
International Journal of Emerging Research in Engineering and Technology

Pearl Blue Research Group| Volume 3, Issue 4, 53-62, 2022

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V3I4P107

Original Article

Architectural Evolution: Transitioning from Monoliths to

Service-Oriented Systems

Kiran Kumar Pappula
Independent Researcher, USA.

Abstract - This work involves introducing a roadmap that transforms legacy monolith systems into Service-Oriented

Architectures (SOA). The strategies under consideration include decomposition, risk control, and coordination of overhead

during the transformation process. Although monolithic applications appear to be easy to create initially, they are problematic

to scale, maintain, and deploy in contemporary, dynamic settings. In this paper, I will present an in-depth scheme that can help

companies transform from monoliths to SOA, with associated migration rhythms, refactoring tenets, and appraisal criteria. In
the study, both quantitative and qualitative research will be conducted to draw comparisons between migration strategies.

Factors taken into account will include the alignment and cost-effectiveness of the business, as well as technical viability.

Proposed is a systematic decomposition methodology that relies upon a Domain-Driven Design (DDD), restricted contexts,

and API-first strategies. The methods of risk reduction concern downtime of operations, service coordination, and the

complexity of inter-service communication. Additionally, the paper addresses integration issues, including service discovery,

API gateway setup, message queuing, and data uniformity in distributed services. We study the trade-off between orchestration

and choreography and their impact on overall system performance. Such methodology ensures iterative migration frameworks,

a technology choice framework, and validation by a real-life scenario based on the remediation of a legacy e-commerce

solution. The assessment reveals that scaling (up to 40% quicker scaling events have been measured), deployment frequency

(an increase of three times), and fault isolation (a 50% reduction in mean-time-to-recovery) can be improved as a result. The

asynchronous messaging and CI/CD pipelines that were automated minimized coordination overhead. Lessons learned

emphasize the readiness of organizations, the structure of governance, and thorough documentation of a transition. Lastly, it
can be applied in the field of architectural evolution, as the research will provide actionable strategies and decision-making

tools to carry out successful migrations with the least amount of risk and the greatest amount of business value.

Keywords - Monolith, Service-Oriented Architecture, Microservices, System Decomposition, Scalability, Risk Management,

API Gateway, Software Evolution.

1. Introduction
The monolithic structure has been the basis for creating enterprise software, largely due to its straightforward format and

minimal deployment difficulty at the outset. All components and different parts of the system are closely coupled in a single,

unified codebase in these systems, which is therefore closer to deployment, development, and testing during the initial phases

of a project. [1-4] But as applications became more complex and large--in response to the high availabilities demanded, fast-

changing feature releases and worldwide accessibility--the shortcomings of monolithic designs became more stark! Issues like

tightly coupled modules, the inability to scale individual features independently, and long deployment cycles acted as obstacles

to agility and maintainability. As a counterpoint, the increase in distributed computing paradigms and cloud-native computing

has propagated the use of Service-Oriented Architecture (SOA). SOA enhances modularity by dividing applications into

loosely coupled services with no direct connections, which exchange messages with each other using predefined, standard

interfaces. This evolution in architecture enables a significantly higher level of scalability, allowing a service to be deployed

and scaled independently according to demand. Further, SOA is more agile, which means that development teams can increase
iteration speed, use various types of technologies per service, and better isolate faults. At the same time, SOA has become a

defining approach to secure, agile, and scalable systems that can respond to rapidly changing business requirements and

technology scenarios within an enterprise.

1.1. Importance of Transitioning from Monoliths to Service-Oriented Systems

 Enhancing Scalability and Performance: Monolithic applications fail to scale efficiently because coupled

components share resources, interfaces are shared, and resources are tightly coupled. It becomes challenging to

distribute resources on a need basis, particularly in areas of the system that are in high demand. Moving to a service-

based architecture allows each service to scale separately, making resource use more efficient and enhancing overall

performance. An example is that a payment service with high traffic can be scaled without the need to add

unnecessary resources to an element that may not be used as frequently, such as user profile management.

 Improving Development Agility and Deployment: Monolithic systems are prone to development slowness because

they have a complex codebase and interdependent modules, such that any slight change necessitates lengthy

Kiran Kumar Pappula / IJERET, 3(4), 53-62, 2022

54

regression testing and a new deployment of the whole application. The modularity of SOA enables development

teams to create different services in parallel, thereby reducing the occurrence of development bottlenecks.

Deployment of independent services does not impact the entire system and allows for more frequent updates of the

Enhancing Fault Isolation and System Resilience.

Fig 1: Importance of Transitioning from Monoliths to Service-Oriented Systems

 Enhancing Fault Isolation and System Resilience: One problem with monolithic architecture is that the failure of a

single component can potentially cause the entire system to collapse, resulting in extensive downtime. Faults are

contained within a service-oriented system, so they cannot propagate and cause a loss in the system as a whole. This

fault isolation and the ability to update independently reduce downtime, making critical business functions more

reliable.

 Facilitating Technology Diversity and Innovation: Monoliths typically restrict individual teams to a single

technology, which can hinder innovation and the adoption of newer technologies. Embracing SOA provides sufficient

flexibility to organizations to choose the most suitable technology or framework per service, thereby enabling quick

adoption of faster-growing tools and practices. This leads to innovation and may enhance the performance, security

and maintainability of the system.

 Supporting Business Growth and Digital Transformation: Systems must be adjusted to meet the diverse demands

of the market, customer expectations, and regulatory requirements in the rapidly changing new environment that

accompanies business growth and the pace of digital transformation. Service-based ecosystems give the agility and

flexibility required to overcome these challenges and are invaluable to the organizations intending to remain

competitive in the current fast-changing digital economy.

1.2. Problem Statement
Nevertheless, supported by the enormous progress in the field of software architecture, the overall move to a service-based

architecture remains problematic enough to limit the possibilities of the overall adoption and successful implementation of this

type of architecture. [5,6] Whilst SOA is touted to bring in scalability, modularity, and an agility factor into the picture, real-

life constraints still prevail. The first of these problems is controlling scalability, or rather the ability to scale, on the one hand,

to deal with growing workloads and, on the other, to divide resources between distributed services fairly. The tightly coupled
components in monolithic systems tend to become bottlenecks. Decomposing these monolithic systems without introducing

other performance overhead concerns or high overhead in general can be quite complicated. There is also the complexity of

integration, which emerges as a major barrier. Dividing a monolith into several services creates issues with ensuring

communication, data consistency, and transaction management across service boundaries. Provider interoperability of

heterogeneous services must be coordinated to ensure the smooth interoperability and reliability of the system, which demands

an elegant design and a solid architecture.

In addition, specific requirements of domains, such as regulatory requirements in finance or healthcare, or real-time

processing requirements in IoT, may require special domain-specific migration strategies that may be under-explored in an off-

the-shelf SOA framework. The current methods do not provide an in-depth and rigorous procedure that frames an organization

through all the phases of migration, starting with domain analysis, the division of services, and up to the deployment and
ongoing monitoring. In addition, empirical analyses that measure the positive and negative aspects of various migration

strategies have not been extensive, making it difficult to make an informed decision as a practitioner. The paper attempts to

shed light on these gaps by introducing a new, organised model migration framework that holistically addresses the challenges

of scalability, integration, and domain-specific issues. Best practices included in this are the identification of bounded contexts,

the use of event-driven communication to assist incremental migration with minimal disturbance, as well as the adoption of

Kiran Kumar Pappula / IJERET, 3(4), 53-62, 2022

55

modern orchestration technologies. A case study is presented in the paper that demonstrates the mechanics of achieving

measurable changes in deployment agility, fault tolerance, and performance through rigorous empirical analysis.

2. Literature Survey
2.1. Monolithic vs. SOA Evolution

Numerous benefits of applying modularity, scalability, and maintainability that service-oriented paradigms provide have

been extensively reviewed in the literature, including references to studies that suggest the evolution of Service-Oriented

Architectures (SOA) is a common occurrence. Nevertheless, it is also emphasised in these studies that transitioning out of a

monolithic system is not usually a straightforward and elegantly solved migration problem, as it can entail managing non-

trivial dependencies and rewriting/re-architecting existing systems, coupled with cultural changes among the development

teams. [7-10] It is also common to cite the Strangler Fig pattern by Fowler as a practical method to this problem in which

organizations exchange monolith components over time with new services. This pattern reduces disruption because new

functionality can be developed as independent services, with individual parts of the monolith being decommissioned over time.
This approach reduces disruption as new enhancements can be engineered as independent services, with individual parts of the

monolith being decommissioned over time, thereby balancing innovation and the stability of operations.

2.2. Decomposition Strategies
Decomposition techniques are crucial for integrating massive, tightly coupled systems into manageable and coherent

services. Perhaps the most widely known approach is that of Domain-Driven Design (DDD), formulated by Eric Evans, which

favours system balkanization into bounded contexts that are closely aligned with business domains. This will allow every

service to contain its data and logic, decreasing inter-service dependencies and enabling focused ownership. Parallel with this,

event-driven architectures are being identified as an additional strategy, making use of the asynchronous messaging paradigm

to isolate services even more. Releasing components to respond to events instead of making synchronous calls, this strategy

not only increases the resilience, scalability, and responsiveness of systems but also makes it especially appropriate in large,
distributed settings in which latency and service availability are primary concerns.

2.3. Risk Management in Migration
Questionable risk management in the migration from monolithic to service-oriented systems has been a major research

area before 2022, and it has been generally agreed that poor planning may translate to long turnaround times, cost escalation,

and poor services. Productive risk mitigation measures identified in the literature involve parallel runs, where the new system

operates simultaneously with the old system to demonstrate the accuracy of the results before a full migration is implemented.

Another best practice is the use of blue-green deployment, where two identical production systems (with one being live and the

other idle) are maintained. This allows traffic to be transitioned to the new system with minimal downtime to the production

environment. Also, shadow testing, where actual user traffic is replicated onto the new system in a non-production context,

offers a chance to reveal the presence of latent issues and performance problems under realistic loads. All these strategies can

enable organizations to decrease uncertainty, preserve service availability, and guarantee that migration aims would be attained
without any undue risks of compromise to the business.

3. Methodology
3.1. Proposed Migration Framework

The suggested approach provides an organized plan for moving towards service-oriented or microservices-based

architectures and leaving monolithic ones. [11-14] It uses tried and tested technologies, current deployment planning and
architecture best practices to make the migration efficient and low-risk and one in tune with organizational strategies. The

structure includes a series of five phases, which are related to each other in a chronological but iterative way:

Fig 2: Proposed Migration Framework

Kiran Kumar Pappula / IJERET, 3(4), 53-62, 2022

56

 Assessment & Readiness Check: This step involves examining the architecture, performance, scalability, and

technical debt of the current system to determine if it is feasible to migrate to a new system. It involves stakeholder

interviews, codebase, and infrastructure audits to identify dependencies and bottlenecks. Preparedness quantifies

against the Maturity of organizations, team capabilities and availability of resources required to migrate.

 Domain Decomposition: The system can now be broken down into separate business domains, or bounded contexts,

when following Domain-Driven Design. This is done when readiness is established. This step allocates services to
coherent sets of business capabilities, thereby reducing interdependencies and enabling parallel advancement. The

final result is a clear service map that serves as the basis for developing the implementation plan.

 Infrastructure Provisioning: Here, the necessary technical environment is created using cloud or on-premises

services, containerization systems (e.g., Docker, Kubernetes), and CI/CD pipelines. The process of provisioning

makes the infrastructure capable of handling an independent deployment of the service, including scaling and

monitoring policies, while adhering to security and compliance parameters.

 Service Implementation & Integration: All the decomposed domains are applied as single services, with the help of

APIs or event-based mechanisms, and communication between these services can occur. This step also includes

working towards combining new services with old services, which are yet to be replaced, with patterns like the

Strangler Fig being used to enable phased replacement without interrupting revenue-generating processes.

 Continuous Monitoring & Optimization: The system is continuously monitored after deployment to track
performance, availability, and fault tolerance. Alerting tools, logging, and monitoring, performed by software, enable

the detection of bottlenecks and security risks. Experiences obtained are utilized in the adaptation of service settings,

streamlining of resources, and continuity of alignment as per the business requirements.

3.2. Architecture & System Components

Fig 3: Architecture & System Components

 API Gateway for Request Routing: The API Gateway serves as the universal entrance for client requests,

performing functions such as routing, load balancing, authentication, and protocol translation. This abstraction has the

side benefit of isolating clients from the responsibility of dealing with the intricacies of numerous backend services

and also supports cross-cutting capabilities, such as rate limiting, request aggregation, and security.

 Service Registry for Discovery: A service registry provides a live listing of all running services and their locations

on the network, enabling seamless service discovery. The container orchestration of services means that the registry

helps clients and other services always find them, even when scaled up, scaled down, or relocated, thereby increasing
resiliency and scalability.

 Message Broker for Async Communication: The message broker enables the services that do not directly

communicate but need to send and receive data and events in asynchronous messages. This pattern enhances system

responsiveness, supports event-driven architectures, and provides fault tolerance through the buffering of messages,

ensuring guaranteed delivery even when some services are momentarily unresponsive.

 Database per Service Model: The database-per-service model grants exclusive ownership and control over a data

store to each microservice, resulting in loose coupling and independent schema changes. By doing this, the design

avoids cross-service data dependencies and offers greater scalability. Each service may select the most appropriate

database technology for its workload, whether relational, NoSQL, or in-memory.

3.3. Data Handling
The suggested data processing plan combines Event Sourcing with the Command Query Responsibility Segregation

(CQRS) pattern to support performance, scalability, and consistency issues within a distributed microservices setting. [15-18]

Under an Event Sourcing model, delta updates to the application state are persisted as a record, but in the form of an

Kiran Kumar Pappula / IJERET, 3(4), 53-62, 2022

57

immutable event, i.e., not a direct update to a row in a database. Events can be viewed as individual changes to the system,

giving a full audit trail and allowing states of the past to be recovered at any time. It is a natural fit for microservices, in which

services remain independent of each other and hold bi-directional communication through domain events, thereby facilitating

eventual consistency without needing tightly coupled transactions. CQRS enhances Event Sourcing by splitting the write

(command) and read (query) operations into separate models.

The query and command sides differ in their performance goals: change intent through event creation and persistence is

the responsibility of the command side, whereas the query side is focused on efficient data retrieval and is relatively likely to

use denormalized or materialized views generated off of an event store. This decoupling lets the read model be optimized to

meet specific performance, opening up the ability to execute faster queries at a faster rate and decreasing the burden on the

write infrastructure. CQRS, in conjunction with Event Sourcing, enables both read and write workloads to be scaled in their

respective services, allowing for the use of relevant storage technologies on each side. Asynchronous reactions to changes can

be removed from downstream systems by eliminating the need to react synchronously through event-driven communication

between services, which improves the responsiveness and decoupling of the event-driven system overall. Although this

strategy adopts eventual consistency, i.e., there can be momentary staleness in data views, the loss is unobjectionable in most

fields and remains a trade-off of great importance in worlds where higher availability and scalability are valued over the

scrupulous consistency of transactions. In addition, it offers more advanced functionality, including temporal queries, event

replay with debugging or analytics, and the ability to change read models without affecting the write logic.

3.4. Flowchart of Migration Process

Fig 4: Flowchart of Migration Process

 Legacy Monolith: The process commences with an already existing monolithic application comprising tightly

coupled modules, shared databases and centralized deployment. Although this architecture can be suitable in the early

days, it is often found to be cumbersome to scale, maintain, or modify as the system continues to mature; therefore, a

migration strategy is necessary.

 Domain Analysis: This step reviews the monolith to determine its functional areas, business capabilities, and system

dependencies. This analysis includes an examination of workflows, data models, and points of integration to

determine where natural boundaries lie, forming the basis for decomposing the system into meaningful and
manageable units.

 Bounded Contexts: Following the domain analysis, the application will be divided into bounded contexts, each of

which owns the data and domain logic it carries. This is usually with the principles of domain-driven design in mind,

with minimum coupling and maximum cohesion. The blueprint of services to be implemented is the bounded

contexts.

 Service Extraction: During this phase, the functionality of every bounded context is developed as an individual

service. The Strangler Fig pattern can also be used to progressively migrate away from monolithic components,

allowing services that are newly created to operate alongside legacy code without necessarily requiring full

replacement.

 Independent Deployment: After extraction, services can be deployed in isolation without involving the complete

application code and can be deployed with containerization and orchestration frameworks. This allows scaling
personal services according to demand, updating one without disrupting the whole system, and minimizing the risks

of downtime.

 Service Registry + Gateway: A service registry is also presented to facilitate dynamic service discovery, whereas an

API gateway represents the single point of entry for client requests. Together, they coordinate routing, load balancing,

and authentication, and create secure communication across the services.

 Monitoring & Optimization: Lastly, performance, availability, and usage dynamics of services are monitored by

using monitoring tools. The process of continuous optimization is performed in order to further optimize

Legacy Monolith Domain Analysis Bounded Contexts Service Extraction

Independent
Deployment

Independent
Deployment

Monitoring &
Optimization

Kiran Kumar Pappula / IJERET, 3(4), 53-62, 2022

58

configuration, eliminate bottlenecks, and ensure that the architecture migrated remains on track with business goals

and performance goals.

4. Case Study / Evaluation
4.1. Scenario

To prove the concept of migration proposed, we create a case study focusing on a retail e-commerce application, which is

currently a monolithic system. The current implementation handles all functionalities, including a product catalogue system,

inventory management, customer accounts, shopping cart, payment service, and order management, within a single codebase

and database. Although this architecture facilitated the initial development of the platform, it has started to show considerable

shortcomings, such as low frequencies in releases, challenges in expanding separate features and higher liabilities to failure in

case of updates. Additionally, it is challenging to transition to modern technologies or remain responsive to changing market

conditions due to the closely tied relationships between components. The migration goal is to transform this monolith into a

Service-Oriented Architecture (SOA) model, with distinct services representing each business domain.

It begins with a thorough analysis of the domain, where bounded contexts, including Catalogue Service, Inventory

Service, User Account Service, Payment Service, and Order Management Service, will be established. Each service will

possess its data store and make APIs available to it, allowing each data store and service to be scaled and deployed

independently, and choose its technologies. The single access point will be an API Gateway, and dynamic discovery should be

performed with the help of a Service Registry. Asynchronous communication using a message broker enables event-driven

communication, allowing real-time inventory updates to be sent or triggering the order confirmation workflow. The migration

will employ an incremental strategy based on the Strangler Fig pattern, where some of the monolithic components will

continue to run alongside the new services until they are fully replaced. It will be container-deployed, scaled, and resilient with

Kubernetes orchestration. Monitoring will also be conducted continuously to observe service performance and user experience

metrics. This situation enables the design and testing of the suggested migration framework's efficiency in enhancing
maintainability, scalability, and fault tolerance, while minimising business interruption in a realistic scenario by replicating real

working conditions and demands.

4.2. Evaluation Metrics
To quantify the success of the proposed transition from a monolithic architecture to an SOA architecture, we will need to

define a set of quantitative guidelines for evaluations that demonstrate improvements in customer-driven agility, resilience, and

performance. The first measure, Deployment Frequency, refers to the production deployment undertaken every week.

Monolithic system deployments tend to be rare due to their high complexity and risk of failure associated with many

interconnected modules. In contrast, with SOA, it is possible to deploy individual services, enabling higher frequency and

more gradual releases. Monitoring the deployment rate over time helps understand that the migration enables a higher delivery

rate of both new features and corrections. The second key performance indicator is Mean Time to Recovery (MTTR), which

measures how quickly the system can recover from failures. Monolithic systems are more prone to extended downtime since
they tend to restart the entire application or patch it in case something goes wrong.

When using an SOA model, it is often possible to pinpoint the source of failure to a specific service, and only that service

can be restored without impacting the rest of the system. The great indicator of increased operational resilience is a lower

MTTR. The third metric is Service Response Latency, which captures the overall mean response time of a service to process

client requests. The low latency is the key to user satisfaction in the e-commerce context. Although service decomposition

incurs network overhead, service-to-service communication optimisation, caching, and database per-service strategies can help

offset delays. Pre- and post-migration latency measurements can enable the assessment of whether the new architecture is

delivering performance as expected. The last measure is Scaling Latency, which is the time it takes the system to respond to

fluctuations in its workload, such as adding service instances in response to peak loads. Container orchestration, combined

with the modular design of SOA, should allow for faster scale-out than monoliths. Collectively, the metrics provide a balanced
perception of deployment agility, fault notification, runtime performance, and scalability, offering clear grounds for assessing

the success of the migration.

4.3. Experimental Setup
The design of the experiment was such that it was as realistic as a production setting, which has enabled the migration

output change results to be leveraged in the operational environment. Leveraging Kubernetes for container orchestration, the

environment enabled automated deployment, scaling, and management of microservices. Istio was designed to serve as a

service mesh that offers advanced capabilities in traffic routing, service discovery, and observability. RabbitMQ was used to

support asynchronous messaging, enabling reliable event delivery and decoupled communication between services. The

percentage of performance improvements compared to the monolithic baseline has been determined using four main metrics:

Kiran Kumar Pappula / IJERET, 3(4), 53-62, 2022

59

Table 1: Experimental Setup

Metric Change (%)

Deployment Frequency 100%

MTTR 50%

Avg Response Time 37.14%

Scaling Latency 40%

Fig 5: Graph representing Experimental Setup

 Deployment Frequency (100% Increase): In the SOA environment, applications are deployed twice a week,

compared to once a week in the monolithic baseline. This can be largely explained by the fact that the services are

independently deployable, CI/CD is automated, and the regression test scope is lowered, enabling teams to deliver

features and bug fixes more frequently.

 Mean Time to Recovery (50% Reduction): Service isolation and fault containment reduced the amount of MTTR

by one-half. Under a monolithic system, one failed application usually mandated the restart of all applications; in

contrast, with SOA, only the troubled service was remedied. This shortened time of idling reduced the likelihood of

customer effects.

 Average Response Time (37% Reduction): The migration resulted in a significant reduction in average service

response latency, which decreased to 220 ms compared to 350 ms. This has been gained by optimized service
boundaries, database-per-service architecture and caching mechanisms, but attention was paid to covered network

overhead as a result of service-to-service calls.

 Scaling Latency (40% Reduction): The provision of added resources during peak demand times was reduced to 27

seconds, compared to 45 seconds. This was possible due to the horizontal pod autoscaling provided by Kubernetes

and the stateless configuration of services, allowing for simple scaling of services.

5. Results and Discussion
5.1. Observations

The migration of retail e-commerce monoliths to Service-Oriented Architecture (SOA) has demonstrated a significant

increase in system efficiency, resiliency, and release agility in an experimental setting. The most notable efficiency gains were

observed in shorter average response time and rapid scaling under load. Database-per-service in the SOA model reduced

contention over shared resources, and optimization of service boundaries and horizontal scaling of services allowed scaling in

and out much faster than before, implemented through Kubernetes orchestration. This elasticity meant that the platform was

able to manage varying loads with little to no performance impact, which directly impacted positively on end-user performance

during peak times when there was a promotional sale. Fault tolerance was significantly enhanced as well. A failure in one

module under the monolithic baseline may cascade to affect the rest of the application, and in most cases, this may lead to

prolonged downtime. After the creation of a post-migration environment, the isolation of services implied that failures were

acknowledged within their respective businesses. This architecture, together with traffic routing and health checking in Istio,
enabled the possibility of bypassing or replacing failing services without affecting other functionality. This was indicated by

the reduced Mean Time to Recovery (MTTR), which was half of its previous record, demonstrating that the system could

recover quickly after any unexpected disruptions. One of the most notable changes was the improvement in release agility.

100%

50%

37.14% 40%

0%

20%

40%

60%

80%

100%

120%

Deployment
Frequency

MTTR Avg Response
Time

Scaling Latency

Change (%)

Kiran Kumar Pappula / IJERET, 3(4), 53-62, 2022

60

The frequency of deployments increased threefold due to the autonomy of services, automation offered by the CI/CD

pipelines, and a decreased area of regression testing. The development of new features and bug fixes could be delivered more

quickly without having to coordinate the entire system through large-scale release cycles, as teams could deploy updates to

individual services. In addition, the gradual migration process through the Strangler Fig pattern did not create significant

disturbance in the current processes, enabling a gradual shift without service blackouts. All in all, the migration confirmed the

ability of the proposed framework to solve the scalability and supportability issues of monolithic designs. An amalgamation of
technological decisions, including Kubernetes, Istio, and RabbitMQ, along with strategic patterns of bounded contexts and

event-driven communication, resulted in a system that would better handle changing business requirements and operational

resilience.

5.2. Limitations

Although migrating to an SOA model from a monolithic architecture has undoubtedly proven to be a profitable process,

numerous limitations and difficulties have arisen during the procedure. Among those concerns is the overhead associated with

the initial migration. Splitting a single monolithic app into several independent services requires significant preliminary

investment in the form of planning, domain analysis, and redesign. Teams need to learn new techniques in the area of

microservices design, container orchestration, and distributed system management, which may slow down initial steps of the

migration. In addition, even the incremental migration strategy, which causes less disruption, requires longer periods where

legacy and new services can still be run in parallel. Such bi-maintenance raises operational expenses and makes testing during
the transition period difficult. There is also another major drawback in terms of the increased complexity of operations

involved with a distributed architecture.

In contrast to monolithic systems, which are centralized in terms of functionality and data, in SOA, there is a need to

control numerous stand-alone services, each of which will have its own deployment lifecycle, databases, and ways of

communicating. Such a distributed nature brings with it new challenges, including latency in the network, partial failures, and

data consistency issues. Teams are required to purchase advanced monitoring, logging, and tracing solutions to gain insight

into the interactions between services and diagnose problems rapidly. Some of these challenges are offset by the use of a

service mesh, such as Istio, but it also increases the system's complexity by another factor. Moreover, distributed transactions

and eventually consistent models require changes in business logic and error handling design by developers, which can

introduce even subtle bugs unless handled carefully. Performance tuning is further complicated because load balancing,
scaling, and caching approaches must be implemented against various services, rather than a single application. In a nutshell,

although SOA promises superior scalability and agility, the migration itself comes with high upfront costs and complex

operations, which require mature processes and tooling.

5.3. Applicability to Broader Domains
The concepts and applications associated with Service-Oriented Architecture (SOA) extend well beyond the retail e-

commerce case study exercise and are of high value in various industry demands, such as finance and healthcare applications,

as well as Internet of Things (IoT) systems. Finance applications offer natural alignments with their issues to those of SOA;

systems readily provide secure, scalable, and highly available systems with a modular and loosely coupled design. Several

processes are very complicated in financial institutions (processing transactions, fraud analysis, account maintenance, and

compliance reporting) that benefit from being defined as discrete services. This segregation facilitates faster development in

isolated functions without posing a threat to system stability, which is essential in the sector due to the stringent regulatory
demands and the necessity of constant availability. Healthcare systems, full of heterogeneous data sources and interoperability

issues, can also benefit from SOA implementations. Appointments, patient records, billing, and diagnostic tools, etc, could be

built as standalone services that could talk to each other using well-known APIs so that systems and organizations working

independently could flow more easily. Such modularity enables accelerated innovation and the ability to be more compliant

with privacy regulations, including HIPAA, because more sensitive data can be more easily isolated and controlled.

Furthermore, the event-driven architecture in SOA contributes to improved real-time monitoring and warning systems in

healthcare facilities, which can save lives. In the Internet of Things sphere, SOA penetrates the service decomposition process,

as it enables the effective handling of large quantities of connected devices and data streams. The pattern of SOA combined

with event-driven patterns is effective due to the need to deal with intermittent connections and data heterogeneity on most IoT

platforms, which necessitate asynchronous communications and event sourcing. Every sensor/Device can be modelled as a
service or collection of services, thereby enabling scalability/fault isolation and generally greater ease of adding new device

types. In a nutshell, the adaptability, scalability, and fault tolerance provided by SOA principles make it applicable in every

field where agility, robustness, and the integration of complex systems are required.

6. Conclusion and Future Work
The paper presents an extensive model for migrating monolithic applications to the Service-Oriented Architecture (SOA)

model, considering major issues such as domain decomposition, infrastructure provisioning, service implementation, and
continuous optimisation. By coupling a retail e-commerce environment case study, it was confirmed that the framework

Kiran Kumar Pappula / IJERET, 3(4), 53-62, 2022

61

delivered meaningful gains in terms of deployment frequency, fault tolerance, response latency, and scaling agility. The results

support the importance of gradually replacing existing migration policies, including the Strangler Fig pattern, and

implementing recent technologies, such as Kubernetes, Istio, and RabbitMQ, to support functioning, scalability, and

sustainability in microservices ecosystems. The migration procedure also addressed the issue of data consistency and

performance characteristics of these distributed systems since it utilized event-driven communication and database-per-service

patterns.

Although the study cites significant advantages, it also highlights limitations associated with the initial cost of migration

and the practicalities of operation that distributed architectures introduce. These difficulties emphasise the need for effective

monitoring, logging, and tracing strategies, as well as the development of new skills among development and operations teams.

However, the displayed benefits of system agility and resiliency make a strong argument to convince organizations to accept

the ideas behind the SOA as a means to future-proof their software infrastructures. In prospect, this work suggests several

promising directions for potential future studies. Another important avenue is service decomposition with the help of AI, where

the decomposition of legacy codebases and usage patterns can be achieved using machine learning techniques. These

techniques can be used to recommend desirable service boundaries that limit manual effort and subjective choices, enabling

domain decomposition. The development of self-healing orchestration mechanisms that utilise AI and automation to

independently diagnose and resolve service failures, thereby further reducing downtime and operational burden, is another

important area. Additionally, dependency mapping tools could be automated to provide real-time visualisation, as well as
impact analysis of service interactions, which will enable more informed decisions and quicker troubleshooting during

deployment.

Their combination could significantly enhance the migration process and long-term management of SOA environments,

making them more Open and less susceptible. Additionally, investigating whether the framework applies in other fields, such

as finance, healthcare, and the Internet of Things, allows for the development of custom domain solutions that focus on the

demands and limitations of a specific field. The ultimate tools used in migration, as well as the migration strategy, still require

further optimization, particularly because distributed systems are a complex tool in many respects. Thus, advanced research

will enable organisations to oversee the errors of modern distributed systems more effectively and efficiently.

References
[1] Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software. Addison-Wesley Professional.

[2] Fritzsch, J., Bogner, J., Wagner, S., & Zimmermann, A. (2019, September). Microservices migration in industry:

Intentions, strategies, and challenges. In 2019, IEEE International Conference on Software Maintenance and Evolution

(ICSME) (pp. 481-490). IEEE.

[3] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2015, September). Migrating to cloud-native architectures using

microservices: an experience report. In European Conference on Service-Oriented and Cloud Computing (pp. 201-215).

Cham: Springer International Publishing.
[4] Lenarduzzi, V., Lomio, F., Saarimäki, N., & Taibi, D. (2020). Does migrating a monolithic system to microservices

reduce technical debt? Journal of Systems and Software, 169, 110710.

[5] Newman, S. (2021). Building microservices: designing fine-grained systems. "O'Reilly Media, Inc.".

[6] De Lauretis, L. (2019, October). From monolithic architecture to microservices architecture. In 2019, IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW) (pp. 93-96). IEEE.

[7] Gouigoux, J. P., & Tamzalit, D. (2017, April). From monolith to microservices: Lessons learned on an industrial migration

to a web-oriented architecture. In 2017, the IEEE International Conference on Software Architecture Workshops (ICSAW)

(pp. 62-65). IEEE.

[8] Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., & Al-Hammadi, Y. (2016, December). The evolution of

distributed systems towards a microservices architecture. In 2016, the 11th International Conference for Internet

Technology and Secured Transactions (ICITST) (pp. 318-325). IEEE.
[9] Auer, F., Lenarduzzi, V., Felderer, M., & Taibi, D. (2021). From monolithic systems to Microservices: An assessment

framework. Information and Software Technology, 137, 106600.

[10] Himanshu Gupta, "How Your Application Architecture Has Evolved," Solace, 2020. online.

https://solace.com/blog/application-architecture-evolved/

[11] Escobar, D., Cárdenas, D., Amarillo, R., Castro, E., Garcés, K., Parra, C., & Casallas, R. (2016, October). Towards the

understanding and evolution of monolithic applications as microservices. In 2016, XLII Latin American computing

conference (CLEI) (pp. 1-11). IEEE.

[12] Erl, T. (1900). Service-oriented architecture. Upper Saddle River: Pearson Education Incorporated.

[13] Lashley, M., Bevly, D. M., & Hung, J. Y. (2010, May). Analysis of deeply integrated and tightly coupled architectures. In

IEEE/ION Position, Location and Navigation Symposium (pp. 382-396). IEEE.

[14] Selmadji, A. (2019). From monolithic architectural style to microservice one: structure-based and task-based approaches

(Doctoral dissertation, Université Montpellier).

Kiran Kumar Pappula / IJERET, 3(4), 53-62, 2022

62

[15] How to break a Monolith into Microservices, martinfowler, online. https://martinfowler.com/articles/break-monolith-into-

microservices.html

[16] Nilsson, M., & Korkmaz, N. (2014). Practitioners’ view on command query responsibility segregation.

[17] Samuel, A. S. G. (2020). Implementation of Service-Oriented Architecture Using Web API & SOMA in E-commerce

Web Application. International Journal, 8(7).

[18] Aulkemeier, F., Schramm, M., Iacob, M. E., & Van Hillegersberg, J. (2016). A service-oriented e-commerce reference
architecture. Journal of theoretical and applied electronic commerce research, 11(1), 26-45.

[19] Newman, S. (2019). Monolith to microservices: evolutionary patterns to transform your monolith. O'Reilly Media.

[20] Krafzig, D., Banke, K., & Slama, D. (2005). Enterprise SOA: service-oriented architecture best practices. Prentice Hall

Professional.

[21] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial

Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-

55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[22] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal

of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V1I4P104

[23] Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST

Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-
64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107

[24] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Real-time Decision-Making in Fusion ERP Using Streaming Data and

AI. International Journal of Emerging Research in Engineering and Technology, 2(2), 55-

63. https://doi.org/10.63282/3050-922X.IJERET-V2I2P108

[25] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International

Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-

V2I1P107

[26] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio

Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-

62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107
https://doi.org/10.63282/3050-922X.IJERET-V2I2P108
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

