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Abstract - Large Language Models (LLMs) have become 

foundational tools in natural language processing but adapting 

them effectively remains a technical and practical challenge. 

This paper presents a comparative analysis of prompt 

engineering and fine-tuning as key strategies for customizing 

LLM behavior. Drawing on secondary data from studies and 

technical documents, the study evaluates each method in terms 

of performance, cost-efficiency, robustness, and use-case 

suitability. The analysis concludes that such fine-tuning results 

in a higher task-specific accuracy and stability, especially in 

domain-intensive uses, but that prompt engineering allows a 

more flexible over-all task as well as having a reduced 

resource requirement. LoRA and prefix tuning are parameters-

efficient methods that are found as potential trade-offs. It has 

also been noted in the study that there is a variation in the 

interpretability and risk exposure between the approaches. The 

findings serve the purpose of assisting developers and 

researchers in the recommendation of proper adaptation 

strategies in accordance with the technical constraints and task 

requirements. 

 

Keywords - Large Language Models, Prompt Engineering, 

Fine-Tuning, Transfer Learning, Parameter-Efficient Tuning. 

 

1. Introduction 
Large Language Models (LLMs) have emerged as 

foundational components in modern artificial intelligence as 

they transform the way machines understand and generate 

human language (Kumar, 2024). Built on transformer-based 

architectures, these models deploy billions or trillions of tokens 

and parameters which enables them to accomplish tasks that 

were unattainable previously (Zhang et al., 2024). Raiaan et al. 

(2024) assert that models such as GPT-4, PaLM 2, and LLaMA 

2 have been trained on vast corpora of texts and thus have 

demonstrated state-of-the-art performance across a wide range 

of tasks, from question answering and translation to 

summarization and coding assistance. Their remarkable 

generalization capabilities, especially in zero-shot and few-shot 

settings marks a significant shift away from narrowly trained 

models that once dominated natural language processing 

(NLP). 

 

However, ethical issues arise as a question of practical 

issues due to the scale and generalizability of LLMs. Bharathi 

Mohan et al. (2024) argues that such models are trained on 

wide internet-scale data which makes them highly competent at 

generic applications but are usually insufficiently capable to be 

used in domain-specific applications without tuning. As an 

example, linguistic and factual behavior may need more 

customization compared to what can be reliably generated by 

pre-trained model in legal, medical or technical use cases (Nazi 

& Peng, 2024). Furthermore, training/fine-tuning these large 

architectures is computationally expensive, meaning that most 

institutions or developers would not train or fine-tune models 

via conventional methods (Menghani, 2023). The issue is not 

only in technical practicability but also in preserving the 

performance stability, minimizing biases, and ensuring that the 

model fits the specific task expectations. 

 

To address these gaps, two major strategies have become 

central to the adaptation of LLMs: prompt engineering and 

fine-tuning. Prompt engineering involves designing input 

prompts in a way that elicits desired outputs from a model 

without altering its parameters (Velásquez-Henao et al., 2023). 

It ranges from simple task framing to advanced methods such 

as few-shot prompting, chain-of-thought prompting (Sahoo et 

al., 2024), and retrieval-augmented generation. The appeal of 

prompt engineering lies in its flexibility and low computational 

cost, particularly valuable when rapid prototyping or 

deployment is needed (Jiang et al., 2022). Yet, it often requires 

significant manual effort, and prompt performance can vary 

unpredictably across tasks. 

 

To fill these gaps, prompt engineering and fine-tuning 

have taken center stage in the adaptation of LLMs. Prompt 

engineering entails designing the prompts such that the 
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prompting is in a manner that induces the wanted response out 

of a model without a change to the parameters of the model 

(Velasquez-Henao et al., 2023). It extends from basic task 

framing and more advanced versions (few-shot prompting), 

chain-of-thought prompting (Sahoo et al., 2024), to retrieval-

augmented generation. The flexibility and computational cost 

make the appeal of prompt engineering especially today, as an 

early prototype or deployment may be necessary (Jiang et al., 

2022). However, it demonstrates a tendency to consume 

substantial manual resources and could be inconsistently 

performed promptly on different tasks. 

 

On the other hand, fine-tuning refers to the process of updating 

internal parameters of a model, with more annotated 

information, whether fully re-training the model or parameter-

efficient strategies like adapters or Low-Rank Adaptation 

(LoRA) (Wang et al., 2024). Such a strategy provides more 

control and better results on task-specific metrics at the 

expense of training overhead and deployment complexity (Han 

et al., 2024). There are also a couple of downsides that come 

with fine-tuning, including a risk of model overfitting and 

catastrophic forgetting, as well as the possible deterioration of 

general language abilities (Luo et al., 2023). To this end, this 

paper comparatively analyses prompt engineering and fine-

tuning as the most effective approaches to making LLMs 

adaptive. This aim is supported by the following key 

objectives;  

 To explore theoretical foundations and practical 

techniques behind prompt engineering and fine-tuning 

of LLMs;  

 To examine reported performance and trade-offs 

across common benchmarks; 

 To identify strengths, limitations and appropriate 

contexts for each approach and thereby provide 

guidance on how to choose between the two strategies 

 

2. Research methods 
This research deploys secondary research methodology 

which reanalyzes, reviews and interprets existing data (Hair et 

al., 2019) on prompt engineering and fine-tuning of LLMs. The 

study uses secondary data sources like peer-reviewed 

publications, open-access benchmark reports, and technical 

documentation provided by model developers. Core sources 

include empirical evaluations of large language models on 

tasks from the MMLU, Super GLUE and HELM benchmark 

suites, as well as implementation details from repositories such 

as GitHub and arXiv. This paper uses a comparative synthesis 

approach to analyze how prompt engineering and fine-tuning 

techniques are applied in practice. The review focuses on 

models widely referenced in current researchGPT-4 (Liu et al, 

2023a), PaLM (Chowdhery et al., 2023) and LLaMA (Naveed 

et al., 2023)to ensure relevance and consistency. Special 

attention is given to parameter-efficient fine-tuning methods 

such as LoRA (Han et al., 2024), prefix tuning, and adapters, 

which offer practical alternatives to full model updates. By 

triangulating performance data, cost metrics, and 

implementation patterns, this paper identifies key trade-offs 

that shape adaptation strategies. 

 

3. Results and Discussion 
3.1. Prompt Engineering 

Velasquez-Henao et al. (2023) considers prompt 

engineering as the process of designing inputs that can 

influence large language model (LLM) to generate the desired 

outputs by avoiding the modification of model weights. Its 

accessibility and limited computational requirements have 

made this approach one of the most widely known, mainly 

when working with proprietary paths such as GPT-3.5 or GPT-

4 through API. Prompt engineering can take the form of 

manual prompting, few-shot prompting, soft prompting and 

retrieval augmented prompting. Manual prompting allows 

users to type task-specific words or phrases like a prompt, i.e., 

translate this sentence into French (Schulhoff et al., 2024). 

Manual prompts are easy to write but they may be brittle since 

minor alterations to their form can lead to quite different 

results (Kulkarni & Tupsakhare, 2024). Research has 

demonstrated high sensitivity with regard to wording, order 

and format of inputs in this approach (Webson & Pavlick, 

2022). Few-shot prompting approaches improve by including a 

small number of example input-output tuples in the prompt 

(Chang et al., 2024). The method which is promoted in the 

initial GPT-3 paper, allows the model to transfer to new tasks 

without gradient optimization (Ma et al., 2023). The context 

window provided by the model restricts the number of 

examples and efficacy hinges on quality and choice of 

examples. 

 

A prompt tuning approach also known as soft prompting 

substitutes textual prompts with set of trainable continuous 

embeddings (Liu et al., 2023b). The goal is to optimize these 

embedding via gradient descent, leaving the rest of the model 

fixed. Lester et al. (2021) showed that soft prompts can match 

or even outperform traditional fine-tuning tasks in certain 

scenarios, but with much fewer parameters (Wang et al., 2022). 

However, the approach continues to be dependent on labeled 

data and infrastructure in terms of tuning. Retrieval-augmented 

prompting embeds external knowledge into the prompt at 

inference time. Such systems as RETRO (Gao et al., 2023) and 

RAG (Zhao et al., 2024) retrieve documents or passages using 

a retrieval component, as a part of which they are passed with 

the query. This plan enhances factuality and minimizes 

hallucinations, and is particularly successful in dynamic 
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knowledge systems. A comparison of the various forms of prompt engineering is depicted in Table 1 below. 

 

Table 1: Prompt engineering methods comparison 

Type Description Strengths Weaknesses 

Manual 

Prompting 

Hand-crafted instructions written 

in plain language to guide model 

behavior. 

Simple to implement; fast 

deployment; human-readable and 

editable. 

Highly sensitive to phrasing; 

brittle; requires manual 

iteration. 

Few-Shot 

Prompting 

Includes a few labeled examples 

within the prompt to demonstrate 

task structure. 

Improves generalization with 

minimal data; no parameter updates 

needed. 

Context length limitations; 

results depend heavily on 

example quality. 

Soft Prompting Uses learned continuous 

embeddings as prompts, 

optimized during training. 

Parameter-efficient; reusable across 

tasks; better performance 

consistency. 

Requires labeled data and 

infrastructure; embeddings not 

human-readable. 

Retrieval-

Augmented 

Prompting 

Appends retrieved external 

documents or passages to provide 

factual grounding. 

Enhances factual accuracy; reduces 

hallucination; good for knowledge-

rich tasks. 

Retrieval may introduce noise; 

dependent on external 

knowledge base quality. 

 

Prompt engineering, notwithstanding its strengths, has 

shortcomings. It can have mixed performance per task and 

model (Zhou et al., 2022). Prompts are not necessarily 

generalizable, and frequently efficacy depends on ad hoc 

experimentation (Strobelt et al., 2022). This is compounded by 

poor interpretations and reproducibility, especially where 

manual input has been exerted. Despite this, prompt 

engineering can serve as a reasonably mindful and adaptable 

alternative in times of rapid deployment, low resource 

availability, and API-driven usage, especially in cases where 

fine-tuning cannot be applied comprehensively (Raiaan et al., 

2024). 

 

3.2. Fine-Tuning 

Fine-tuning is a process of adapting an off-the-shelf 

language model to a particular downstream task via re-training 

of some or all of its parameters, on a labelled training set (Ding 

et al., 2023). Panigrahi et al. (2023) explain that this would 

enable the model to internalize task-specific patterns, providing 

good performance and stability, in specialized areas, in 

particular. Fine-tuning can be broadly classified into two types: 

full fine-tuning and parameter-efficient fine-tuning. Full fine-

tuning encompasses the transformation of the weights of the 

whole model with the aid of supervised learning. Such a 

strategy can result in the best task-specific accuracy because 

the model is optimized in the new objective (Zheng et al., 

2025). Nonetheless, it has significant computation costs and 

storage requirements. Even on a moderate dataset, fine-tuning 

a language model such as GPT-3 or PaLM demands exposure 

to GPUs or TPUs, hyperparameter optimization with mode 

selection, with the risk of over fitting or catastrophic forgetting 

(Han et al., 2024). In addition, it builds a distinct version of the 

model, thereby enhancing the complexity of deployment and 

maintenance. To counter such drawbacks, parameter-efficient 

tuning schemes are devised.  

 

Low-Rank Adaptation (LoRA), adapter layers, and prefix 

tuning are methods that alter only a tiny fraction of the model 

parameters or add other simple modules (Wang et al., 2024; 

Han et al., 2024). Xu et al. (2023) showed that one can update 

fewer than 1 percent of parameters in LoRA but match their 

performance to full fine-tuning. In parallel, prefix tuning adds 

learned embeddings to the beginning of the model input layers 

and directs the behavior without touching the fundamental 

model weights (Huber et al., 2025). These solutions 

significantly minimize computation requirements and ease 

storage and deployment. The main advantage of fine-tuning or 

partial versus full fine-tuning is that it can produce reliable, 

high-quality performance in particular tasks. Models adapted 

manifest more consistent behavior, conformity with domain 

requirements, and fewer random outputs as compared to 

prompt-based paradigms (Bai et al., 2024).  

 

Also, tunable models can be optimized for latency, token 

and/or content filtering. Nevertheless, fine-tuning has 

noticeable drawbacks. Ding et al. (2023) further argue that 

fine-tuning commonly necessitates access to the model 

architecture and training infrastructure, whereas it may not be 

possible with proprietary models. There is also the danger of 

overfitting when learning on small datasets, and less flexibility 

in processing more than one task without training independent 

models (Zheng et al., 2025; Han et al., 2024). Moreover, 

parameter updating can lead to a dispersion of earlier acquired 

general abilities, which is referred to as catastrophic forgetting. 

Table 2 below compares full fine-tuning vs. parameter-efficient 

tuning. 
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Table 2: Full Fine-Tuning vs. Parameter-Efficient Tuning 

Tuning Method Parameter Updates Compute 

Requirements 

Flexibility Use Case 

Full Fine-Tuning All model parameters High – requires full 

model retraining 

Low – retraining 

needed for each task 

High-stakes, domain-

specific tasks 

LoRA (Low-Rank 

Adaptation) 

Small trainable matrices 

injected into attention 

layers 

Moderate – updates 

<1% of parameters 

Medium – reusable 

base model 

Task-specific fine-

tuning with limited 

compute 

Adapters Small bottleneck layers 

added between existing 

layers 

Moderate – minor added 

layers 

High – adapters can 

be swapped easily 

Multi-task models, 

modular deployment 

Prefix Tuning Trainable tokens prepended 

to inputs 

Low to moderate High – no core model 

changes 

Quick adaptation, 

especially for 

generative tasks 

 

3.3. Comparative Analysis 

Prompt engineering and fine-tuning are two different 

avenues to adapt large language models (LLMs) to 

downstream tasks, and their relative merits rely substantially 

on context. In this section, their comparative strengths and 

trade-offs are discussed with regard to accuracy, computational 

expense, and practical applicability to various use cases. 

 

3.3.1. Accuracy and benchmark performance 

Fine-tuned models tend to be more accurate and reliable 

on task-specific benchmarks. For instance, on the Super GLUE 

benchmark, fine-tuned models like T5 and PaLM consistently 

outperform their prompted counterparts, particularly in 

structured tasks like textual entailment and coreference 

resolution (Naveed et al., 2023). More specific, prompt 

engineering like the few-shot variant allows competitive 

performance in open-ended tasks. However, it performs worse 

than conventional programs in highly constrained 

environments or on tasks demanding sophisticated thinking 

(Velasquez-Henao et al., 2023). Further, soft prompting 

techniques and retrieval augmented prompting have reduced 

the gap to some extent, but they remain behind supervised fine-

tuning across a variety of high-stakes applications. 

 

3.3.2. Cost-efficiency and infrastructure needs 

Early-stage development and experimentation are more 

cost-effective in prompt engineering. It involves no retraining, 

minimal infrastructure, and is specifically more suitable for 

API-based models where users are not allowed access to model 

internals (Golani, 2025). On the contrary, complete fine-tuning 

requires parameter access and substantial GPU resources, 

particularly with TB-size models, such as GPT-3 or LLaMA-

65B (Rostam et al., 2024). Even parameter-efficient fine-

tuning (LoRA, for example) leads to lower costs but 

nevertheless necessitates training pipelines and labelled data 

(Xu et al., 2023). Budget engineering, therefore, usually 

succeeds on the criterion of speed and resource consumption, 

especially where computations are limited or where the 

environment is not academically oriented. Table 3 below 

illustrates the comparison between cost vs. control trade-offs 

across adaptation strategies. 

 

Table 3: Cost vs Control Trade-offs 

Strategy Accuracy Flexibility Infrastructure Cost 

Prompt Engineering Moderate High Low Low 

Full Fine-Tuning High Low High High 

LoRA High Medium Moderate Moderate 

Prefix Tuning Moderate–High High Low Low 

 

The selection process between the two mostly depends on 

the usage. Prompt engineering works best in a general-purpose 

application and where the author needs fast iteration or is 

facing many lightweight applications, such as chat interfaces, 

trivial Q&A, or content summarizing (Hadi et al., 2023). It also 

provides enhanced update speed and experiments without 

training the model. Optimization, in its turn, is a better choice 

when domain-specific applications are in consideration, such 

as legal document classification, clinical text processing, or 

customer service chatbots that are trained on in-house datasets 

(Zheng et al., 2024). It provides superior long-term stability 

and performance predictability when performance testing is 

critical or where the demands of the user require a high 

accuracy of behavior and dependability. These methods may 

supplement one another even in a hybrid workflow. As an 

example, a fine-tuned base model can be refined further with 

prompt design to achieve greater control over tasks (Pornprasit 

& Tantithamthavorn, 2024). With the evolution of the 
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ecosystem in question, it becomes even more important to 

know when it is better to prefer one or the other among them, 

or use them together, in order to deploy the models both 

efficiently and effectively. 

 

3.4. Interpretability, robustness, and risk 

The issues of interpretability and robustness of language 

models, as well as their risk are of importance in real-life 

implementation. Both prompt engineering and fine-tuning have 

their own challenges and benefits towards these aspects. 

Barman et al. (2024) argues that prompt engineering has 

greater explainability to end-users in terms of transparency. 

Due to the fixed model, and the input being the only variable, 

users can trace more easily which prompts result in which 

outputs. Nevertheless, this interpretability is, to some degree, 

superficial; the internal rationale of the model is not visible, 

only the prompt itself. Further, small variations in the phrasing 

of prompts may cause extreme changes in behavior, making it 

hard to form predictable mappings of input and output 

(Barman et al., 2024). 

 

On its part, fine-tuning yields a model with more 

consistent behavior across inputs, but a lesser ability to explain 

why given inputs are yielding given outputs. The adjustments 

are incorporated into multi-millions or even billions of refined 

weights, and post hoc analysis is complicated in the absence of 

special tools to interpret results (Ding et al., 2023). Despite 

this, having the idea to train the model directly on a goal is 

often more conducive to structured error analysis and per-

input-and/or-per-potential-error-type performance evaluation 

(Zheng et al., 2025). Regarding robustness, the fine-tuned 

model has a better chance of being stable in its responses, 

particularly when subjected to adversarial prompts or when the 

input is ambiguous. Prompt-based approaches are more brittle 

and tend to break in extremes or when applied outside their 

specific contexts.  

 

Table 4: Below compares prompt-engineering and fine-tuning and can be used to decide which approach is appropriate for 

LLMs (Medium, 2024) 

Feature Prompting Finetuning 

Skill Level 

Required 

Low: Requires a basic understanding of how to 

construct prompts. 

Moderate to High: Requires knowledge of 

machine learning principles and model 

architectures. 

Pricing and 

Resources 

Low: Uses existing models, minimal computational 

costs. 

High: Significant computational resources needed 

for training. 

Customization Low: Limited by the model’s pre-trained knowledge 

and user’s ability to craft effective prompts. 

High: Allows for extensive customization to 

specific domains or styles. 

Data Requirements None: Utilizes pre-trained models without additional 

data. 

High: Requires a large, relevant dataset for 

effective finetuning. 

Update Frequency Low: Dependent on retraining of the underlying 

model. 

Variable: Dependent on when the model is 

retrained with new data. 

Quality Variable: Highly dependent on the skill in crafting 

prompts. 

High: Tailored to specific datasets, leading to 

more relevant and accurate responses. 

Use Cases General inquiries, broad topics, educational purposes. Specialized applications, industry-specific needs, 

customized tasks. 

Ease of 

Implementation 

High: Straightforward to implement with existing 

tools and interfaces. 

Low: Requires in-depth setup and training 

processes. 

 

4. Conclusion 
Prompt engineering and fine tuning are the two most 

dominant approaches to adapting large language models to 

specific tasks. Both approaches have strengths and weaknesses 

and one is not uniformly better than the other. Prompt 

engineering is fast, cheap, and flexible, which makes it highly 

applicable in cases where model internals are not easily 

accessible or in cases where fast iteration is desirable. 

Nevertheless, it is not always stable and generalizable. 

However, fine-tuning offers better task specific performance 

and consistency of behavior, particularly in highly specialized 

or high stakes domains. However, it is associated with 

increased computational requirements, complexity of 

infrastructure and dangers like overfitting or loss of generality 

properties. To developers and researchers, differentiating the 

two should be affected by practical considerations like 

complexity of the task, resource availability, and model 

accessibility. In practice, the combination of both would work 

best in numerous situations, as it provides the advantages of 

both foundationally aligned fine-tuning and flexible control 

through prompts. Further research in hybridization, more 

automated prompt generation, and enhanced interpretability 

mechanisms should also be further investigated in order to 

better allow practitioners harness the unique strengths of each 

strategy. 
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