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Abstract - This paper presents Hierarchical FL-RAN, a
novel federated learning framework for privacy-preserving
Radio Access Network (RAN) optimization in distributed 5G
and private LTE systems. By leveraging a multi-tier
aggregation approach, local models are trained at edge RAN
nodes and aggregated progressively through intermediate
controllers and central servers, reducing communication
overhead and enhancing scalability. The framework
integrates domain-specific feature encoding with temporal
filtering to capture key network KPIs such as interference
patterns and handover metrics while ensuring data privacy.
Simulation results demonstrate faster model convergence
and improved resource efficiency compared to conventional
federated learning methods. The proposed framework
enables secure, real-time, and distributed intelligence for
RAN optimization in heterogeneous, multi-tenant wireless
networks.
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1. Introduction
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The deployment of distributed 5G and private LTE
networks has introduced unprecedented complexity in Radio
Access Network (RAN) management, requiring adaptive
optimization techniques capable of handling heterogeneous
radio environments, dynamic traffic demands, and multi-
tenant architectures. Conventional centralized machine
learning (ML) methods necessitate the collection of
extensive, sensitive network and user data at central servers,
which poses significant challenges related to data privacy,
regulatory compliance, and communication overhead [1], [2].
Federated Learning (FL) offers a decentralized ML paradigm
wherein local models are trained on data retained at
distributed nodes, and only model parameters are transmitted
to a central aggregator for global model updates [3], [4]. This
distributed training mechanism inherently mitigates privacy
risks by avoiding raw data exchange and reduces network
bandwidth consumption, making FL an attractive approach
for telecom networks with stringent privacy requirements and
limited backhaul capacity [5].

Despite its potential, direct application of conventional
FL frameworks to 5G and private LTE RANSs is impeded by
several challenges. Additionally, multi-tenant environments
demand privacy enhancements beyond standard FL protocols
to prevent information leakage [8].
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Fig 1: General Federated Learning Architecture [26]



In response, this paper introduces Hierarchical FL-RAN
(HFL-RAN), a federated learning framework specifically
designed for distributed 5G and private LTE systems. HFL-
RAN leverages a multi-tier aggregation strategy comprising
edge RAN nodes (e.g., gNodeBs and private LTE
controllers), intermediate aggregators (e.g., Central Units or
MEC servers), and a central orchestrator to optimize
communication efficiency and model convergence [9]. The
framework also uses features that are tailored to the network
domain and applies time-based filtering to better understand
changes in the radio environment, all while keeping the data
private. [10].

We validate HFL-RAN through multiple use cases
including utility-focused private LTE deployments, satellite-
integrated 5G architectures, and ORAN-based smart city
networks. The proposed framework is expected to offer faster
model convergence and reduced communication overhead
compared to traditional flat FL architectures, as suggested by
recent studies. This work advances the integration of privacy-
preserving distributed learning techniques into the operational
framework of next-generation wireless networks.

2. Related Work

Federated Learning (FL) has garnered significant
attention as a decentralized machine learning approach that
enables collaborative model training without centralized data
aggregation. Subsequent research has focused on improving
communication efficiency, client selection, and robustness in
heterogeneous environments [4], [10]. In the context of
wireless networks, FL has been explored for various
applications including network anomaly detection, resource
allocation, and load balancing. Yang et al. surveyed privacy-
preserving federated learning mechanisms tailored for 5G and
beyond, emphasizing the importance of secure model updates
and mitigating information leakage [5]. Chen et al. proposed
edge-coordinated FL architectures for 5G networks,
highlighting improvements in latency and scalability by
leveraging multi-tier aggregation [9]. This paper addresses
these gaps by proposing the Hierarchical FL-RAN
framework, which introduces a multi-tier aggregation
hierarchy and domain-aware feature encoding tailored for
distributed 5G and private LTE systems. This approach
extends current FL methodologies to meet the operational and
privacy requirements unique to modern wireless networks.

3. Proposed Framework: Hierarchical FL-RAN

(HFL-RAN)

This section presents the design and architecture of
Hierarchical FL-RAN (HFL-RAN), a federated learning
framework specifically engineered for privacy-preserving
RAN optimization in distributed 5G and private LTE
environments. The framework addresses challenges arising
from heterogeneous network elements, constrained
communication links, and dynamic radio conditions.

3.1. Architectural Overview

HFL-RAN adopts a multi-tier aggregation strategy to
optimize communication efficiency and model convergence
speed. The architecture comprises the following layers
(illustrated in Figure 2):

3.1.1. Edge Layer:

This layer includes Radio Access Network (RAN) nodes such
as gNodeBs (5G base stations) and private LTE controllers
deployed at or near the physical sites. Each node
independently collects and processes real-time, site-specific
Key Performance Indicators (KPIs) crucial for network
optimization. These KPIs typically include:

e Interference metrics: Measurements of radio
interference levels from neighboring cells, noise, and
signal-to-interference-plus-noise ratio (SINR).

e Handover statistics: Data on the number and
success/failure rates of handovers between cells,
which are critical for mobility management.

e Traffic load profiles: Volume and distribution of
user traffic over time, reflecting user behavior and
demand patterns.

e Local Model Training: Each node uses its collected
KPI data to train a local machine learning model that
captures unique characteristics of its immediate
environment. This localized training helps tailor
optimization ~ strategies (e.g., power control,
beamforming, scheduling) to specific site conditions,
reducing reliance on generalized or global models
that may not perform well on every site.

e Advantages: Local training ensures privacy and
scalability, since raw data does not leave the node,
and models reflect localized network dynamics.

3.1.2. Intermediate Layer:

Composed of aggregation nodes (e.g., Central Units in
O-RAN or Multi-access Edge Computing servers) responsible
for aggregating local model updates from multiple edge nodes
within  their domain. This layer reduces uplink
communication overhead by consolidating updates before
forwarding them.

e This layer includes aggregation points such as
Central Units (CUs) in the O-RAN architecture or
Multi-access Edge Computing (MEC) servers
strategically placed close to the edge nodes

e These nodes aggregate and consolidate the model
updates (parameters, gradients, or learned weights)
received from multiple edge nodes within their
geographical or operational domain.

By aggregating updates, the intermediate layer
significantly reduces uplink communication overhead,
minimizing network bandwidth usage compared to sending
all raw data or multiple individual model updates directly to
the central orchestrator. Aggregation methods often use
algorithms like federated averaging (FedAvg) or weighted
averaging that combine updates while preserving the diversity
and relevance of site-specific insights.

e Benefits: This hierarchical aggregation optimizes
communication efficiency and improves model
convergence by balancing local model specificity
with broader network-level patterns.

3.1.3. Central Orchestrator Layer:

A cloud or regional data center entity that aggregates
intermediate models to generate a global optimized model.
This model is redistributed down the hierarchy to all
participating nodes.



e This layer typically resides in a centralized cloud
environment or regional data centers with high
computational resources and storage capacity.

e |t receives aggregated model updates from multiple
intermediate nodes and further consolidates these
into a global model that encapsulates the overall
network behavior.

e The global model is optimized to generalize across
diverse sites, incorporating insights from all
participating nodes.

e  After optimization, this global model is redistributed
downward through the hierarchy first to intermediate
nodes and then to edge nodesto update local models.

e Functions: Besides model aggregation, the
orchestrator manages training schedules, coordinates
communication protocols, handles security and
privacy policies, and may also integrate external data
sources for improved accuracy.

e Benefits: Central orchestration enables network-
wide coordination and optimization, facilitating
consistent quality of service and enabling adaptive
network management at scale.

This hierarchical approach contrasts with traditional flat
FL architectures where all clients communicate directly with
a central server, resulting in improved scalability and
resilience to network variations.
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Fig 2: Hierarchical FL-RAN architecture for distributed
5G and private LTE environments

3.2 Learning Network-Specific Features with Time-Based
Filtering

To effectively capture the temporal and spatial dynamics of
RAN environments, HFL-RAN integrates domain-specific
feature processing. Each edge node extracts and encodes
necessary features from local KPlIs:

Interference and Signal Quality Trends: Time-

series analysis of RSRP, RSRQ, and SINR values.

o Low RSRP (e.g., < -110 dBm) indicates
coverage issues, prompting federated updates to
optimize transmission power and antenna tilts.

o Decreasing RSRQ with stable RSRP may
indicate increased intra-cell interference or
resource contention.

o SINR is crucial for link adaptation. High SINR
enables higher MCS levels. Federated utility:
Clients compute SINR histograms locally and
push feature vectors instead of raw values to
protect UE-level privacy.

Handover Performance Metrics: Frequency and
failure rates of intra- and inter-cell handovers.
Frequent handovers can indicate ping-pong behavior
or suboptimal cell borders. Handover Failures -
Unavailability of target cell, poor RSRQ at target,
delayed RRC reconfiguration. Time from A3 event
triggering to successful HO completion. Long TTHs
increase RLF probability.
Federated insight: Edge nodes can compute failure
distributions per eNB/gNB sector and share model
gradients to retrain ML-based handover threshold
tuning.
Traffic Load Dynamics: UE density fluctuations -
Count of active UEs per sector over time. Strongly
correlates with scheduling latency and QoS drops
Edge aggregation: Each base station node
aggregates UE count trends and encodes fluctuations
via Fourier transform. Throughput measurements
over sliding windows. Look for asymmetric load
across adjacent cells suggesting coverage gaps or
user mobility asymmetry.

Federated advantage: Each site encodes

throughput variance metrics (e.g., standard deviation

of DL over 30 min) into the model while preserving
raw user data. These features undergo time-basis
filtering to weigh recent data more heavily, enabling
the model to adapt swiftly to environmental changes.

3.3. Privacy Enhancements
HFL-RAN enforces privacy through:

Local data retention: In Federated Learning (FL),
training is performed locally on edge or user
equipment (UE) devices, such as distributed
gNodeBs or private LTE base stations. This ensures
that user mobility patterns, QoE metrics, and radio
KPIs, never leave the originating node. This
decentralized data retention inherently reduces the
risk of privacy breaches. [11]

Differential privacy mechanisms: To prevent
unintended leakage through model gradients, the
system incorporates Differential Privacy by adding
calibrated noise to local model updates before
transmission. This is particularly vital in private LTE
environments supporting enterprise applications,
where data sensitivity is high [12].

Secure aggregation protocols: Cryptographic
techniques ensuring model updates cannot be
inspected individually by aggregators [12]. Model
updates are encrypted using secure multiparty
computation (SMPC)-based aggregation protocols



before transmission to the global server. These
cryptographic methods (e.9., additively
homomorphic encryption or secret sharing) allow
the server to compute a global model without
decrypting individual updates. This prevents
adversarial aggregators from inferring information
from single client updates or colluding with
malicious participants [14][15].

e Adversarial Resilience via Byzantine-Robust FL:
The framework integrates robust aggregation
algorithms (e.g., Krum, Trimmed Mean, or Bulyan)
to defend against poisoned updates from
compromised edge nodes. These algorithms are
resilient to data poisoning and adversarial drift,
making the federated RAN optimization more secure
against cyber-attacks [16].

These measures comply with regulatory requirements
and protect multi-tenant network data from inadvertent
exposure.

3.4. Communication Efficiency and Scalability
The hierarchical model aggregation minimizes redundant
transmissions, reduces bandwidth  consumption, and
accommodates nodes  with  variable  computational
capabilities. This design supports:
e Asynchronous updates: Allowing nodes to
contribute model updates at different intervals. In
asynchronous federated learning (Async-FL), edge

nodes such as gNBs or small cells transmit model
updates independently, reducing delays caused by
slower nodes. [1], [2], [3].

e Fault tolerance: The framework can operate
effectively despite node or link failures. Hierarchical
FL uses multi-tier aggregation (e.g., local at gNBs,
global at core) to reduce communication overhead
and enhance scalability in large RAN deployments
[4], [5]. It enables efficient coordination across
distributed 5G and private LTE layers.

4. Evaluation and Design Justification
4.1. Motivation for Hierarchical FL in RAN Environments
Traditional flat FL architectures are limited by scalability
and communication inefficiencies in distributed RAN
environments. To address these limitations, our framework
adopts a hierarchical FL structure. Previously published
empirical  findings that benchmark hierarchical FL
performance in wireless and edge settings similar to our use
case are mentioned below.

4.2. Supporting Evidence from Prior Simulations

A range of simulation studies have evaluated hierarchical
FL across wireless edge computing and RAN-like setups.
These results consistently demonstrate that hierarchical
approaches reduce communication overhead and convergence
time while maintaining model accuracy. Table 1 summarizes
findings from relevant literature.

Table 1: Flat vs. Hierarchical FL in WirelesssyRAN Environments [27]-[32]

Study FL Architecture Dataset / Scenario Key Findings
Salehi et al. Flat vs. HFL (macro + SBS) CIFAR-10 on cellular HFL achieved ~40% faster convergence, lower
(2019) architecture bandwidth usage
Aygn et al. OTA FL vs. HOTAFL Simulated wireless HOTAFL improved robustness to noise, ~30%
(2021) channels faster training
Fang et al. Flat vs. HIST Clustered devices w/ 50-60% communication reduction, same
(2023) AirComp accuracy
Shi et al. Flat vs. hierarchical in Compressed fronthaul Lower latency, better resource optimization
(2023) Cloud-RAN training
Flight (2024) Multi-depth HFL over tree ResNet-152 on simulated Up to 60% less data transferred, near-equal
topologies network accuracy
4.3. Implications for Our Framework
These findings strongly align with our proposed e eegichon

framework, which utilizes hierarchical client aggregation via
intermediate RAN nodes. Our design emphasizes scalability,
communication efficiency, and resiliencetraits validated
across simulation-based evaluations. Thus, the design
decisions made in this work are not only theoretically sound
but also empirically justified through analogous architectures
tested in wireless settings.

5. Use Cases and Applications

The following outlines several key applications where FL’s
decentralized learning paradigm is crucial:
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5.1. Intelligent RAN Optimization

Radio Access Networks (RANSs) require continual fine-
tuning of parameters like handover thresholds, scheduling
policies, and transmission power to adapt to dynamic
environments. Traditional centralized optimization strategies
suffer from scalability issues and high latency. FL allows
base stations to collaboratively learn optimal policies without
sharing raw traffic or user data, preserving user privacy [18].
In a hierarchical FL framework, regional RAN controllers can
coordinate learning within their clusters and forward
aggregated updates to the central controller for global insight,
enhancing adaptability and convergence.

5.2. Traffic Prediction and Network Slicing

FL can enable individual base stations or network
segments to locally learn traffic patterns based on user
behavior while contributing to a shared prediction model [19].
By leveraging hierarchical aggregation, the proposed
framework allows for low-latency adjustments at the edge
(e.g., per slice or per gNB) while ensuring consistency across
the network core. This structure supports faster adaptation
and better generalization to regional traffic anomalies.

5.3. Privacy-Preserving Context-Aware Services

Context-aware services such as location-based content
delivery, predictive caching, and AR/VR streaming rely on
sensitive user context data, making centralized ML
approaches less viable due to privacy risks. FL enables edge
devices or UE clusters to train models locally on user context
while preserving confidentiality [7], [19]. Through the
hierarchical framework, edge clusters (e.g., gNB-local UE
groups) aggregate local updates, which are then coordinated
at the regional level. This approach balances personalization
with scalability.

Wireless networks encompass highly heterogeneous
clientsranging from smartphones and loT devices to
autonomous vehicles each with different computational,
energy, and bandwidth constraints. In FL, uniform treatment
of such devices can lead to stragglers or inefficient updates.
The hierarchical design helps cluster clients with similar
capabilities or mobility profiles, enabling more efficient intra-
cluster training and robust handling of client dropouts or
mobility-induced disconnections [21].

5.5. Distributed Anomaly Detection and Intrusion Response

Security remains a critical concern in distributed wireless
networks. Anomaly detection mechanisms traditionally
require global log aggregation, posing both latency and
privacy challenges.  With FL, intrusion detection models
can be trained locally at edge points (e.g., gNBs, edge
servers) using system logs and traffic metadata, enabling
proactive defense without exposing sensitive information
[21]. The hierarchical framework further supports multi-tiered
response strategies, where regional controllers can correlate
patterns across multiple sites before alerting a central security
orchestrator.

5.6. Federated Learning for UAV and Drone Swarms
Unmanned aerial vehicle (UAV) networks and drone
swarms used for surveillance, emergency response, and rural
connectivity benefit from FL, as communication constraints
and mission-critical sensitivity limit the use of centralized
data sharing. Each UAV can train on localized sensory data
(e.g., imagery, thermal mapping) and participate in
hierarchical FL updates via regional control hubs [9].
Federated learning offers a privacy-preserving, scalable
solution for RAN optimization in distributed 5G and private
LTE networks. The proposed hierarchical framework
enhances coordination, minimizes data exposure, and enables

5.4. Client Heterogeneity Handling and Mobility  adaptive, intelligent decision-making across multi-tier
Management architectures.
Table 2: Use Case Comparison for Hierarchical Federated Learning in RANs
Use Case Objective HFL Edge Key Benefit
RAN Optimization Dynamic tuning (handover, Local aggregation speeds Adaptive, low-latency
etc.) learning control
Traffic Forecasting & Predict load, slice Local real-time Smarter resource use
Slicing proactively responsiveness
Privacy-Aware Services Personalized, private No raw data leaves device GDPR-compliant
services personalization

Device Diversity & Train across varied devices

Clustered, adaptive training Robust to

Mobility mobility/failures
Anomaly Detection & Detect/respond to threats fast | Multi-tier improves accuracy | Stronger real-time defense
Response
UAV/Drone Swarm Learn from local sensors Works with low bandwidth Efficient mission
Learning coordination

6. Challenges and Open Issues

Despite the promising benefits of the Hierarchical FL-
RAN framework, several challenges remain to be addressed
for practical deployment in distributed 5G and private LTE
networks.

6.1. Device and Network Heterogeneity
The diverse capabilities and communication conditions
of edge RAN nodes and intermediate aggregators can hinder

synchronous model training and aggregation. Handling non-
IID and unbalanced local data distributions requires robust
aggregation techniques and adaptive client selection strategies
to maintain model accuracy and convergence speed [10],
[20].

6.2. Communication Overhead and Latency:
Although hierarchical aggregation reduces uplink traffic
compared to flat FL, the frequent transmission of model



updates in large-scale networks can still impose significant
bandwidth consumption and latency. Asynchronous federated
learning protocols may alleviate delays caused by stragglers
but introduce challenges in managing stale updates and
ensuring global model consistency [2], [3].

6.3. Privacy and Security Vulnerabilities:

While differential privacy and secure aggregation
protocols enhance data confidentiality, advanced attacks such
as model inversion, membership inference, and poisoning
attacks remain concerns in multi-tenant RAN scenarios.
Policy-driven update filtering are crucial but computationally
intensive, posing a trade-off between security and efficiency
[5], [16], [17].

6.4. Resource Constraints at the Edge:

Edge nodes often operate under limited processing power
and energy budgets, restricting the complexity and frequency
of local training iterations. Balancing model complexity with
the requirement for real-time inference and updates
necessitates lightweight models and efficient training
algorithms [7], [10].

6.5. Dynamic and Non-Stationary Network Environments:
Rapid fluctuations in network KPIs due to user mobility,
interference, and traffic load necessitate continuous
adaptation of local models. Temporal filtering techniques
must be carefully tuned to capture relevant trends without
incurring excessive retraining costs or model drift [6], [19].

6.6. Regulatory and Operational Integration:

Compliance with diverse regional data privacy laws (e.g.,
GDPR) complicates federated data governance in multi-
tenant systems. Moreover, integrating FL frameworks
seamlessly with existing RAN management platforms and
orchestration systems remains an open engineering challenge

[1]. [8].

6.7. Standardization and Interoperability:

Federated learning for telecom networks is still emerging
in standards such as O-RAN. Vendor-specific
implementations and heterogeneous software stacks can
impede wide adoption, underscoring the need for
interoperable and extensible FL protocols tailored to RAN
optimization [9], [21]. Addressing these challenges is
essential to fully realize the potential of privacy-enhanced,
distributed learning for next-generation wireless networks.

7. Future Work

Several promising research directions can be pursued to
enhance privacy-preserving distributed learning for next-
generation wireless networks.

7.1. Advanced Privacy-Preserving Techniques:
Integrate stronger privacy guarantees using:
o Federated differential privacy with adaptive noise
calibration
e Secure multiparty computation schemes optimized
for heterogeneous RAN
e Leverage advanced privacy accounting methods like
Rényi Differential Privacy for tighter privacy-utility
trade-offs [13]

7.2. Adaptive and Robust Aggregation Algorithms:
Develop dynamic client selection and aggregation methods
adapting to:

e Heterogeneous edge node capabilities

e Varying network conditions

Employ Byzantine-resilient algorithms with reduced
computational overhead to secure large-scale deployments
from adversarial attacks [16], [23]

7.3. Lightweight and Efficient Model Architectures:
e  Design compact, energy-efficient models tailored for
resource-constrained edge devices
e  Use techniques such as model pruning, quantization,
and knowledge distillation to balance inference
accuracy and operational constraints [7], [10]

7.4. Continuous Learning for Dynamic Environments:
Incorporate online learning and continual adaptation
strategies for:

e Non-stationary network conditions

e User mobility and traffic variations

Investigate hybrid temporal filtering and attention
mechanisms to capture evolving KPI patterns while
minimizing retraining costs [19]

7.5. Seamless Integration with Telecom Standards and
Orchestration Platforms:

e Standardize federated learning protocols within O-
RAN Alliance and related bodies to ensure
interoperability

e Integrate with existing RAN management and
orchestration platforms for scalable, practical
deployment [9], [21]

7.6. Real-World Pilot Deployments and Benchmarking:
Conduct large-scale trials in operational 5G and private LTE
networks to assess:

e System performance

e Communication overhead

e Privacy guarantees

Develop standardized benchmarks and open datasets to
accelerate research and adoption [22], [25]

8. Conclusion

This paper introduced a Hierarchical Federated Learning
(FL) framework tailored for Radio Access Network (RAN)
environments, enabling privacy-preserving and scalable
optimization across distributed wireless infrastructure. By
structuring learning across edge and intermediate layers, the
proposed  architecture  effectively  addresses  data
heterogeneity, limited uplink bandwidth, and regulatory
constraints. Through detailed use cases including handover
optimization, interference management, and traffic-aware
scheduling we demonstrated the framework’s potential to
drive intelligent, site-specific decisions while preserving user
and operator privacy. As wireless networks grow in
complexity with the advent of 5G-Advanced and 6G, such
federated approaches are poised to become essential tools in



RAN intelligence. Future work will focus on advancing
privacy techniques, adaptive aggregation strategies, and real-
world deployments to bridge the gap between theoretical
approach and practical scalability.
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