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Abstract - The dynamic cloud environment, mobility workforces and the continuously growing cyber threats have triggered a 

transition of perimeter-based defences to Zero Trust Architectures (ZTAs). This review presents a comprehensive analysis of 

how Artificial Intelligence (AI) has been integrated into early uses of Zero Trust. Such formative AI-ZT systems implemented 
mechanisms such as behavioural authentication, adaptive trust scores, federated learning and running smart contracts to 

generate flexible and situational access controls. We look into the current technological foundations behind the early AI-ZT, 

including edge computing, orchestration and training on decentralised model training over microservice autonomy. In 

particular, special attention is paid to the application of AI in the access pattern prediction, event tokenisation and risk-driven 

policy adaptation. The problem of data privacy, the security of models, and limitations in distributed systems are presented in 

terms of initial implementations. Basing its insights on them, the paper speculates on how the experience of AI-ZT systems 

contributed to the current security paradigm, estimating the integration of DevSecOps with AI, SecAI systems, and AI-

facilitated context processing. Timelines and corresponding comparative tables have also been provided to visualise the 

development of AI-ZT models and other pitfalls that a variety of solutions face. Finally, other new trends that we discuss are 

Zero Trust agents, which are autonomous, harmonisation of world policies and AI ethics. This review aims to serve as a 

critical foundation for researchers and practitioners building the next generation of intelligent, resilient Zero Trust systems. 

 
Keywords - Zero Trust Architecture (ZTA); Identity-Centric Security;  Network Segmentation;  Microservices Security; Secure 

Access Models; Cybersecurity Policy;  Federated Identity Management. 

 

1. Introduction 
The Zero Trust (ZT) security model is a paradigm shift in the architecture of cybersecurity due to which the traditionally 

accumulated reference to the protection of the perimeter is being disrupted [1]. Already, in the 2010s, researchers and 
practitioners started to be sceptical of traditional security practices and techniques that presupposed the implicit trust of the 

elements of the internal network. This assumption is undermined by the main principle of Zero Trust, which is the assumption 

that says, Never Trust, Always Verify, which will mandate that any access request should be validated through multiple 

authentication, authorisation, and verification, irrespective of their origin as well as network location [2]. Firewalls, intrusion 

prevention systems (IPS) and virtual private networks (VPNs) are some of the tools which have historically been applied to 

protect the enterprise perimeter [3]. This strategy was sufficient when assets used to be centrally controlled, users used to sit at 

the office and network boundaries used to be well defined. Nonetheless, the emergence of cloud computing, mobile endpoints, 

IoT devices, and hybrid workplaces has made the perimeter defence obsolete. Incidences of exploitation of lateral movement 

and credential compromise came in as attackers started exploiting this method, hence subverting faith inside the network since 

one trusts others, which is a further insecurity (4). 

 

Figure 1 illustrates this paradigm shift, contrasting perimeter-centric models with identity- and behaviour-centric Zero 
Trust architectures. 

 
Fig 1: Shift from Perimeter-Based Security to Zero Trust Architecture 
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The initial development of Zero Trust centred around three major pillars: robust identity and access management (IAM), 

micro-segmentation of all networks and services and offering access using fine-grained access policies[5]. These 

implementations were largely static and were manually configured. Yet, with more and more data and more dynamic and ever-

evolving threats, static rules and policies started falling short. This led to the integration of artificial intelligence (AI) and 

machine learning (ML) into Zero Trust models. Real-time behavioural analytics, dynamic risk scoring and adaptive access 
control are capabilities that may be critical in contemporary digital ecosystems made possible by AI. To give an example, ML 

algorithms may acquire the baselines of user and device behaviours, thus being able to detect anomalies like access at an 

unusual time or a new location without informing the system with hardcoded rules (6). Essentially, AI augments the decision-

making capability of ZT systems, which can create a responsive and intelligent decision engine that automatically answers to 

changes in evolving and developing threats. 

 

The said capabilities are not a luxury of a modern world but an evolutionary basis of the practical implementation of the 

Zero Trust [7]. Years before the recent and current hype surrounding Zero Trust, progressive companies and university 

researchers were already using AI to contextualise identity, mechanise responses, and restrict access controls to achieve more 

precision in moving environments. These integrations formed the foundation for what is now advanced in Zero Trust platforms 

provided by cloud providers and enterprise vendors. The remaining sections are as follows: Section 2 with an outline of the 

background of Zero Trust principles. Section 3 discusses the idea of how ZT was treated by early businesses until it became 
popular. Section 4 talks about the enabling technologies, especially edge computing and microservices. Early AI-based 

implementations are provided in section 5. Section 6 presents problems related to the use of AI on ZT. Section 7 is a 

distillation of lessons learnt, and Section 8 looks to the future directions.  

 

2. Foundational Concepts of Zero Trust 
Zero Trust is another approach and has a transition type of solving security problems by letting go of a perimeter-orientated 

security model and replacing it with an identity-based secure method. Zero Trust forces authentication and continuous 

validation of access points instead of preconceiving that something within the network is trustworthy [8]. This part investigates 

the history of Zero Trust in addition to critical frameworks, which supremacized its ideas, and how the presuppositions of it  

changed and developed in the manner of access control using AI. 

 

2.1. Core Philosophy: “Never Trust, Always Verify” 

Zero Trust is governed by a central philosophy: assume breach, verify continuously. It abandons the outdated assumption 

that anything inside the network perimeter is inherently safe. 

 

2.1.1. Key Principles of Zero Trust 

The foundational tenets of ZT include: 

 Continuous verification: All identities and devices must be authenticated and authorized in real time. 

 Least privilege access: Users are granted only the minimum level of access necessary for their role. 

 Microsegmentation: Network resources are divided into smaller zones, reducing lateral movement. 

 Assume breach: systems must be designed with the expectation that breaches are inevitable. 

 

These principles align with the Zero Trust Maturity Model proposed by the U.S. National Institute of Standards and 

Technology (NIST) in its 800-207 publication, which established ZT as a formal architectural paradigm [9]. 

 

2.2. Evolution and Institutionalization of Zero Trust 

The conceptual roots of ZT date back to the early 2000s, but its formal introduction reshaped modern cybersecurity policy 

[10]. 

 
2.2.1. Forrester's Role 

Analyst John Kindervag at Forrester Research coined the term Zero Trust in response to evolving security threats and the 

failure of traditional perimeter models to adapt to cloud, BYOD, and mobile computing environments [11]. 

 

2.2.2. NIST SP 800-207 

Later, NIST Special Publication 800-207 provided a standardised framework for Zero Trust architecture. This document 

emphasised: 

 Policy enforcement based on identity, context, and device posture 

 The need for dynamic trust evaluation 

 Integration with existing enterprise systems (9) 

 
This convergence of public and private efforts signalled a broader institutional shift toward Zero Trust adoption. 
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2.3. Building Blocks of Zero Trust Architecture 

Zero Trust is not a single product but a combination of strategies, tools, and enforcement mechanisms. 

 

2.3.1. Access Control Mechanisms 

Zero Trust depends on granular access control strategies. These include: 

 Role-Based Access Control (RBAC) 

 Attribute-Based Access Control (ABAC) 

 Risk-Adaptive Access Control (RAAC) 

 

Each model adds a new layer of contextual awareness, improving decision-making regarding access permissions [12]. 

 

2.3.2. Network Segmentation 

ZT encourages the use of microperimeters, restricting access even within trusted zones. Microsegmentation is used to 

isolate workloads and devices, reducing the risk of lateral threat propagation. This ensures that if an attacker gains entry to one 

zone, the damage remains contained [13]. 

 

2.4. Bridging the Perimeter and Identity Models 

While perimeter-based security relies on firewalls and trusted zones, Zero Trust is identity-driven. It verifies each user, 

device, and workload before granting access [14]. 

 

2.4.1. Traditional vs. Zero Trust 

The table below illustrates key differences: 

Table 1: Comparison of Traditional Perimeter vs Zero Trust Models 

Feature Traditional Security Zero Trust Architecture 

Trust Model Trust inside perimeter Trust nothing, verify all 

Identity-Based Access Limited Central to access decisions 

Network Segmentation Minimal Microsegmentation 

Authentication One-time login Continuous verification 

Threat Containment Limited Built-in by design 

Policy Enforcement Static Dynamic and adaptive 

 

2.4.2. Transition Challenges 

Organisations shifting to ZT face challenges including: 

 Legacy system integration 

 User experience trade-offs 

 Cultural resistance to identity-first security models 

 

However, as more people work remotely, hybrid clouds are used, and access via mobile, an identity-based trust is an 

unavoidable move [15].  

 

Zero Trust has a solid philosophy and architecture. ZT presents a flexible solution against modern security threats by 

removing trust-based behaviours and replacing them with persistent verification and changing the enforcement of static 

policies to flexible and identity-sensitive policy enforcement systems. The fact that it has expanded over the course of multiple 

years to be used as a federal standard indicates a sense of urgency in which enterprises and governments are taking on trustless 

frameworks, especially as AI allows further considerations to be taken when making access control decisions that move 

beyond the review of a simple user identity. 

 

3. Pre-Hype Zero Trust Enterprise Systems 
Some enterprises started exploring the basic tenets of the Zero Trust Architecture (ZTA) several years before the 

terminology acquired the status of a buzzword in the cybersecurity discourse after 2018. Much of this work tended to be split 

up and situation-dependent but provided an important foundation for the more standardised work that became NIST 800-207. 

Pre-hype Zero Trust in enterprise settings entailed their implementation of identity-based controls, federated identity, and 

adaptive access rule enforcement of a kind without always appending the phrase Zero Trust to the effort. We examine such 
early implementations, consider identity governance and behavioural modelling, and the ham-fisted application of AIs to assist 

in access control. 

 

3.1. The Prevailing Early Use of Enterprises 

Early perimeter-based protections have historically been used by the enterprises, yet as of the beginning of the 2010s, there 

was a transition due to the movement to the cloud, remote work, and changing threat environments. 
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3.1.1. Transition from Castle-and-Moat to Identity-Based Models 

Legacy models such as the castle-and-moat technique started to crack as the organisations understood that internal threats 

and credential disclosures could outflank the external security perimeter. The reduction of trust in internal networks by using 

user identity as the first principal source of trust began to emerge within enterprises. Federated identity systems came along 

with such protocols as SAML and OAuth to enable secure authentication of distributed systems [16]. 

 

3.1.2. Multifactor Authentication (MFA) Distribution 

Deployment of MFA was inevitable as it became a management process in need of deployment across industries. 

Enterprises imposed stricter controls over access by using the combination of something the user knows (password), has 

(token) or is (biometrics). Not labelled as Zero Trust, these implementations were quite close to the concept of never trusting 

anything unless it is verified[17]. 

 

3.2. Lifecycle Management of Identities 

Identity validation was a very important aspect; however, identity-provisioned governance to govern access and ensure 

continuous review was another area of concern, as was emphasised by early adopters. 

 

3.2.1. First Generation IAM Governance Models 
RBAC became one of the most fundamental propositions of identity governance, where all rights were strictly allocated by 

roles but not according to expediency. Higher organisations tried the attribute-based access control (ABAC) to add contextual 

warping of place, type of device, and time of access. 

 

Key components in early IAM governance included: 

 Automated provisioning/deprovisioning of user accounts. 

 Periodic access reviews to detect privilege creep. 

 Centralised access logs to support audits and compliance. 

 

3.2.2. Integration with HR and Directory Systems 

Enterprises started integrating IAM systems thoroughly with HR databases and directory services, such as Active 
Directory, to permit access rights to vary dynamically based on changes in employee lifecycle. 

 

3.3. Behavioral modeling and Threat Context 

Security teams identified that fixed policies could not be used in the dynamic threat environment and insider threats. 

 

3.3.1. Baselines and Detection of Anomalous Behaviour 

Enterprises have been using crude behavioural profiling solutions long before the mainstream version of User and Entity 

Behaviour Analytics (UEBA). These systems monitored the login time, usage of devices, and the accessing patterns to come 

up with baseline behaviours. Any anomaly, including logging on to an unusual location, would instigate warnings or temporary 

blockage of access [18]. 

 
3.3.2. Threat Intelligence to make Access Decisions 

There was also experimentation in the organisational setting to incorporate threat intelligence feeds to modify access 

control. As an example, the admission may be rejected even with valid credentials in case one of the device IPs was blacklisted 

(or blacklisted anywhere). 

 

3.4. Early AI in Access Management  

However, the use of artificial intelligence (AI) tools to enhance decision-making in access governance and risk detection 

has been piloted by a number of enterprises even though this is still early. 

 

3.4.1. Learning-Based Access Control Rule-Based 

The earlier systems applied fixed rules, such as denying access in the case there is a login outside business hours. With the 

flow of time, AI-enhanced platforms started to employ supervised learning to detect small patterns of either abuse of privilege 
or dangerous behaviour. These tools have changed to what they do today, which is predicting risks. 

 

3.4.2. AI Use Cases in Zero Trust Components 

Some notable early applications of AI in Zero Trust included: 

 Dynamic policy adjustments based on risk scores. 

 Predictive alerts from behavioural modelling engines. 

 Context-aware MFA triggers to selectively enforce strong authentication based on user or device behaviour. 
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Such attempts, despite their modest nature, confirmed the possibilities of AI technology in minimising false positives as 

well as scaling control access [19]. 

 

The pre-hype implementations of the Zero Trust have impacted the security architectures in modern days significantly. 

Through the adoption of identity federation, governance structures, behavioural analytics, and early AI, enterprises primed 
themselves to be able to implement Zero Trust deployments more formally than post-NIST 800-207 publication. These initial 

approaches proved that the security cannot be ensured once as a perimeter protection but is a very continuously evolving 

process depending on the situation, which still to date is the guiding principle in the security of enterprises. 

 

4. Microservices and Edge AI as Enabling Technology 
Zero Trust approaches are built not only on policies and concepts but also on a base of enablers. Architectures need to 

change as enterprise systems become more distributed and, in many cases, real-time so that verification, access control and 
threat detection can take place at the edge. Edge AI and secure microservice architectures are two of the most revolutionary 

pillars to help this evolution. 

 

4.1. Edge-based federated AI Access Control 

In legacy environments, the verification of identities and so-called enforcement of the access are usually performed on 

centrally deployed systems. But, as edge computing increases, most important decisions have now to be made at the nearest 

data source at edge nodes. Federated AI makes it possible to train intelligent models locally (it is not necessary to transmit raw 

data over the network), and it maintains the privacy of data to improve real-time decisions. This is especially important to the 

case of Zero Trust, which requires non-stop authentication and authorisation in a local context. The significant latency and 

bandwidth overheads inherent in the process of deploying AI models at the edge may also be minimised by means of efficient 

training data caching algorithms used on deep learning constructs that are tailored to edge computing settings [20]. The 
provided advancements allow edge nodes to engage in interconnected threat detection and data access evaluation while still 

maintaining the necessary speed parameters and data privacy. 

 

4.2. Secure Microservices, Mesh, and Services 

When monolithic applications are being replaced by microservice-based systems, every single service may become a 

potential source of attack. All internal API calls in a zero-trust environment should be authenticated, authorised and encrypted. 

Kubernetes orchestration and service mesh (Istio or Linkerd) to enable protection of service-to-service communication lie at 

the heart of the capability to enable secure operation in the dynamic world of cloud-native infrastructures. The microservice 

communication patterns need to be secure, and, as such, internal traffic is also subject to scrutiny. In such distributed systems, 

particularly those that are hyper-distributed, such as in latency-constrained settings such as in an optical network, 

microservices should be architected to use Zero Trust communication patterns such as mutual TLS, policy-based routing and 

behavioural monitoring during run time[21]. 
 

Key security advantages provided by microservices and service meshes include: 

 Granular Policy Enforcement: Security rules can be applied at the pod or container level. 

 Built-in Identity and Certificate Management:  Service meshes can issue and rotate certificates automatically. 

 Observability and Telemetry 

 

 Enhanced visibility into service-to-service interactions enables rapid threat detection and remediation. 

 

4.3. Decentralized Trust Anchors and Policy Enforcement 

In order to expand the Zero Trust framework into hybrid and multi-cloud, trust anchors will need to be decentralised as 

well. In Zero Trust systems, trust verification and related policies are distributed and enforced at dozens of nodes, each with 
the capability to verify and enforce local policies based on identity, device posture and contextual signals. Such a transition 

allows rapid, location-sensitive decision-making that does not need the time of round trips to a central server. Together with 

edge-based AI inference, local trust anchors can have better scaling and survivability even in branch offices, remote clinics, or 

industrial IoT contexts. 

 

Figure 2 (see below) represents a conceptual architecture in which Zero Trust principles have been incorporated into edge 

nodes supported by AI engines and service meshes. Our architecture proposes to train newer instances of federated models on 

an on-demand basis to derive local behavioural baselines, signed and encrypted payloads to share microservices, and real-time 

decisions by decentralised policy agents to express access. 

 

Edge AI and microservices do not only enable Zero Trust deployment, but they are also its precondition in the current 
digital ecosystem [22]. Through them, there is easy verification, independent neighbourhoods, and safe communication at any 

contact point. As more workloads roll out to more decentralised architectures, these technologies will be needed in order to 

provide necessary security for enforcing Zero Trust policies in a dynamic, efficient, and secure way. 
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Fig 2: Idealized design of zero trust and AI-Enabled Edge Notes 

 

5. AI-Driven Implementations in Early Zero Trust Systems 
Due to the further development of enterprise networks to facilitate work outside the office environment, cloud solutions, 

and the decentralisation of networks, Zero Trust mechanisms started incorporating elements of AI to enhance decision-making 

and limit manual policy control. The initial ways in which AI has been used in Zero Trust frameworks involve making 

authentication and access controls dynamic, contextual, and adaptable to the behaviour of the users [23]. 

 

5.1. Adaptive Trust-Scoring and Behaviour Authentication via AI 

Adaptive trust scoring became the core concept of this transformation, where the AI algorithms would consider a 

combination of multiple factors, including user behaviour, device posture, geolocation, and access times, to analyse and 

provide dynamic trust ratings. These scores were able to replace any static access rules since they kept updating according to 

risk conditions, thus enabling systems to make certain decisions regarding authorisation of access or decline. In other words, a 

trusted user whose beard has been stolen may try to log in to a new device/geographic location at an unusual hour; the trust 

score may go into decline, initiating a step-up process or flat refusal of authentication. Such an adaptive model diverted the 
attention towards the probabilistic models of behaviour rather than binary credentials. 

 

5.2. Behavioral authentication  

Behavioural authentication proved to be an excellent tool to strengthen real-time identity. Instead of using passwords or 

tokens only, systems monitored the typing behaviour, mouse and dynamics, and screen operation behaviour. Machine learning 

models were fed this kind of data to identify an anomaly, impersonations, or bot usage. These techniques of behaviour-based 

controls contributed considerably to Zero Trust with its constant verification during the session, and not only at the point of 

connection. 

 

5.3. Predictive Modeling of Access Patterns 

Besides examining behaviour in real time, AI was also used to develop predictive access behaviour models. Having 
historical access logs, granting of specific roles, and accessing patterns of resources, an early Zero Trust could predict future 

occurrences of certain actions. Any accesses to rarely used servers, unusual file transfers and the like would generate red flags, 

as they would not have been predicted. Such predictive models did not just impair the security position but also assisted the 

organisation to block the insider threats and lateral movement in the networks. This type of modelling would have been 

particularly useful in such fast-paced environments as DevOps teams or financial trading platforms. 

 

5.4. Smart Contracts in Enforcement of Policies 

A new way to use AI in Zero Trust was related to smart contracts that use blockchain to enforce security policies in the 

distributed environment. Such smart contracts had rules of access to organisations embedded in them as self-executing code. 

Combined with AI systems which interpreted the risk context, these contracts functioned as policy oracles conducting the 

predefined actions only in case of the correct current risk profile in comparison to predefined conditions related to security 

conditions. As an illustration, it would be possible to have the behaviour of the user checked by an AI engine that would 
provide a trust verdict to the smart contract, and that would grant or deny access without leveraging centralised servers. This 

paradigm could not only guarantee transparency, but it could also guarantee decentralisation [24]. The pairing of smart 

contracts and AI decision engines enabled organisations to curb response time in the process of access management without 

breaching internal or regulatory compliance levels. Besides, the audit trails created with these contracts could not be altered in 

any way and cannot be tampered with and therefore, can perform forensics analysis in the event of a breach. 
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5.5. Tokenizing of an Event and Adaptation of AI Rules 

One of the enabling factors to zeroing in on trust across all aspects of AI was the tokenisation of security events. Historical 

security logs would also be verbose, fragmented, and challenging to interpret with the AI model. To achieve this 

standardisation and tokenisation of these events and render them to be ingested by AI engines in real time, researchers added 

asynchronous SCIM (System for Cross-domain Identity Management) profiles [25]. These event logs were tokenised to 
include metadata with contexts, presenting the session ID, permission scope, IP address, device status, and user behavioural 

history. The trained AI models based on these tokens could adapt rules, automatically changing the conditions of the access 

control rules in response to the situation. To use an example, in the event such a mass of abnormal log-in attempts had been 

flagged in an area, AI would temporarily raise the authentication requirements or geo-block it. The rule adaptation also enabled 

systems to keep up with the emerging threats, thereby limiting the manual updates that were always required by the security 

team. 

 

6. Challenges in Early AI-ZT Models 
When AI-enabled Zero Trust (ZT) architectures started appearing, they also entailed a new challenge in execution. 

Although they enshrined the promises of granularity and context-sensitive access control, early deployments demonstrated 

several challenges of paramount importance in model performance and transparency, as well as infrastructural limitations [26]. 

 

6.1. Risks in Model Performance and Decision-Making 

The first set of limitations revolved around the trustworthiness and robustness of AI-driven decisions within ZT models. 

Early systems often struggled to strike a balance between precision and flexibility. 

 

6.1.1. Over fitting and Limited Generalization 

Many early AI-ZT models were trained on narrowly scoped datasets collected in controlled enterprise environments. As a 
result, these models frequently overfit to familiar behavioural patterns, failing to generalise to novel access attempts or 

anomalous but legitimate user behaviour. This resulted in either false positives denying legitimate users or false negatives, 

where threat actors bypassed detection due to lack of representative training data. 

 

6.1.2. Decision Latency and Inaccuracy 

AI models, especially those based on complex deep learning architectures, sometimes introduced latency into access 

control workflows. The need for real-time verification clashed with model complexity, leading to slower decisions and, in 

some cases, misclassifications. Early implementations lacked optimised inference pipelines suitable for low-latency edge 

deployment. 

 

6.2. Governance and Policy Maintenance Issues 

Beyond accuracy, ensuring policy consistency and governance within AI-enhanced ZT frameworks proved difficult. These 
systems required constant recalibration to remain aligned with organisational objectives and regulatory compliance. 

 

6.2.1. Policy Drift and Versioning Problems 

AI-based access decisions often evolved based on user and entity behaviour. While this adaptive capability enhanced 

flexibility, it also resulted in policy drift. Without strict versioning or rollback mechanisms, administrators struggled to trace 

why certain decisions were made or to revert to known-good states after a model update. 

 

6.2.2. Lack of Explainability and Auditability 

Another major concern was the opacity of decision-making. Traditional rule-based systems allowed security teams to 

justify actions based on documented rules. However, early AI models lacked explainability, making it difficult to audit or 

justify access denial or approval, especially in regulated sectors such as finance or healthcare. The inability to generate human-
readable justifications hindered trust in these systems (27). 

 

6.3. Data Security and Model Integrity 

One of the foundational elements of AI is access to quality data. However, in Zero Trust settings where sensitive or 

privileged information is constantly evaluated, ensuring data security and integrity becomes paramount. 

 

6.3.1. Training Data Leakage Risks 

Training AI models for ZT involved collecting behavioural telemetry, logs, and system access records, some of which were 

highly sensitive. Improper anonymisation or poor storage practices led to incidents of data leakage, posing significant privacy 

and compliance risks. 
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6.3.2. Poisoning and Tampering in Distributed Training 

When federated or edge-based training was employed, attackers could inject malicious data (poisoning) or compromise 

training endpoints. This introduced corrupted models into production environments, leading to backdoors or manipulated trust 

evaluations that bypassed normal security boundaries. 

 

6.4. Infrastructure and Resource Constraints 

Finally, resource limitations, particularly at the edge or in mobile/IoT environments, imposed hard boundaries on what 

could realistically be deployed. 

 

6.4.1. Inference at the Edge 

Early deployments in smart factories, healthcare edge nodes, or mobile workforces struggled with running computationally 

intensive models locally. Constraints such as battery power, limited CPU/GPU, and thermal throttling prevented real-time AI 

inference, requiring frequent offloading to central cloud systems, undermining ZT's goal of local, decentralised trust 

enforcement [28]. 

 

6.4.2. Scalability of Lightweight AI Models 

While lightweight models (e.g., decision trees or compressed neural nets) were developed, they often underperformed 
compared to full-scale AI counterparts. Balancing scalability, latency, and accuracy remained a persistent struggle through 

early ZT implementations  

Table 2: Common Limitations of AI-Powered Zero Trust Deployments 

Challenge Category Description 

Overfitting Poor generalization due to limited or biased training data 

Policy Drift Models evolve away from organizational security intent 

Lack of Explainability Difficulty in auditing and interpreting AI decisions 

Training Data Leakage Exposure of sensitive telemetry during collection or model tuning 

Infrastructure Limits Edge nodes unable to support real-time inference due to hardware limits 

 

7. Modern Zero Trust Designs 
The continuing Zero Trust (ZT) development demonstrates that the development of a secure and resilient enterprise 

architecture requires more than penetration of the perimeter or a static rule base. The experience with initial experiments 

allowed modern Zero Trust implementations to be much more contextual and integrated. and dynamic over the last decade. 

The lessons still apply to the readiness of ZT systems in the future, which will have to cope with challenges that come with the 

use of hybrid cloud, IoT, and even quantum computing. 

 

7.1. Rigid Policy to Flexible Access 

First, Zero Trust models applied hard-coded and invariable rules to authorise access to a system by verifying identity and 

privileges. Although these sets of rules gave out a level of predictability, they were unable to cope along with the evolving 
nature of the user habits and network attacks. It was understood that static policy could do nothing to prevent credential abuse 

and lateral performance, as well as those dynamic insider attacks. Thus, organisations started to move to adaptive trust scoring, 

whereby risk was constantly assessed with the aim of developing AI models based on which it is possible to change the 

permissions dynamically [29]. This change enabled Zero Trust to no longer be a compliance-based checklist but instead an 

active security platform that understands context. 

 

7.2. The Rise of the Context-Aware ZT Agents 

Among the most effective harbingers was that the Zero Trust decisions need to encompass environmental and contextual 

cues. To handle data on device posture, location, user history, and even feeds on local threat intelligence, context-aware Zero 

Trust agents came into evidence. In such a way, these agents allowed more localised and responsive enforcement of policies, 

eliminating false alarms and catching low-level signs of compromise. These agents have shown that practical ZT is no longer a 
yes/no validation of an event but an ongoing, contextually dependent evaluation that occurs in near real time. 

 

7.3. DevSecOps and SecAI Zero Trust alignment 

Recent security trends lay a heavier focus on DevSecOps and Security AI (SecAI) approaches to implement the concepts of 

trust throughout the entire software development lifecycle. In its earliest Zero Trust designs, the reality became apparent that 

the number of disconnected security points enforcing security could become a bottleneck to agile and cloud-native 

deployments. Experience in this area led to the integration of ZT controls with DevSecOps toolchains, which supports policy-

as-code, pipeline-based security scans, and anomalous behaviours which are auto-detected. Moreover, the combined use of 

SecAI tools and the application of ZT decision engines offered intelligent and autonomously enhancing controls that would 

adjust in accordance with changing workloads and temporary container surroundings. Zero Trust in this respect has become 

distributed in nature, such that it belongs to infrastructure, code, or data. 
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7.4. Future Readiness: Hybrid Cloud, IoT, and Quantum Resilience 

Since the technology stack is expanding to involve edge IoT equipment, multi-cloud workloads, and teams that are 

dispersed across parts of the globe, Zero Trust designs should be adaptable, interoperable, and scalable[30]. The necessities 

educated the practitioners to learn that decentralisation of trust anchors and the federation of identities play an important role in 

circumventing chokepoints and ensuring resilience. Moving forward, it may seem to be one of the most significant lessons; 
quantum-resistant algorithms and identity models will be essential to design Zero Trust systems because quantum computing 

will be the future trend of post-quantum cryptography. Incorporating Zero Trust approaches and quantum-safe standards is 

becoming one of the proactive best practices to secure control and remain compliant in the long-term shift. 

 
Fig 3: Evolution of Zero Trust Architecture: From static perimeter models 

 

Figure 3 illustrates this shift by showing a timeline of Zero Trust evolution from traditional perimeter models to dynamic, 

AI-enhanced, and quantum-aware frameworks   providing a powerful visual of how security expectations have matured over 

the past decade. 

 

These lessons have made Zero Trust a fully-fledged security architecture, not just a marketing buzz term, and built to be 

versatile and adaptable to real-world environments of modern-day digital businesses. Context-aware controls, keeping in line 

with DevSecOps and cryptography-ready organisations can design the Zero Trust systems that would truly be ready to confront 
the dynamic security environment in the upcoming quantum era. 

 

8. Future Outlook and Research Directions 
Zero Trust (ZT) architecture has now become inseparably linked to artificial intelligence (AI), especially its spheres of 

automation, policy creation, and governance across the world. With the extended capabilities of AI, the vision of ZT is 

extending perimeter-less access control into areas of self-adaptive security ecosystems. Some of the most important trends in 
the future of AI-enabled Zero Trust are mentioned in the current passage and include the prominent idea of the usage of 

autonomous agents and legal and ethical concerns. 

 

8.1. Rise of Autonomous Zero Trust Agents 

Autonomous Zero Trust agents driven with large language models (LLM), AI copilots, and reinforcement learning 

frameworks are among the most critical areas, as it will be applied and deployed in the nearest future. Such agents can also 

engage in contextual reasoning, dynamic risk analysis and independent decision-making. 

 

8.1.1. AI Copilots and LLM-Based Trust Brokers 

Embedding LLMs into ZT systems gives AI copilots the opportunity to aid real-time authorisation choices based on user 

behaviour, the condition of the hardware, and the context under which operation policies are made. Such copilots even have 

the ability to execute zero-touch configuration, auto-remediate alerts and describe decisions in natural language; hence, the 
division between technical enforcement and human control. An example could be how AI copilots could dynamically change 

access levels in real time as part of a live security incident based on the behavioural deviation or a threat intelligence feed. 

 

8.1.2. Reinforcement Learning for Policy Refinement 

With reinforcement learning, autonomous agents can dynamically optimize security policies based on the consequences of 

the earlier decisions about enforcement. This forms a cyclical relationship in which the policies are not limited to written 

scripts but are continuously seen to cross over to become dynamic programs internalized into the action of the environment. 

This kind of agent minimizes the time it takes to have human intervention in the case of fast-paced threats and enhances the 

correctness of decisions. 

 

8.2. AI-Governed Policy Lifecycles 
Traditionally, policy lifecycle in Zero Trust is characterised by manual definition, approval, deployment and auditing. 

Nevertheless, today, AI has the capability to control all of these cycles, decreasing the cost of administration as well as 

precision. 
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8.2.1. Dynamic Policy Authoring and Simulation 

It is now possible to gain access to machine learning algorithms that generate new access policies, using the contextual 

data, like log-in time, geolocation of the devices, and last accessed histories. By foreseeing the impact of new policies on the 

work before applying them, AI can overcome eventual gaps or contradictions. This human error mitigation factor in policy 

formulations is proactive and validating. 

 

8.2.2. Lifecycle Automation and Drift Correction 

The AI-based systems are capable of independently detecting policy drift, in which specified access rules get out of sync 

with real-life patterns of action. They can update antiquated or inefficient rules using historical baselines, which keeps the 

various policies up to date in terms of the security specifications and compliance requirements. 

 

8.3. International Enforcement and Standardization 

As multi-cloud environments and distributed workforces are needed to scale up, the pressing concern is the deployment of 

Zero Trust policies across geopolitical and jurisdictional barriers. 

 

8.3.1. Federated ZT Enforcement Models 

The new architectures promote the use of federated models of enforcement so that Zero Trust policies could be enforced in 
multiple domains and followed by local governance policies. These models are based on decentralised identity, cross-domain 

policy translation and metadata tagging in order to allow national infrastructures to interoperate. 

 

8.3.2. Trust Interoperability and Global Security Standards 

International standards should be harmonised before the future of ZT is controlled by AI, particularly when ZT control is 

incorporated in the supply chains, smart grids, and healthcare systems. Organisations like NIST, ENISA, and ISO are working 

to establish agreeable methods, spanning vocabularies of trust anchors and reference architectures to allow the work of people 

across the public and the private sectors to operate congruently. 

 

8.4. Legal Issues of Ethics and Interpretability 

Transparency, accountability and human rights are some of the issues considered when AI is introduced in security 
decision-making. Ethical governance "has to" grow at the same pace as technical capability because AI will impose access and 

identity controls. 

 

8.4.1. Legal Implications of AI-Enforced Access Denials 

Are you to blame when an AI agent fails to offer or rejects permission to key infrastructure inappropriately? This is a 

developing field of apprehension to the regulators. Laws should explain how model developers, data custodians, and 

infrastructure providers can behave when the decision about access impacts the safety of the people or civil liberties. 

 

8.4.2. Explainability and Regulatory Compliance 

Innovations like store and accountal claim the right to explanation and auditability of automated decisions that are 

regulations. As such, explainable AI (XAI) would be crucial in Zero Trust environments that support both legally readable and 

technologically sound decision logs. AI-ZT systems in the future will require providing human-interpretable reasons behind 
every execution action to meet the global requirements of data protection. 

 

8.4.3. Ethical Design Principles for AI-ZT Systems 

It will be necessary to incorporate into the algorithms of AI-ZT fairness, bias mitigation, and inclusiveness. Without a lot 

of caution, AI agents can carry with them discriminative effects, particularly those machines that judge users according to their 

behavioural character or accessibility records. Security vendors can probably expect to incorporate such frameworks as IEEE 

P7003 (Algorithmic Bias Considerations) and the NIST AI Risk Management Framework into the design of AI-ZTs in the 

future. 

 

9. Conclusion 
The Zero Trust development of security models, a shift in the concept of static perimeter protections to dynamic 

technological architectures, is the point of inflection in the cybersecurity strategy. With increased uptake and usage of clouds, 

mobile workforces and IoT, the zero trust concept of never trust, always verify is no longer a choice but a requirement of the 

original zero trust tenet, zero trust. This review has discussed how Early artificial intelligence integrations, in specific, started 

creating transformations to disrupt traditional Zero Trust by making the systems more intelligent and more capable of dynamic 

decision-making situations. Through the use of machine learning, federated learning and intelligent policy orchestration, early 

AI-ZT systems also provided capabilities such as behaviour-based authentication, dynamic access control and anomaly 

detection at a non-human scale. Such developments made the foundation of autonomous trust engines and real-time 
enforcement mechanisms, which outsmarted static rule sets.  
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However, there were also fresh vulnerabilities and architectural challenges that were presented by such innovations. The 

danger of overfitting the models, policy drift and opaque decision-making showed that the absence of accountability in the face 

of intelligence might corrode trust among the interested parties or stakeholders. Explainability, auditability, and regulatory 

compliance were open issues in most of the deployments, especially when AI-generated decisions were to deny access or raise 

suspicion. In addition, there were also threats due to training data integrity, adversarial inputs, and model drift in distributed AI 
systems to trust computation in sensitive contexts. The concept of optimisation and model pruning, in addition to retraining 

with federated learning, became significant due to real-time execution in cases with extremely constrained resources, 

especially on an edge device. 

 

But these inadequacies led to the future design plans. Earlier efforts of AI-ZT installations led to the development of more 

durable and explainable models that have AI controls, human in-the-room management functions, and explanatory features of 

AI models. The congruency of AI-ZT and DevSecOps also helped the security teams to apply the concepts of adaptive trust to 

the CI/CD pipeline so that policy enforcement could adapt to changes in the development lifecycle. Moving forward, zero trust 

is converging with autonomous agents and large language models in addition to quantum-resilient cryptographic standards as 

the next-gen digital trust. The questions about cross-border enforcement, ethical AI limits, and international security norms 

require the cooperation of many stakeholders so that the power of AI could also be useful in good ways. A fully intelligent 

Zero Trust model is an evolutionary journey, back and forth and mutually integrated. Finally, automation of decisions, which 
aims to be the ultimate goal of hybridisation between Zero Trust and AI, should not be seen as some sort of improvement or 

yet another way to make decisions, but rather as a way to make these decisions transparent, equitable, secure, and flexible. The 

comparative equilibrium between autonomy and control that does not compromise the trustworthiness of trust should be 

further perfected in the future research that will be conducted despite the emerging threats/ 
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