
International Journal of Emerging Research in Engineering and Technology 

Pearl Blue Research Group| Volume 6 Issue 3 PP 01-08, 2025 

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V6I3P101      

   
 

Original Article 

 

Hierarchical Federated Learning Framework for Privacy-

Enhanced RAN Optimization in Distributed 5G and Private 

LTE Systems 
 

Pratik Jangale 

Independent Researcher, USA. 

 

Received On: 12/05/2025            Revised On: 02/06/2025            Accepted On: 14/06/2025              Published On: 02/07/2025 

 

Abstract - This paper presents Hierarchical FL-RAN, a 

novel federated learning framework for privacy-preserving 

Radio Access Network (RAN) optimization in distributed 5G 

and private LTE systems. By leveraging a multi-tier 

aggregation approach, local models are trained at edge RAN 

nodes and aggregated progressively through intermediate 

controllers and central servers, reducing communication 

overhead and enhancing scalability. The framework 

integrates domain-specific feature encoding with temporal 

filtering to capture key network KPIs such as interference 

patterns and handover metrics while ensuring data privacy. 

Simulation results demonstrate faster model convergence 

and improved resource efficiency compared to conventional 

federated learning methods. The proposed framework 

enables secure, real-time, and distributed intelligence for 

RAN optimization in heterogeneous, multi-tenant wireless 

networks. 

 

Keywords – Federated Learning, 5G, LTE, Radio Access 
Network (RAN) Optimization, Private LTE, Edge Computing. 

 

1. Introduction 

The deployment of distributed 5G and private LTE 
networks has introduced unprecedented complexity in Radio 
Access Network (RAN) management, requiring adaptive 
optimization techniques capable of handling heterogeneous 
radio environments, dynamic traffic demands, and multi-
tenant architectures. Conventional centralized machine 
learning (ML) methods necessitate the collection of 
extensive, sensitive network and user data at central servers, 
which poses significant challenges related to data privacy, 
regulatory compliance, and communication overhead [1], [2]. 
Federated Learning (FL) offers a decentralized ML paradigm 
wherein local models are trained on data retained at 
distributed nodes, and only model parameters are transmitted 
to a central aggregator for global model updates [3], [4]. This 
distributed training mechanism inherently mitigates privacy 
risks by avoiding raw data exchange and reduces network 
bandwidth consumption, making FL an attractive approach 
for telecom networks with stringent privacy requirements and 
limited backhaul capacity [5]. 
 

Despite its potential, direct application of conventional 
FL frameworks to 5G and private LTE RANs is impeded by 
several challenges. Additionally, multi-tenant environments 
demand privacy enhancements beyond standard FL protocols 
to prevent information leakage [8]. 
 

 
Fig 1: General Federated Learning Architecture [26] 
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In response, this paper introduces Hierarchical FL-RAN 
(HFL-RAN), a federated learning framework specifically 
designed for distributed 5G and private LTE systems. HFL-
RAN leverages a multi-tier aggregation strategy comprising 
edge RAN nodes (e.g., gNodeBs and private LTE 
controllers), intermediate aggregators (e.g., Central Units or 
MEC servers), and a central orchestrator to optimize 
communication efficiency and model convergence [9]. The 
framework also uses features that are tailored to the network 
domain and applies time-based filtering to better understand 
changes in the radio environment, all while keeping the data 
private. [10]. 

 
We validate HFL-RAN through multiple use cases 

including utility-focused private LTE deployments, satellite-
integrated 5G architectures, and ORAN-based smart city 
networks. The proposed framework is expected to offer faster 
model convergence and reduced communication overhead 
compared to traditional flat FL architectures, as suggested by 
recent studies. This work advances the integration of privacy-
preserving distributed learning techniques into the operational 
framework of next-generation wireless networks. 

 

2. Related Work 
Federated Learning (FL) has garnered significant 

attention as a decentralized machine learning approach that 
enables collaborative model training without centralized data 
aggregation. Subsequent research has focused on improving 
communication efficiency, client selection, and robustness in 
heterogeneous environments [4], [10]. In the context of 
wireless networks, FL has been explored for various 
applications including network anomaly detection, resource 
allocation, and load balancing. Yang et al. surveyed privacy-
preserving federated learning mechanisms tailored for 5G and 
beyond, emphasizing the importance of secure model updates 
and mitigating information leakage [5]. Chen et al. proposed 
edge-coordinated FL architectures for 5G networks, 
highlighting improvements in latency and scalability by 
leveraging multi-tier aggregation [9]. This paper addresses 
these gaps by proposing the Hierarchical FL-RAN 
framework, which introduces a multi-tier aggregation 
hierarchy and domain-aware feature encoding tailored for 
distributed 5G and private LTE systems. This approach 
extends current FL methodologies to meet the operational and 
privacy requirements unique to modern wireless networks. 
 

3. Proposed Framework: Hierarchical FL-RAN 

(HFL-RAN) 
This section presents the design and architecture of 

Hierarchical FL-RAN (HFL-RAN), a federated learning 
framework specifically engineered for privacy-preserving 
RAN optimization in distributed 5G and private LTE 
environments. The framework addresses challenges arising 
from heterogeneous network elements, constrained 
communication links, and dynamic radio conditions. 

 
3.1. Architectural Overview 
HFL-RAN adopts a multi-tier aggregation strategy to 
optimize communication efficiency and model convergence 
speed. The architecture comprises the following layers 
(illustrated in Figure 2): 
 

3.1.1. Edge Layer:  
This layer includes Radio Access Network (RAN) nodes such 
as gNodeBs (5G base stations) and private LTE controllers 
deployed at or near the physical sites. Each node 
independently collects and processes real-time, site-specific 
Key Performance Indicators (KPIs) crucial for network 
optimization. These KPIs typically include: 

 Interference metrics: Measurements of radio 
interference levels from neighboring cells, noise, and 
signal-to-interference-plus-noise ratio (SINR). 

 Handover statistics: Data on the number and 
success/failure rates of handovers between cells, 
which are critical for mobility management. 

 Traffic load profiles: Volume and distribution of 
user traffic over time, reflecting user behavior and 
demand patterns. 

 Local Model Training: Each node uses its collected 
KPI data to train a local machine learning model that 
captures unique characteristics of its immediate 
environment. This localized training helps tailor 
optimization strategies (e.g., power control, 
beamforming, scheduling) to specific site conditions, 
reducing reliance on generalized or global models 
that may not perform well on every site. 

 Advantages: Local training ensures privacy and 
scalability, since raw data does not leave the node, 
and models reflect localized network dynamics. 

 
3.1.2. Intermediate Layer:  

Composed of aggregation nodes (e.g., Central Units in 
O-RAN or Multi-access Edge Computing servers) responsible 
for aggregating local model updates from multiple edge nodes 
within their domain. This layer reduces uplink 
communication overhead by consolidating updates before 
forwarding them. 

 This layer includes aggregation points such as 
Central Units (CUs) in the O-RAN architecture or 
Multi-access Edge Computing (MEC) servers 
strategically placed close to the edge nodes 

 These nodes aggregate and consolidate the model 
updates (parameters, gradients, or learned weights) 
received from multiple edge nodes within their 
geographical or operational domain. 

 
By aggregating updates, the intermediate layer 

significantly reduces uplink communication overhead, 
minimizing network bandwidth usage compared to sending 
all raw data or multiple individual model updates directly to 
the central orchestrator. Aggregation methods often use 
algorithms like federated averaging (FedAvg) or weighted 
averaging that combine updates while preserving the diversity 
and relevance of site-specific insights. 

 Benefits: This hierarchical aggregation optimizes 
communication efficiency and improves model 
convergence by balancing local model specificity 
with broader network-level patterns. 

 
3.1.3. Central Orchestrator Layer:  

A cloud or regional data center entity that aggregates 
intermediate models to generate a global optimized model. 
This model is redistributed down the hierarchy to all 
participating nodes. 
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 This layer typically resides in a centralized cloud 
environment or regional data centers with high 
computational resources and storage capacity. 

 It receives aggregated model updates from multiple 
intermediate nodes and further consolidates these 
into a global model that encapsulates the overall 
network behavior. 

 The global model is optimized to generalize across 
diverse sites, incorporating insights from all 
participating nodes. 

 After optimization, this global model is redistributed 
downward through the hierarchy first to intermediate 
nodes and then to edge nodesto update local models. 

 Functions: Besides model aggregation, the 
orchestrator manages training schedules, coordinates 
communication protocols, handles security and 
privacy policies, and may also integrate external data 
sources for improved accuracy. 

 Benefits: Central orchestration enables network-
wide coordination and optimization, facilitating 
consistent quality of service and enabling adaptive 
network management at scale. 

 
This hierarchical approach contrasts with traditional flat 

FL architectures where all clients communicate directly with 
a central server, resulting in improved scalability and 
resilience to network variations. 

 

 
Fig 2: Hierarchical FL-RAN architecture for distributed 

5G and private LTE environments 
  
3.2 Learning Network-Specific Features with Time-Based 
Filtering 
To effectively capture the temporal and spatial dynamics of 
RAN environments, HFL-RAN integrates domain-specific 
feature processing. Each edge node extracts and encodes 
necessary features from local KPIs: 

 Interference and Signal Quality Trends: Time-
series analysis of RSRP, RSRQ, and SINR values. 
o Low RSRP (e.g., < -110 dBm) indicates 

coverage issues, prompting federated updates to 
optimize transmission power and antenna tilts. 

o Decreasing RSRQ with stable RSRP may 
indicate increased intra-cell interference or 
resource contention. 

o SINR is crucial for link adaptation. High SINR 
enables higher MCS levels. Federated utility: 
Clients compute SINR histograms locally and 
push feature vectors instead of raw values to 
protect UE-level privacy. 

 Handover Performance Metrics: Frequency and 
failure rates of intra- and inter-cell handovers. 
Frequent handovers can indicate ping-pong behavior 
or suboptimal cell borders. Handover Failures - 
Unavailability of target cell, poor RSRQ at target, 
delayed RRC reconfiguration. Time from A3 event 
triggering to successful HO completion. Long TTHs 
increase RLF probability. 

 Federated insight: Edge nodes can compute failure 
distributions per eNB/gNB sector and share model 
gradients to retrain ML-based handover threshold 
tuning. 

 Traffic Load Dynamics: UE density fluctuations - 
Count of active UEs per sector over time. Strongly 
correlates with scheduling latency and QoS drops 

 Edge aggregation: Each base station node 
aggregates UE count trends and encodes fluctuations 
via Fourier transform. Throughput measurements 
over sliding windows. Look for asymmetric load 
across adjacent cells suggesting coverage gaps or 
user mobility asymmetry. 

 Federated advantage: Each site encodes 
throughput variance metrics (e.g., standard deviation 
of DL over 30 min) into the model while preserving 
raw user data. These features undergo time-basis 
filtering to weigh recent data more heavily, enabling 
the model to adapt swiftly to environmental changes.  

 
3.3. Privacy Enhancements 
HFL-RAN enforces privacy through: 

 Local data retention: In Federated Learning (FL), 
training is performed locally on edge or user 
equipment (UE) devices, such as distributed 
gNodeBs or private LTE base stations. This ensures 
that user mobility patterns, QoE metrics, and radio 
KPIs, never leave the originating node. This 
decentralized data retention inherently reduces the 
risk of privacy breaches. [11] 

 Differential privacy mechanisms: To prevent 
unintended leakage through model gradients, the 
system incorporates Differential Privacy by adding 
calibrated noise to local model updates before 
transmission. This is particularly vital in private LTE 
environments supporting enterprise applications, 
where data sensitivity is high [12].  

 Secure aggregation protocols: Cryptographic 
techniques ensuring model updates cannot be 
inspected individually by aggregators [12]. Model 
updates are encrypted using secure multiparty 
computation (SMPC)-based aggregation protocols 
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before transmission to the global server. These 
cryptographic methods (e.g., additively 
homomorphic encryption or secret sharing) allow 
the server to compute a global model without 
decrypting individual updates. This prevents 
adversarial aggregators from inferring information 
from single client updates or colluding with 
malicious participants [14][15]. 

 Adversarial Resilience via Byzantine-Robust FL: 
The framework integrates robust aggregation 
algorithms (e.g., Krum, Trimmed Mean, or Bulyan) 
to defend against poisoned updates from 
compromised edge nodes. These algorithms are 
resilient to data poisoning and adversarial drift, 
making the federated RAN optimization more secure 
against cyber-attacks [16]. 

 
These measures comply with regulatory requirements 

and protect multi-tenant network data from inadvertent 
exposure. 
 
3.4. Communication Efficiency and Scalability 
The hierarchical model aggregation minimizes redundant 
transmissions, reduces bandwidth consumption, and 
accommodates nodes with variable computational 
capabilities. This design supports: 

 Asynchronous updates: Allowing nodes to 

contribute model updates at different intervals. In 

asynchronous federated learning (Async-FL), edge 

nodes such as gNBs or small cells transmit model 

updates independently, reducing delays caused by 

slower nodes. [1], [2], [3]. 

 Fault tolerance: The framework can operate 

effectively despite node or link failures. Hierarchical 

FL uses multi-tier aggregation (e.g., local at gNBs, 
global at core) to reduce communication overhead 

and enhance scalability in large RAN deployments 

[4], [5]. It enables efficient coordination across 

distributed 5G and private LTE layers. 

 

4. Evaluation and Design Justification 
4.1. Motivation for Hierarchical FL in RAN Environments 

Traditional flat FL architectures are limited by scalability 
and communication inefficiencies in distributed RAN 
environments. To address these limitations, our framework 
adopts a hierarchical FL structure. Previously published 
empirical findings that benchmark hierarchical FL 
performance in wireless and edge settings similar to our use 
case are mentioned below. 
 
4.2. Supporting Evidence from Prior Simulations 

A range of simulation studies have evaluated hierarchical 
FL across wireless edge computing and RAN-like setups. 
These results consistently demonstrate that hierarchical 
approaches reduce communication overhead and convergence 
time while maintaining model accuracy. Table 1 summarizes 
findings from relevant literature. 

 
Table 1: Flat vs. Hierarchical FL in Wireless/RAN Environments [27]-[32] 

Study FL Architecture Dataset / Scenario Key Findings 

Salehi et al. 

(2019) 

Flat vs. HFL (macro + SBS) CIFAR-10 on cellular 

architecture 

HFL achieved ~40% faster convergence, lower 

bandwidth usage 

Aygün et al. 

(2021) 

OTA FL vs. HOTAFL Simulated wireless 

channels 

HOTAFL improved robustness to noise, ~30% 

faster training 

Fang et al. 

(2023) 

Flat vs. HIST Clustered devices w/ 

AirComp 

50–60% communication reduction, same 

accuracy 

Shi et al. 

(2023) 

Flat vs. hierarchical in 

Cloud-RAN 

Compressed fronthaul 

training 

Lower latency, better resource optimization 

Flight (2024) Multi-depth HFL over tree 

topologies 

ResNet-152 on simulated 

network 

Up to 60% less data transferred, near-equal 

accuracy 

 
4.3. Implications for Our Framework 

These findings strongly align with our proposed 
framework, which utilizes hierarchical client aggregation via 
intermediate RAN nodes. Our design emphasizes scalability, 
communication efficiency, and resiliencetraits validated 
across simulation-based evaluations. Thus, the design 
decisions made in this work are not only theoretically sound 
but also empirically justified through analogous architectures 
tested in wireless settings. 

 

5. Use Cases and Applications 
The following outlines several key applications where FL’s 
decentralized learning paradigm is crucial: 

 
Fig 3: Various use cases for Federated Learning in RAN 



Pratik Jangale / IJERET, 6(3), 01-08, 2025 

5 

5.1. Intelligent RAN Optimization 
Radio Access Networks (RANs) require continual fine-

tuning of parameters like handover thresholds, scheduling 
policies, and transmission power to adapt to dynamic 
environments. Traditional centralized optimization strategies 
suffer from scalability issues and high latency.  FL allows 
base stations to collaboratively learn optimal policies without 
sharing raw traffic or user data, preserving user privacy [18]. 
In a hierarchical FL framework, regional RAN controllers can 
coordinate learning within their clusters and forward 
aggregated updates to the central controller for global insight, 
enhancing adaptability and convergence. 
 
5.2. Traffic Prediction and Network Slicing  

FL can enable individual base stations or network 
segments to locally learn traffic patterns based on user 
behavior while contributing to a shared prediction model [19]. 
By leveraging hierarchical aggregation, the proposed 
framework allows for low-latency adjustments at the edge 
(e.g., per slice or per gNB) while ensuring consistency across 
the network core. This structure supports faster adaptation 
and better generalization to regional traffic anomalies. 

 
5.3. Privacy-Preserving Context-Aware Services 

Context-aware services such as location-based content 
delivery, predictive caching, and AR/VR streaming rely on 
sensitive user context data, making centralized ML 
approaches less viable due to privacy risks. FL enables edge 
devices or UE clusters to train models locally on user context 
while preserving confidentiality [7], [19]. Through the 
hierarchical framework, edge clusters (e.g., gNB-local UE 
groups) aggregate local updates, which are then coordinated 
at the regional level. This approach balances personalization 
with scalability. 
 
5.4. Client Heterogeneity Handling and Mobility 
Management 

Wireless networks encompass highly heterogeneous 
clientsranging from smartphones and IoT devices to 
autonomous vehicles each with different computational, 
energy, and bandwidth constraints.  In FL, uniform treatment 
of such devices can lead to stragglers or inefficient updates. 
The hierarchical design helps cluster clients with similar 
capabilities or mobility profiles, enabling more efficient intra-
cluster training and robust handling of client dropouts or 
mobility-induced disconnections [21]. 

 
5.5. Distributed Anomaly Detection and Intrusion Response 

Security remains a critical concern in distributed wireless 
networks. Anomaly detection mechanisms traditionally 
require global log aggregation, posing both latency and 
privacy challenges.  With FL, intrusion detection models 
can be trained locally at edge points (e.g., gNBs, edge 
servers) using system logs and traffic metadata, enabling 
proactive defense without exposing sensitive information 
[21]. The hierarchical framework further supports multi-tiered 
response strategies, where regional controllers can correlate 
patterns across multiple sites before alerting a central security 
orchestrator. 
 
5.6. Federated Learning for UAV and Drone Swarms 

Unmanned aerial vehicle (UAV) networks and drone 
swarms used for surveillance, emergency response, and rural 
connectivity benefit from FL, as communication constraints 
and mission-critical sensitivity limit the use of centralized 
data sharing.  Each UAV can train on localized sensory data 
(e.g., imagery, thermal mapping) and participate in 
hierarchical FL updates via regional control hubs [9]. 
Federated learning offers a privacy-preserving, scalable 
solution for RAN optimization in distributed 5G and private 
LTE networks. The proposed hierarchical framework 
enhances coordination, minimizes data exposure, and enables 
adaptive, intelligent decision-making across multi-tier 
architectures. 
 

Table 2: Use Case Comparison for Hierarchical Federated Learning in RANs 

Use Case Objective HFL Edge Key Benefit 

RAN Optimization Dynamic tuning (handover, 

etc.) 

Local aggregation speeds 

learning 

Adaptive, low-latency 

control 

Traffic Forecasting & 

Slicing 

Predict load, slice 

proactively 

Local real-time 

responsiveness 

Smarter resource use 

Privacy-Aware Services Personalized, private 

services 

No raw data leaves device GDPR-compliant 

personalization 

Device Diversity & 

Mobility 

Train across varied devices Clustered, adaptive training Robust to 

mobility/failures 

Anomaly Detection & 

Response 

Detect/respond to threats fast Multi-tier improves accuracy Stronger real-time defense 

UAV/Drone Swarm 

Learning 

Learn from local sensors Works with low bandwidth Efficient mission 

coordination 

 

6. Challenges and Open Issues 
Despite the promising benefits of the Hierarchical FL-

RAN framework, several challenges remain to be addressed 
for practical deployment in distributed 5G and private LTE 
networks. 

 

6.1. Device and Network Heterogeneity 
The diverse capabilities and communication conditions 

of edge RAN nodes and intermediate aggregators can hinder 

synchronous model training and aggregation. Handling non-
IID and unbalanced local data distributions requires robust 
aggregation techniques and adaptive client selection strategies 
to maintain model accuracy and convergence speed [10], 
[20]. 

 

6.2. Communication Overhead and Latency: 
Although hierarchical aggregation reduces uplink traffic 

compared to flat FL, the frequent transmission of model 
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updates in large-scale networks can still impose significant 
bandwidth consumption and latency. Asynchronous federated 
learning protocols may alleviate delays caused by stragglers 
but introduce challenges in managing stale updates and 
ensuring global model consistency [2], [3]. 

 

6.3. Privacy and Security Vulnerabilities: 
While differential privacy and secure aggregation 

protocols enhance data confidentiality, advanced attacks such 
as model inversion, membership inference, and poisoning 
attacks remain concerns in multi-tenant RAN scenarios. 
Policy-driven update filtering are crucial but computationally 
intensive, posing a trade-off between security and efficiency 
[5], [16], [17]. 

 

6.4. Resource Constraints at the Edge: 
Edge nodes often operate under limited processing power 

and energy budgets, restricting the complexity and frequency 
of local training iterations. Balancing model complexity with 
the requirement for real-time inference and updates 
necessitates lightweight models and efficient training 
algorithms [7], [10]. 

 

6.5. Dynamic and Non-Stationary Network Environments: 
Rapid fluctuations in network KPIs due to user mobility, 

interference, and traffic load necessitate continuous 
adaptation of local models. Temporal filtering techniques 
must be carefully tuned to capture relevant trends without 
incurring excessive retraining costs or model drift [6], [19]. 

 

6.6. Regulatory and Operational Integration: 
Compliance with diverse regional data privacy laws (e.g., 

GDPR) complicates federated data governance in multi-
tenant systems. Moreover, integrating FL frameworks 
seamlessly with existing RAN management platforms and 
orchestration systems remains an open engineering challenge 
[1], [8]. 

 

6.7. Standardization and Interoperability: 
Federated learning for telecom networks is still emerging 

in standards such as O-RAN. Vendor-specific 
implementations and heterogeneous software stacks can 
impede wide adoption, underscoring the need for 
interoperable and extensible FL protocols tailored to RAN 
optimization [9], [21]. Addressing these challenges is 
essential to fully realize the potential of privacy-enhanced, 
distributed learning for next-generation wireless networks. 

 

7. Future Work  
Several promising research directions can be pursued to 

enhance privacy-preserving distributed learning for next-
generation wireless networks. 

 

7.1. Advanced Privacy-Preserving Techniques: 
Integrate stronger privacy guarantees using: 

 Federated differential privacy with adaptive noise 
calibration 

 Secure multiparty computation schemes optimized 
for heterogeneous RAN 

 Leverage advanced privacy accounting methods like 
Rényi Differential Privacy for tighter privacy-utility 
trade-offs [13] 

 

7.2. Adaptive and Robust Aggregation Algorithms: 
Develop dynamic client selection and aggregation methods 
adapting to: 

 Heterogeneous edge node capabilities 

 Varying network conditions 
 
Employ Byzantine-resilient algorithms with reduced 

computational overhead to secure large-scale deployments 
from adversarial attacks [16], [23] 

 

7.3. Lightweight and Efficient Model Architectures: 

 Design compact, energy-efficient models tailored for 
resource-constrained edge devices 

 Use techniques such as model pruning, quantization, 
and knowledge distillation to balance inference 
accuracy and operational constraints [7], [10] 

 

7.4. Continuous Learning for Dynamic Environments: 
Incorporate online learning and continual adaptation 
strategies for: 

 Non-stationary network conditions 

 User mobility and traffic variations 
 
Investigate hybrid temporal filtering and attention 

mechanisms to capture evolving KPI patterns while 
minimizing retraining costs [19] 

 

7.5. Seamless Integration with Telecom Standards and 

Orchestration Platforms: 

 Standardize federated learning protocols within O-
RAN Alliance and related bodies to ensure 
interoperability 

 Integrate with existing RAN management and 
orchestration platforms for scalable, practical 
deployment [9], [21] 

 
7.6. Real-World Pilot Deployments and Benchmarking: 
Conduct large-scale trials in operational 5G and private LTE 
networks to assess: 

 System performance 

 Communication overhead 

 Privacy guarantees 
 
Develop standardized benchmarks and open datasets to 
accelerate research and adoption [22], [25] 
 

8. Conclusion 
This paper introduced a Hierarchical Federated Learning 

(FL) framework tailored for Radio Access Network (RAN) 
environments, enabling privacy-preserving and scalable 
optimization across distributed wireless infrastructure. By 
structuring learning across edge and intermediate layers, the 
proposed architecture effectively addresses data 
heterogeneity, limited uplink bandwidth, and regulatory 
constraints. Through detailed use cases including handover 
optimization, interference management, and traffic-aware 
scheduling we demonstrated the framework’s potential to 
drive intelligent, site-specific decisions while preserving user 
and operator privacy. As wireless networks grow in 
complexity with the advent of 5G-Advanced and 6G, such 
federated approaches are poised to become essential tools in 
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RAN intelligence. Future work will focus on advancing 
privacy techniques, adaptive aggregation strategies, and real-
world deployments to bridge the gap between theoretical 
approach and practical scalability. 
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