pp. 25-53

[12] MacLeod, Laura, et al. "Code reviewing in the trenches:

Challenges and best practices." IEEE Software 35.4

(2017): 34-42.

[13] Jani, Parth. "Modernizing Claims Adjudication Systems

with NoSQL and Apache Hive in Medicaid Expansion

Programs." JOURNAL OF RECENT TRENDS IN

COMPUTER SCIENCE AND ENGINEERING (JRTCSE)

7.1 (2019): 105-121.

[14] Remillard, Jason. "Source code review systems." IEEE

software 22.1 (2005): 74-77.

[15] Veluru, Sai Prasad. "Reversible Neural Networks for

Continual Learning with No Memory Footprint."

Bhavitha Guntupalli & Venkata ch / IJERET, 6(2), 71-80, 2025

80

International Journal of AI, BigData, Computational and

Management Studies 5.4 (2024): 61-70.

[16] Boland, Angela, Gemma Cherry, and Rumona Dickson,

eds. "Doing a systematic review: a student′ s guide."

(2017).

[17] Chaganti, Krishna Chiatanya. "Securing Enterprise Java

Applications: A Comprehensive Approach." International

Journal of Science And Engineering 10.2 (2024): 18-27.

[18] Hamasaki, Kazuki, et al. "Who does what during a code

review? datasets of oss peer review repositories." 2013

10th Working Conference on Mining Software

Repositories (MSR). IEEE, 2013.

[19] Sriram Datla, Lalith, and Samardh Sai Malay. “Zero-

Touch Decommissioning in Healthcare Clouds: An

Automation Playbook With AWS Nuke and

GuardRails”. Los Angeles Journal of Intelligent Systems

and Pattern Recognition, vol. 5, Mar. 2025, pp. 1-24.

[20] Chaganti, Krishna Chaitanya. "AI-Powered Threat

Detection: Enhancing Cybersecurity with Machine

Learning." International Journal of Science And

Engineering 9.4 (2023): 10-18.

[21] Okoli, Chitu. "A guide to conducting a standalone

systematic literature review." Communications of the

Association for Information Systems 37 (2015).

[22] Talakola, Swetha. “The Optimization of Software Testing

Efficiency and Effectiveness Using AI Techniques”.

International Journal of Artificial Intelligence, Data

Science, and Machine Learning, vol. 5, no. 3, Oct. 2024,

pp. 23-34

[23] Tawfik, Gehad Mohamed, et al. "A step by step guide for

conducting a systematic review and meta-analysis with

simulation data." Tropical medicine and health 47 (2019):

1-9.

[24] Balkishan Arugula, and Suni Karimilla. “Modernizing

Core Banking Systems: Leveraging AI and Microservices

for Legacy Transformation”. Artificial Intelligence,

Machine Learning, and Autonomous Systems, vol. 9, Feb.

2025, pp. 36-67

[25] Ridley, Diana. "The literature review: A step-by-step

guide for students." (2012): 1-232.

[26] Allam, Hitesh. "Policy-Driven Engineering: Automating

Compliance Across DevOps Pipelines." International

Journal of Emerging Trends in Computer Science and

Information Technology 6.1 (2025): 89-100. -mar

[27] Veluru, Sai Prasad. "Threat Modeling in Large-Scale

Distributed Systems." International Journal of Emerging

Research in Engineering and Technology 1.4 (2020): 28-

37.

[28] Kraus, Sascha, Matthias Breier, and Sonia Dasí-

Rodríguez. "The art of crafting a systematic literature

review in entrepreneurship research." International

Entrepreneurship and Management Journal 16 (2020):

1023-1042.

[29] Abdul Jabbar Mohammad, and Guru Modugu.

“Behavioral TimekeepingUsing Behavioral Analytics to

Predict Time Fraud and Attendance

Irregularities”. Artificial Intelligence, Machine Learning,

and Autonomous Systems, vol. 9, Jan. 2025, pp. 68-95.

[30] Wolfswinkel, Joost F., Elfi Furtmueller, and Celeste PM

Wilderom. "Using grounded theory as a method for

rigorously reviewing literature." European journal of

information systems 22.1 (2013): 45-55.

[31] Jani, Parth. "Document-Level AI Validation for Prior

Authorization Using Iceberg+ Vision Models."

International Journal of AI, BigData, Computational and

Management Studies 5.4 (2024): 41-50.

[32] Arugula, Balkishan. “Prompt Engineering for LLMs:

Real-World Applications in Banking and

Ecommerce”. International Journal of Artificial

Intelligence, Data Science, and Machine Learning, vol. 6,

no. 1, Jan. 2025, pp. 115-23

[33] Kupanarapu, Sujith Kumar. "AI-POWERED SMART

GRIDS: REVOLUTIONIZING ENERGY EFFICIENCY

IN RAILROAD OPERATIONS." INTERNATIONAL

JOURNAL OF COMPUTER ENGINEERING AND

TECHNOLOGY (IJCET) 15 (2024): 981-991.

[34] Vasanta Kumar Tarra. “Ethical Considerations of AI in

Salesforce CRM: Addressing Bias, Privacy Concerns, and

Transparency in AI-Driven CRM Tools”. American

Journal of Autonomous Systems and Robotics

Engineering, vol. 4, Nov. 2024, pp. 120-44

[35] Kodete, Chandra Shikhi, et al. "Robust Heart Disease

Prediction: A Hybrid Approach to Feature Selection and

Model Building." 2024 4th International Conference on

Ubiquitous Computing and Intelligent Information

Systems (ICUIS). IEEE, 2024.

[36] Bacchelli, Alberto, and Christian Bird. "Expectations,

outcomes, and challenges of modern code review." 2013

35th International Conference on Software Engineering

(ICSE). IEEE, 2013.

[37] Sreekandan Nair, S., & Lakshmikanthan, G. . (2021).

Open Source Security: Managing Risk in the Wake of

Log4j Vulnerability. International Journal of Emerging

Trends in Computer Science and Information Technology,

2(4), 33-45. https://doi.org/10.63282/d0n0bc24

