
International Journal of Emerging Research in Engineering and Technology

Pearl Blue Research Group| Volume 6 Issue 3 PP 09-15, 2025

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V6I3P102

A Comparative Research Study

Adapting Large Language Models: A Comparative Study of

Prompt Engineering and Fine-Tuning

Srinivasa Kalyan Vangibhurathachhi

Solution Architect, Texas, USA.

Received On: 15/05/2025 Revised On: 05/06/2025 Accepted On: 17/06/2025 Published On: 05/07/2025

Abstract - Large Language Models (LLMs) have become

foundational tools in natural language processing but adapting

them effectively remains a technical and practical challenge.

This paper presents a comparative analysis of prompt

engineering and fine-tuning as key strategies for customizing

LLM behavior. Drawing on secondary data from studies and

technical documents, the study evaluates each method in terms

of performance, cost-efficiency, robustness, and use-case

suitability. The analysis concludes that such fine-tuning results

in a higher task-specific accuracy and stability, especially in

domain-intensive uses, but that prompt engineering allows a

more flexible over-all task as well as having a reduced

resource requirement. LoRA and prefix tuning are parameters-

efficient methods that are found as potential trade-offs. It has

also been noted in the study that there is a variation in the

interpretability and risk exposure between the approaches. The

findings serve the purpose of assisting developers and

researchers in the recommendation of proper adaptation

strategies in accordance with the technical constraints and task

requirements.

Keywords - Large Language Models, Prompt Engineering,

Fine-Tuning, Transfer Learning, Parameter-Efficient Tuning.

1. Introduction
Large Language Models (LLMs) have emerged as

foundational components in modern artificial intelligence as

they transform the way machines understand and generate

human language (Kumar, 2024). Built on transformer-based

architectures, these models deploy billions or trillions of tokens

and parameters which enables them to accomplish tasks that

were unattainable previously (Zhang et al., 2024). Raiaan et al.

(2024) assert that models such as GPT-4, PaLM 2, and LLaMA

2 have been trained on vast corpora of texts and thus have

demonstrated state-of-the-art performance across a wide range

of tasks, from question answering and translation to

summarization and coding assistance. Their remarkable

generalization capabilities, especially in zero-shot and few-shot

settings marks a significant shift away from narrowly trained

models that once dominated natural language processing

(NLP).

However, ethical issues arise as a question of practical

issues due to the scale and generalizability of LLMs. Bharathi

Mohan et al. (2024) argues that such models are trained on

wide internet-scale data which makes them highly competent at

generic applications but are usually insufficiently capable to be

used in domain-specific applications without tuning. As an

example, linguistic and factual behavior may need more

customization compared to what can be reliably generated by

pre-trained model in legal, medical or technical use cases (Nazi

& Peng, 2024). Furthermore, training/fine-tuning these large

architectures is computationally expensive, meaning that most

institutions or developers would not train or fine-tune models

via conventional methods (Menghani, 2023). The issue is not

only in technical practicability but also in preserving the

performance stability, minimizing biases, and ensuring that the

model fits the specific task expectations.

To address these gaps, two major strategies have become

central to the adaptation of LLMs: prompt engineering and

fine-tuning. Prompt engineering involves designing input

prompts in a way that elicits desired outputs from a model

without altering its parameters (Velásquez-Henao et al., 2023).

It ranges from simple task framing to advanced methods such

as few-shot prompting, chain-of-thought prompting (Sahoo et

al., 2024), and retrieval-augmented generation. The appeal of

prompt engineering lies in its flexibility and low computational

cost, particularly valuable when rapid prototyping or

deployment is needed (Jiang et al., 2022). Yet, it often requires

significant manual effort, and prompt performance can vary

unpredictably across tasks.

To fill these gaps, prompt engineering and fine-tuning

have taken center stage in the adaptation of LLMs. Prompt

engineering entails designing the prompts such that the

Srinivasa Kalyan Vangibhurathachhi / IJERET, 6(3), 09-15, 2025

10

prompting is in a manner that induces the wanted response out

of a model without a change to the parameters of the model

(Velasquez-Henao et al., 2023). It extends from basic task

framing and more advanced versions (few-shot prompting),

chain-of-thought prompting (Sahoo et al., 2024), to retrieval-

augmented generation. The flexibility and computational cost

make the appeal of prompt engineering especially today, as an

early prototype or deployment may be necessary (Jiang et al.,

2022). However, it demonstrates a tendency to consume

substantial manual resources and could be inconsistently

performed promptly on different tasks.

On the other hand, fine-tuning refers to the process of updating

internal parameters of a model, with more annotated

information, whether fully re-training the model or parameter-

efficient strategies like adapters or Low-Rank Adaptation

(LoRA) (Wang et al., 2024). Such a strategy provides more

control and better results on task-specific metrics at the

expense of training overhead and deployment complexity (Han

et al., 2024). There are also a couple of downsides that come

with fine-tuning, including a risk of model overfitting and

catastrophic forgetting, as well as the possible deterioration of

general language abilities (Luo et al., 2023). To this end, this

paper comparatively analyses prompt engineering and fine-

tuning as the most effective approaches to making LLMs

adaptive. This aim is supported by the following key

objectives;

 To explore theoretical foundations and practical

techniques behind prompt engineering and fine-tuning

of LLMs;

 To examine reported performance and trade-offs

across common benchmarks;

 To identify strengths, limitations and appropriate

contexts for each approach and thereby provide

guidance on how to choose between the two strategies

2. Research methods
This research deploys secondary research methodology

which reanalyzes, reviews and interprets existing data (Hair et

al., 2019) on prompt engineering and fine-tuning of LLMs. The

study uses secondary data sources like peer-reviewed

publications, open-access benchmark reports, and technical

documentation provided by model developers. Core sources

include empirical evaluations of large language models on

tasks from the MMLU, Super GLUE and HELM benchmark

suites, as well as implementation details from repositories such

as GitHub and arXiv. This paper uses a comparative synthesis

approach to analyze how prompt engineering and fine-tuning

techniques are applied in practice. The review focuses on

models widely referenced in current researchGPT-4 (Liu et al,

2023a), PaLM (Chowdhery et al., 2023) and LLaMA (Naveed

et al., 2023)to ensure relevance and consistency. Special

attention is given to parameter-efficient fine-tuning methods

such as LoRA (Han et al., 2024), prefix tuning, and adapters,

which offer practical alternatives to full model updates. By

triangulating performance data, cost metrics, and

implementation patterns, this paper identifies key trade-offs

that shape adaptation strategies.

3. Results and Discussion
3.1. Prompt Engineering

Velasquez-Henao et al. (2023) considers prompt

engineering as the process of designing inputs that can

influence large language model (LLM) to generate the desired

outputs by avoiding the modification of model weights. Its

accessibility and limited computational requirements have

made this approach one of the most widely known, mainly

when working with proprietary paths such as GPT-3.5 or GPT-

4 through API. Prompt engineering can take the form of

manual prompting, few-shot prompting, soft prompting and

retrieval augmented prompting. Manual prompting allows

users to type task-specific words or phrases like a prompt, i.e.,

translate this sentence into French (Schulhoff et al., 2024).

Manual prompts are easy to write but they may be brittle since

minor alterations to their form can lead to quite different

results (Kulkarni & Tupsakhare, 2024). Research has

demonstrated high sensitivity with regard to wording, order

and format of inputs in this approach (Webson & Pavlick,

2022). Few-shot prompting approaches improve by including a

small number of example input-output tuples in the prompt

(Chang et al., 2024). The method which is promoted in the

initial GPT-3 paper, allows the model to transfer to new tasks

without gradient optimization (Ma et al., 2023). The context

window provided by the model restricts the number of

examples and efficacy hinges on quality and choice of

examples.

A prompt tuning approach also known as soft prompting

substitutes textual prompts with set of trainable continuous

embeddings (Liu et al., 2023b). The goal is to optimize these

embedding via gradient descent, leaving the rest of the model

fixed. Lester et al. (2021) showed that soft prompts can match

or even outperform traditional fine-tuning tasks in certain

scenarios, but with much fewer parameters (Wang et al., 2022).

However, the approach continues to be dependent on labeled

data and infrastructure in terms of tuning. Retrieval-augmented

prompting embeds external knowledge into the prompt at

inference time. Such systems as RETRO (Gao et al., 2023) and

RAG (Zhao et al., 2024) retrieve documents or passages using

a retrieval component, as a part of which they are passed with

the query. This plan enhances factuality and minimizes

hallucinations, and is particularly successful in dynamic

Srinivasa Kalyan Vangibhurathachhi / IJERET, 6(3), 09-15, 2025

11

knowledge systems. A comparison of the various forms of prompt engineering is depicted in Table 1 below.

Table 1: Prompt engineering methods comparison

Type Description Strengths Weaknesses

Manual

Prompting

Hand-crafted instructions written

in plain language to guide model

behavior.

Simple to implement; fast

deployment; human-readable and

editable.

Highly sensitive to phrasing;

brittle; requires manual

iteration.

Few-Shot

Prompting

Includes a few labeled examples

within the prompt to demonstrate

task structure.

Improves generalization with

minimal data; no parameter updates

needed.

Context length limitations;

results depend heavily on

example quality.

Soft Prompting Uses learned continuous

embeddings as prompts,

optimized during training.

Parameter-efficient; reusable across

tasks; better performance

consistency.

Requires labeled data and

infrastructure; embeddings not

human-readable.

Retrieval-

Augmented

Prompting

Appends retrieved external

documents or passages to provide

factual grounding.

Enhances factual accuracy; reduces

hallucination; good for knowledge-

rich tasks.

Retrieval may introduce noise;

dependent on external

knowledge base quality.

Prompt engineering, notwithstanding its strengths, has

shortcomings. It can have mixed performance per task and

model (Zhou et al., 2022). Prompts are not necessarily

generalizable, and frequently efficacy depends on ad hoc

experimentation (Strobelt et al., 2022). This is compounded by

poor interpretations and reproducibility, especially where

manual input has been exerted. Despite this, prompt

engineering can serve as a reasonably mindful and adaptable

alternative in times of rapid deployment, low resource

availability, and API-driven usage, especially in cases where

fine-tuning cannot be applied comprehensively (Raiaan et al.,

2024).

3.2. Fine-Tuning

Fine-tuning is a process of adapting an off-the-shelf

language model to a particular downstream task via re-training

of some or all of its parameters, on a labelled training set (Ding

et al., 2023). Panigrahi et al. (2023) explain that this would

enable the model to internalize task-specific patterns, providing

good performance and stability, in specialized areas, in

particular. Fine-tuning can be broadly classified into two types:

full fine-tuning and parameter-efficient fine-tuning. Full fine-

tuning encompasses the transformation of the weights of the

whole model with the aid of supervised learning. Such a

strategy can result in the best task-specific accuracy because

the model is optimized in the new objective (Zheng et al.,

2025). Nonetheless, it has significant computation costs and

storage requirements. Even on a moderate dataset, fine-tuning

a language model such as GPT-3 or PaLM demands exposure

to GPUs or TPUs, hyperparameter optimization with mode

selection, with the risk of over fitting or catastrophic forgetting

(Han et al., 2024). In addition, it builds a distinct version of the

model, thereby enhancing the complexity of deployment and

maintenance. To counter such drawbacks, parameter-efficient

tuning schemes are devised.

Low-Rank Adaptation (LoRA), adapter layers, and prefix

tuning are methods that alter only a tiny fraction of the model

parameters or add other simple modules (Wang et al., 2024;

Han et al., 2024). Xu et al. (2023) showed that one can update

fewer than 1 percent of parameters in LoRA but match their

performance to full fine-tuning. In parallel, prefix tuning adds

learned embeddings to the beginning of the model input layers

and directs the behavior without touching the fundamental

model weights (Huber et al., 2025). These solutions

significantly minimize computation requirements and ease

storage and deployment. The main advantage of fine-tuning or

partial versus full fine-tuning is that it can produce reliable,

high-quality performance in particular tasks. Models adapted

manifest more consistent behavior, conformity with domain

requirements, and fewer random outputs as compared to

prompt-based paradigms (Bai et al., 2024).

Also, tunable models can be optimized for latency, token

and/or content filtering. Nevertheless, fine-tuning has

noticeable drawbacks. Ding et al. (2023) further argue that

fine-tuning commonly necessitates access to the model

architecture and training infrastructure, whereas it may not be

possible with proprietary models. There is also the danger of

overfitting when learning on small datasets, and less flexibility

in processing more than one task without training independent

models (Zheng et al., 2025; Han et al., 2024). Moreover,

parameter updating can lead to a dispersion of earlier acquired

general abilities, which is referred to as catastrophic forgetting.

Table 2 below compares full fine-tuning vs. parameter-efficient

tuning.

Srinivasa Kalyan Vangibhurathachhi / IJERET, 6(3), 09-15, 2025

12

Table 2: Full Fine-Tuning vs. Parameter-Efficient Tuning

Tuning Method Parameter Updates Compute

Requirements

Flexibility Use Case

Full Fine-Tuning All model parameters High – requires full

model retraining

Low – retraining

needed for each task

High-stakes, domain-

specific tasks

LoRA (Low-Rank

Adaptation)

Small trainable matrices

injected into attention

layers

Moderate – updates

<1% of parameters

Medium – reusable

base model

Task-specific fine-

tuning with limited

compute

Adapters Small bottleneck layers

added between existing

layers

Moderate – minor added

layers

High – adapters can

be swapped easily

Multi-task models,

modular deployment

Prefix Tuning Trainable tokens prepended

to inputs

Low to moderate High – no core model

changes

Quick adaptation,

especially for

generative tasks

3.3. Comparative Analysis

Prompt engineering and fine-tuning are two different

avenues to adapt large language models (LLMs) to

downstream tasks, and their relative merits rely substantially

on context. In this section, their comparative strengths and

trade-offs are discussed with regard to accuracy, computational

expense, and practical applicability to various use cases.

3.3.1. Accuracy and benchmark performance

Fine-tuned models tend to be more accurate and reliable

on task-specific benchmarks. For instance, on the Super GLUE

benchmark, fine-tuned models like T5 and PaLM consistently

outperform their prompted counterparts, particularly in

structured tasks like textual entailment and coreference

resolution (Naveed et al., 2023). More specific, prompt

engineering like the few-shot variant allows competitive

performance in open-ended tasks. However, it performs worse

than conventional programs in highly constrained

environments or on tasks demanding sophisticated thinking

(Velasquez-Henao et al., 2023). Further, soft prompting

techniques and retrieval augmented prompting have reduced

the gap to some extent, but they remain behind supervised fine-

tuning across a variety of high-stakes applications.

3.3.2. Cost-efficiency and infrastructure needs

Early-stage development and experimentation are more

cost-effective in prompt engineering. It involves no retraining,

minimal infrastructure, and is specifically more suitable for

API-based models where users are not allowed access to model

internals (Golani, 2025). On the contrary, complete fine-tuning

requires parameter access and substantial GPU resources,

particularly with TB-size models, such as GPT-3 or LLaMA-

65B (Rostam et al., 2024). Even parameter-efficient fine-

tuning (LoRA, for example) leads to lower costs but

nevertheless necessitates training pipelines and labelled data

(Xu et al., 2023). Budget engineering, therefore, usually

succeeds on the criterion of speed and resource consumption,

especially where computations are limited or where the

environment is not academically oriented. Table 3 below

illustrates the comparison between cost vs. control trade-offs

across adaptation strategies.

Table 3: Cost vs Control Trade-offs

Strategy Accuracy Flexibility Infrastructure Cost

Prompt Engineering Moderate High Low Low

Full Fine-Tuning High Low High High

LoRA High Medium Moderate Moderate

Prefix Tuning Moderate–High High Low Low

The selection process between the two mostly depends on

the usage. Prompt engineering works best in a general-purpose

application and where the author needs fast iteration or is

facing many lightweight applications, such as chat interfaces,

trivial Q&A, or content summarizing (Hadi et al., 2023). It also

provides enhanced update speed and experiments without

training the model. Optimization, in its turn, is a better choice

when domain-specific applications are in consideration, such

as legal document classification, clinical text processing, or

customer service chatbots that are trained on in-house datasets

(Zheng et al., 2024). It provides superior long-term stability

and performance predictability when performance testing is

critical or where the demands of the user require a high

accuracy of behavior and dependability. These methods may

supplement one another even in a hybrid workflow. As an

example, a fine-tuned base model can be refined further with

prompt design to achieve greater control over tasks (Pornprasit

& Tantithamthavorn, 2024). With the evolution of the

Srinivasa Kalyan Vangibhurathachhi / IJERET, 6(3), 09-15, 2025

13

ecosystem in question, it becomes even more important to

know when it is better to prefer one or the other among them,

or use them together, in order to deploy the models both

efficiently and effectively.

3.4. Interpretability, robustness, and risk

The issues of interpretability and robustness of language

models, as well as their risk are of importance in real-life

implementation. Both prompt engineering and fine-tuning have

their own challenges and benefits towards these aspects.

Barman et al. (2024) argues that prompt engineering has

greater explainability to end-users in terms of transparency.

Due to the fixed model, and the input being the only variable,

users can trace more easily which prompts result in which

outputs. Nevertheless, this interpretability is, to some degree,

superficial; the internal rationale of the model is not visible,

only the prompt itself. Further, small variations in the phrasing

of prompts may cause extreme changes in behavior, making it

hard to form predictable mappings of input and output

(Barman et al., 2024).

On its part, fine-tuning yields a model with more

consistent behavior across inputs, but a lesser ability to explain

why given inputs are yielding given outputs. The adjustments

are incorporated into multi-millions or even billions of refined

weights, and post hoc analysis is complicated in the absence of

special tools to interpret results (Ding et al., 2023). Despite

this, having the idea to train the model directly on a goal is

often more conducive to structured error analysis and per-

input-and/or-per-potential-error-type performance evaluation

(Zheng et al., 2025). Regarding robustness, the fine-tuned

model has a better chance of being stable in its responses,

particularly when subjected to adversarial prompts or when the

input is ambiguous. Prompt-based approaches are more brittle

and tend to break in extremes or when applied outside their

specific contexts.

Table 4: Below compares prompt-engineering and fine-tuning and can be used to decide which approach is appropriate for

LLMs (Medium, 2024)

Feature Prompting Finetuning

Skill Level

Required

Low: Requires a basic understanding of how to

construct prompts.

Moderate to High: Requires knowledge of

machine learning principles and model

architectures.

Pricing and

Resources

Low: Uses existing models, minimal computational

costs.

High: Significant computational resources needed

for training.

Customization Low: Limited by the model’s pre-trained knowledge

and user’s ability to craft effective prompts.

High: Allows for extensive customization to

specific domains or styles.

Data Requirements None: Utilizes pre-trained models without additional

data.

High: Requires a large, relevant dataset for

effective finetuning.

Update Frequency Low: Dependent on retraining of the underlying

model.

Variable: Dependent on when the model is

retrained with new data.

Quality Variable: Highly dependent on the skill in crafting

prompts.

High: Tailored to specific datasets, leading to

more relevant and accurate responses.

Use Cases General inquiries, broad topics, educational purposes. Specialized applications, industry-specific needs,

customized tasks.

Ease of

Implementation

High: Straightforward to implement with existing

tools and interfaces.

Low: Requires in-depth setup and training

processes.

4. Conclusion
Prompt engineering and fine tuning are the two most

dominant approaches to adapting large language models to

specific tasks. Both approaches have strengths and weaknesses

and one is not uniformly better than the other. Prompt

engineering is fast, cheap, and flexible, which makes it highly

applicable in cases where model internals are not easily

accessible or in cases where fast iteration is desirable.

Nevertheless, it is not always stable and generalizable.

However, fine-tuning offers better task specific performance

and consistency of behavior, particularly in highly specialized

or high stakes domains. However, it is associated with

increased computational requirements, complexity of

infrastructure and dangers like overfitting or loss of generality

properties. To developers and researchers, differentiating the

two should be affected by practical considerations like

complexity of the task, resource availability, and model

accessibility. In practice, the combination of both would work

best in numerous situations, as it provides the advantages of

both foundationally aligned fine-tuning and flexible control

through prompts. Further research in hybridization, more

automated prompt generation, and enhanced interpretability

mechanisms should also be further investigated in order to

better allow practitioners harness the unique strengths of each

strategy.

Srinivasa Kalyan Vangibhurathachhi / IJERET, 6(3), 09-15, 2025

14

5. Conflicts of Interest
I declare that there is no conflict of interest concerning the

publishing of this paper.

References
[1] M. A. K. Raiaan, M. S. H. Mukta, K. Fatema, N. M.

Fahad, S. Sakib, M. M. J. Mim, et al., "A review on large

language models: Architectures, applications, taxonomies,

open issues and challenges," IEEE Access, vol. 12, pp.

26839–26874, 2024, doi:

10.1109/ACCESS.2024.3365742.

[2] P. Kumar, "Large language models (LLMs): survey,

technical frameworks, and future challenges," Artif. Intell.

Rev., vol. 57, no. 10, p. 260, 2024. [Online]. Available:

https://doi.org/10.1007/s10462-024-10888-y

[3] G. B. Mohan, R. Prasanna Kumar, P. Vishal Krishh, A.

Keerthinathan, G. Lavanya, M. K. U. Meghana, et al., "An

analysis of large language models: their impact and

potential applications," Knowl. Inf. Syst., vol. 66, no. 9,

pp. 5047–5070, 2024. [Online]. Available:

https://doi.org/10.1007/s10115-024-02120-8

[4] Z. A. Nazi and W. Peng, "Large language models in

healthcare and medical domain: A review," Informatics,

vol. 11, no. 3, p. 57, Aug. 2024. [Online]. Available:

https://doi.org/10.3390/informatics11030057

[5] G. Menghani, "Efficient deep learning: A survey on

making deep learning models smaller, faster, and better,"

ACM Comput. Surv., vol. 55, no. 12, pp. 1–37, 2023.

[Online]. Available: https://doi.org/10.1145/3578938

[6] J. D. Velásquez-Henao, C. J. Franco-Cardona, and L.

Cadavid-Higuita, "Prompt engineering: A methodology

for optimizing interactions with AI-language models in the

field of engineering," Dyna, vol. 90, no. SPE230, pp. 9–

17, 2023.

[7] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A.

Chadha, "A systematic survey of prompt engineering in

large language models: Techniques and applications,"

arXiv preprint, arXiv:2402.07927, 2024. [Online].

Available: https://arxiv.org/abs/2402.07927

[8] E. Jiang, K. Olson, E. Toh, A. Molina, A. Donsbach, M.

Terry, and C. J. Cai, "Promptmaker: Prompt-based

prototyping with large language models," in Proc. CHI

Conf. Human Factors Comput. Syst. Extended Abstracts,

Apr. 2022, pp. 1–8. [Online]. Available:

https://doi.org/10.1145/3491101.3503564

[9] L. Wang, S. Chen, L. Jiang, S. Pan, R. Cai, S. Yang, and

F. Yang, "Parameter-efficient fine-tuning in large models:

A survey of methodologies," arXiv preprint,

arXiv:2410.19878, 2024. [Online]. Available:

https://arxiv.org/abs/2410.19878

[10] Z. Han, C. Gao, J. Liu, J. Zhang, and S. Q. Zhang,

"Parameter-efficient fine-tuning for large models: A

comprehensive survey," arXiv preprint, arXiv:2403.14608,

2024. [Online]. Available:

https://arxiv.org/abs/2403.14608

[11] Y. Luo, Z. Yang, F. Meng, Y. Li, J. Zhou, and Y. Zhang,

"An empirical study of catastrophic forgetting in large

language models during continual fine-tuning," arXiv

preprint, arXiv:2308.08747, 2023. [Online]. Available:

https://arxiv.org/abs/2308.08747

[12] Y. Liu, T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian, et al.,

"Summary of ChatGPT-related research and perspective

towards the future of large language models," Meta-

radiology, vol. 1, no. 2, p. 100017, 2023. [Online].

Available: https://doi.org/10.1016/j.metrad.2023.100017

[13] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G.

Mishra, A. Roberts, et al., "PaLM: Scaling language

modeling with pathways," J. Mach. Learn. Res., vol. 24,

no. 240, pp. 1–113, 2023.

[14] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M.

Usman, et al., "A comprehensive overview of large

language models," ACM Trans. Intell. Syst. Technol., pp.

1–69, 2023. [Online]. Available:

https://doi.org/10.1145/3744746

[15] S. Schulhoff, M. Ilie, N. Balepur, K. Kahadze, A. Liu, C.

Si, et al., "The prompt report: A systematic survey of

prompt engineering techniques," arXiv preprint,

arXiv:2406.06608, 2024. [Online]. Available:

https://doi.org/10.48550/arXiv.2406.06608

[16] N. D. Kulkarni and P. Tupsakhare, "Crafting effective

prompts: Enhancing AI performance through structured

input design," J. Recent Trends Comput. Sci. Eng.

(JRTCSE), vol. 12, no. 5, pp. 1–10, 2024.

[17] A. Webson and E. Pavlick, "Do prompt-based models

really understand the meaning of their prompts?," in Proc.

2022 Conf. North Am. Chapter Assoc. Comput.

Linguistics: Human Lang. Technol., pp. 2300–2344, July

2022.

[18] K. Chang, S. Xu, C. Wang, Y. Luo, X. Liu, T. Xiao, and J.

Zhu, "Efficient prompting methods for large language

models: A survey," arXiv preprint, arXiv:2404.01077,

2024. [Online]. Available:

https://arxiv.org/abs/2404.01077

[19] H. Ma, C. Zhang, Y. Bian, L. Liu, Z. Zhang, P. Zhao, et

al., "Fairness-guided few-shot prompting for large

language models," in Advances Neural Inf. Process. Syst.,

vol. 36, pp. 43136–43155, 2023.

[20] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G.

Neubig, "Pre-train, prompt, and predict: A systematic

survey of prompting methods in natural language

processing," ACM Comput. Surv., vol. 55, no. 9, pp. 1–35,

2023. [Online]. Available:

https://doi.org/10.1145/3560815

[21] C. Wang, Y. Yang, C. Gao, Y. Peng, H. Zhang, and M. R.

Lyu, "No more fine-tuning? An experimental evaluation of

prompt tuning in code intelligence," in Proc. 30th ACM

Joint Eur. Software Eng. Conf. Symp. Found. Software

Eng., pp. 382–394, Nov. 2022.

[22] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, et al.,

"Retrieval-augmented generation for large language

models: A survey," arXiv preprint, arXiv:2312.10997, vol.

https://doi.org/10.1007/s10462-024-10888-y
https://doi.org/10.1007/s10115-024-02120-8
https://doi.org/10.3390/informatics11030057
https://doi.org/10.1145/3578938
https://arxiv.org/abs/2402.07927
https://doi.org/10.1145/3491101.3503564
https://arxiv.org/abs/2410.19878
https://arxiv.org/abs/2403.14608
https://arxiv.org/abs/2308.08747
https://doi.org/10.1016/j.metrad.2023.100017
https://doi.org/10.1145/3744746
https://doi.org/10.48550/arXiv.2406.06608
https://arxiv.org/abs/2404.01077
https://doi.org/10.1145/3560815

Srinivasa Kalyan Vangibhurathachhi / IJERET, 6(3), 09-15, 2025

15

2, no. 1, 2023. [Online]. Available:

https://arxiv.org/abs/2312.10997

[23] S. Zhao, Y. Yang, Z. Wang, Z. He, L. K. Qiu, and L. Qiu,

"Retrieval augmented generation (RAG) and beyond: A

comprehensive survey on how to make your LLMs use

external data more wisely," arXiv preprint,

arXiv:2409.14924, 2024. [Online]. Available:

https://arxiv.org/abs/2409.14924

[24] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H.

Chan, and J. Ba, "Large language models are human-level

prompt engineers," in Proc. 11th Int. Conf. Learn.

Representations (ICLR), Nov. 2022.

[25] H. Strobelt, A. Webson, V. Sanh, B. Hoover, J. Beyer, H.

Pfister, and A. M. Rush, "Interactive and visual prompt

engineering for ad-hoc task adaptation with large language

models," IEEE Trans. Vis. Comput. Graph., vol. 29, no. 1,

pp. 1146–1156, 2022. doi: 10.1109/TVCG.2022.3209479

[26] N. Ding, Y. Qin, G. Yang, F. Wei, Z. Yang, Y. Su, et al.,

"Parameter-efficient fine-tuning of large-scale pre-trained

language models," Nat. Mach. Intell., vol. 5, no. 3, pp.

220–235, 2023. [Online]. Available:

https://doi.org/10.1038/s42256-023-00626-4

[27] A. Panigrahi, N. Saunshi, H. Zhao, and S. Arora, "Task-

specific skill localization in fine-tuned language models,"

in Proc. Int. Conf. Mach. Learn. (ICML), Jul. 2023, pp.

27011–27033. PMLR.

[28] H. Zheng, L. Shen, A. Tang, Y. Luo, H. Hu, B. Du, et al.,

"Learning from models beyond fine-tuning," Nat. Mach.

Intell., vol. 7, no. 1, pp. 6–17, 2025. [Online]. Available:

https://doi.org/10.1038/s42256-024-00961-0

[29] L. Xu, H. Xie, S. Z. J. Qin, X. Tao, and F. L. Wang,

"Parameter-efficient fine-tuning methods for pretrained

language models: A critical review and assessment," arXiv

preprint, arXiv:2312.12148, 2023. [Online]. Available:

https://doi.org/10.48550/arXiv.2312.12148

[30] B. Huber, G. Fazelnia, A. Damianou, S. Peleato, M.

Lefarov, P. Ravichandran, et al., "Embedding-to-Prefix:

Parameter-efficient personalization for pre-trained large

language models," arXiv preprint, arXiv:2505.17051,

2025. [Online]. Available:

https://doi.org/10.1609/aaai.v38i2.27830

[31] S. Bai, M. Zhang, W. Zhou, S. Huang, Z. Luan, D. Wang,

and B. Chen, "Prompt-based distribution alignment for

unsupervised domain adaptation," in Proc. AAAI Conf.

Artif. Intell., vol. 38, no. 2, pp. 729–737, Mar. 2024.

[32] R. R. Golani, "LLM fine-tuning vs prompt engineering for

consumer products," Int. J. Sci. Technol. (IJSAT), vol. 16,

no. 2, 2025.

[33] Z. R. K. Rostam, S. Szénási, and G. Kertész, "Achieving

peak performance for large language models: A systematic

review," IEEE Access, 2024.

[34] M. U. Hadi, R. Qureshi, A. Shah, M. Irfan, A. Zafar, M. B.

Shaikh, et al., "Large language models: A comprehensive

survey of its applications, challenges, limitations, and

future prospects," Authorea Preprints, vol. 1, no. 3, pp. 1–

26, 2023.

[35] J. Zheng, H. Hong, F. Liu, X. Wang, J. Su, Y. Liang, and

S. Wu, "Fine-tuning large language models for domain-

specific machine translation," arXiv preprint,

arXiv:2402.15061, 2024. [Online]. Available:

https://arxiv.org/abs/2402.15061

[36] C. Pornprasit and C. Tantithamthavorn, "Fine-tuning and

prompt engineering for large language models-based code

review automation," Inf. Softw. Technol., vol. 175, p.

107523, 2024.

[37] K. G. Barman, N. Wood, and P. Pawlowski, "Beyond

transparency and explainability: On the need for adequate

and contextualized user guidelines for LLM use," Ethics

Inf. Technol., vol. 26, no. 3, p. 47, 2024.

[38] T. T. Kim, M. Makutonin, R. Sirous, and R. Javan,

"Optimizing large language models in radiology and

mitigating pitfalls: Prompt engineering and fine-tuning,"

RadioGraphics, vol. 45, no. 4, p. e240073, 2025.

[39] Medium, “Prompt Engineering vs Fine-tuning vs RAG,”

Available at: https://medium.com/@myscale/prompt-

engineering-vs-finetuning-vs-rag-cfae761c6d06

[40] Zhang, N. Talukdar, S. Vemulapalli, S. Ahn & J. Wang,

“Comparison of Prompt Engineering and Fine-Tuning

Strategies in Large Language Models in the Classification

of Clinical Notes,” 2024, preprint. Doi:

https://doi.org/10.1101/2024.02.07.24302444;

[41] Khan, S., Noor, S., Awan, H.H. et al. Deep-ProBind:

binding protein prediction with transformer-based deep

learning model. BMC Bioinformatics 26, 88 (2025).

https://doi.org/10.1186/s12859-025-06101-8

[42] Govindarajan Lakshmikanthan, Sreejith Sreekandan Nair

(2022). Securing the Distributed Workforce: A Framework

for Enterprise Cybersecurity in the Post-COVID Era.

International Journal of Advanced Research in Education

and Technology 9 (2):594-602.

https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2409.14924
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-024-00961-0
https://doi.org/10.48550/arXiv.2312.12148
https://doi.org/10.1609/aaai.v38i2.27830
https://arxiv.org/abs/2402.15061
https://medium.com/@myscale/prompt-engineering-vs-finetuning-vs-rag-cfae761c6d06
https://medium.com/@myscale/prompt-engineering-vs-finetuning-vs-rag-cfae761c6d06
https://doi.org/10.1186/s12859-025-06101-8

