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Abstract - Federated Learning (FL) is a new method in the machine learning context that enables the training of models on 

decentralized devices with local data samples without transferring them. This conceptual shift offers significant benefits in 

terms of privacy protection, scalability, and the distribution of computing. This paper provides a detailed analysis of 
Federated Learning in practice, focusing on its architecture, protocols, methods for maintaining privacy, and practical 

applications. The literature reviews commence with the inspiration of FL, driven by increasing concerns about data protection 

laws such as GDPR and HIPAA. We talk about how FL can help in mitigating centralized data breaches by allowing edge 

devices to jointly learn a common model of prediction, but without performing the model training off-device. An extensive 

survey of the literature is provided, covering the current state of the art and systems that existed prior to 2022. The paper then 

proceeds to the methodology of FL, further describing the model aggregation techniques (FedAvg, FedProx), the design of the 

systems, and secure multi-party computation. We further present simulation and real-time experiment results on FL stays, such 

as TensorFlow Federated and PySyft. By applying a comparative study, the research establishes the potential of FL in sectors 

such as healthcare, finance and intelligent devices. Final observations indicate that through FL, an important privacy issue is 

resolved; however, open issues remain, including model drift, communication overhead, and heterogeneity. This paper serves 

as a primary source for scientists and others seeking to understand and apply federated learning in privacy-conscious settings. 

 
Keywords - Federated Learning, Privacy-Preserving Machine Learning, Distributed Systems, Model Aggregation, Edge 

Computing, GDPR, Differential Privacy. 

 

1. Introduction 
With the advent of data generation everywhere and the collection of personal and sensitive information being done 

incessantly by devices, applications, and services, data privacy has become a significant concern. The conventional methods of 
implementing data-driven technologies are under threat as users become increasingly aware of their data and its applications, 

and regulatory tools become more stringent regarding specific compliance requirements. [1-3] The General Data Protection 

Regulation (GDPR) in the EU and the Health Insurance Portability and Accountability Act (HIPAA) in the United States are 

examples of regulations that will heavily restrict the ways in which data is worked with, particularly sensitive information on 

individuals and those with pre-existing conditions. Under these circumstances, centralized machine learning that is based on 

gathering the data of various sources at one point, where the model can be trained, usually fails to satisfy privacy standards. 

The problem with centralized data store is the likelihood of breaches, misuse and non-adherence to legal structures.  

 

Such issues are especially acute in areas such as healthcare, finance, and telecommunications, where the sensitivity of data 

and its ownership play a crucial role. This has led to the increased need for learning paradigms that have the capacity to 

capitalize on the value of distributed data without compromising privacy. This change has resulted in the introduction of 

Federated Learning (FL), a decentralized methodology that allows collaborative training of a shared model in many clients or 
organizations without necessarily having raw data leave its location of origin. FL is also a step toward solving most of the 

weaknesses of centralized learning because it guarantees data locality and enables native support of privacy regulation by 

default, which makes it an even more applicable solution to the current data-informed society. 

 

1.1. Importance of Federated Learning in Practice 

Real-life applications based on FL have gained significance because of the unique capabilities to add the capabilities of 

machine learning, high levels of privacy and use data in a decentralized fashion. The main practical reasons that explain why 

FL is becoming popular in various industries are given below: 

 Data Privacy and Compliance: Among the strongest arguments in favour of implementing FL is the fact that it has 

an automatic feature for safeguarding user privacy. Unlike the traditional centralized learning, where raw data has to 

be offloaded to a central server, FL does not involve the transfer of data to a central server. Rather, training of the 
models is done locally on user devices or institutional servers, with only the updates being transmitted. This solution 

is especially worthwhile within the context of fields with highly regulated data, such as the GDPR or HIPAA, 
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particularly when transferring sensitive data to another jurisdiction or institution. Because data remains local, FL 

makes organizations compliant and continues to receive benefits in improving their collective models. 

 

 
Fig 1:  Importance of Federated Learning in Practice 

 

 Real-Time Learning on Edge Devices: As edge computing and smart devices, including smartphones, wearables, 
and Internet of Things sensors, become more prevalent, models that can learn and adjust in real-time are increasingly 

in demand. FL supports on-device training so that models can be customized using local data that does not require 

continuous connectivity and central infrastructure. This results in better responsiveness, reduced latency, and 

improved user experiences on applications such as predictive keyboards, voice recognition, and health monitoring. 

 Scalability and Resource Efficiency:  FL is very scalable owing to the fact that it uses the power of the distributed 

computers instead of using a centralized data center. Such a distribution of workload not just minimizes the server-

side-based processing but also eases the learning process, further upsurging resilience and cost-effectiveness. FL is 

particularly suitable for systems with millions of devices, as seen with Google and Apple. 

 Collaboration Across Institutions: In fields such as healthcare, finance, and research, multiple institutions may be 

interested in joint action regarding a machine learning task without sharing their proprietary or confidential data. FL 

also provides cross-silo collaboration, meaning institutions can collaboratively train models while remaining data 
sovereign. This brings innovation opportunities that do not break the trust or security. 

 

1.2. Building Collaborative Models While Preserving Privacy 

 In this era of a global interconnected network, it is vital to be able to develop strong machine learning models that utilise 

multi-source data information to achieve high accuracy and generalizability. Nevertheless, the process of storing information 

of multiple users or organizations in one place usually contradicts the privacy requirements, the ownership of the data, and 

legislation. [4,5] This poses a major problem to organizations that must share information without the risk of data 

confidentiality. Federated Learning (FL) offers a convenient and novel way for numerous parties to benefit from collaborative 

training of a shared model without revealing their raw data. A model with this configuration is trained locally by each client, 

whether it is a mobile device, a hospital, or a financial institution, using its proprietary data. The updates address only the 

model updates (such as the gradients or weights) and are then sent to a central server, where they are consolidated to update the 

main, global model. The method will make sure that data is never removed from the client device or institution, and thus 
leakage and unauthorized access to data are minimized.  

 

The real power of the FL lies in its compatibility with advanced privacy-enhancing technologies, such as Differential 

Privacy (DP) and Secure Multi-party Computation (SMPC). The practices introduce additional verification biases; thus, the 

updates provided to the collective models cannot be used retroactively to provide unauthorised access to confidential 

information. Consequently, FL enables organizations to access the collective wisdom of decentralized sources of data without 

going against the privacy regulations, such as GDPR and HIPAA. It is especially useful in areas such as medicine, banking, 

and intelligent infrastructure that handle sensitive data but require sharing knowledge. In addition to that, FL also builds trust 

among the participants and allows collaboration with competitors or even cross-border partners with zero concerns about 

leaking proprietary information. This way, it fosters a more inclusive and equitable development of AI, with underrepresented 

or isolated sources of data able to contribute high-quality representations to more comprehensive models, while retaining 
control of their data. 
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2. Literature Survey 
2.1. Foundational Work 

Federated Learning (FL) is the answer created in response to the privacy-preserving machine learning required in 

distributed environments. Proposed a seminal work that introduced the Federated Averaging (FedAvg) algorithm that enabled 

decentralized devices to train a global model cooperatively without exchanging raw data. The method was the local training of 

edge devices with model optimization at an updating location averaged in a central server. [6-10] This advancement was 

considerable because, ideally, it went to work in contrast with usual centralized training paradigms, as well as the basis of 

privacy-focused AI applications. With this background, we propose a secure aggregation protocol that ensures the single model 

updates sent to the server are encrypted. They cannot be decrypted independently, thereby enhancing the FL privacy 

guarantees.  

 

2.2. Privacy Techniques 

With the emerging features of FL, concerns over data privacy throughout the group model training are essential. Several 
cryptographic and statistical methods have been proposed to enhance privacy assurances. One of the most frequently used 

methods is Differential Privacy (DP), which trains the model by adding noise to the gradients or model updates to ensure that 

no sensitive information leaks. DP has a mathematically proven privacy, which is appealing to institutions such as Google and 

Apple. Nevertheless, the enrichment noise can sometimes come at the cost of model utility and can be particularly unfavorable 

when the data is minute. Or not Homomorphic Encryption (HE), on the other hand, enables computations on encrypted data, 

which can be carried out on ciphertext. It implies that the model updates can be kept encrypted during the training to provide 

valuable security against data leakage. Although promising, HE has a high computational overhead, which prevents it from 

being used in real-time applications. On the other hand, Secure Multi-party Computation (SMPC) shares data or computation 

among multiple parties through secret sharing protocols, ensuring that no single party can gain full access to the data storage. 

 

2.3. Systems and Frameworks 
Several open-source systems and frameworks have been developed to enable the practical application of FL. Google has 

also made an FL platform, TensorFlow Federated (TFF), that combines the TFF platform with the TensorFlow platform. TFF 

provides research and development of FL models with a simulation environment and APIs. It works with centralized and 

decentralized training setups as well, and is especially effective with prototyping using synthetic datasets. The OpenMined 

community created PySyft, an extension of PyTorch that is friendly to FL and privacy-preserving methods (DP, SMPC, and 

HE) for data. Its modularity and researcher-friendliness have led to PySyft becoming a favorite of academics studying how to 

explore privacy-preserving AI. FATE (Federated AI Technology Enabler), developed by WeBank, is primarily an enterprise-

level FL framework focused on cross-silo collaboration. It offers training for heterogeneous models and has inbuilt modules 

for encryption, communication, and deployment. The frameworks are important for reconciling the gap that exists between 

theoretical research and the application of FL systems in industries. 

 

2.4. Industrial Use Cases 
Federated Learning has been successfully applied in several industries where edge intelligence and data privacy are 

crucial. Apple was also among the first companies to implement the FL to enhance Siri's voice recognition and keyboard 

typing guidance, in addition to keeping user information within the devices and not in the cloud. This aligns with Apple's 

general focus on privacy centrality and device intelligence. In Gboard, its keyboard application, Google used FL to improve 

next-word prediction without having access to user text data on the cloud. This showed the commercial feasibility of FL at 

scale, which has an impact on the use of technology in other fields. NVIDIA, a company renowned in terms of GPU 

computing, under its collaboration with healthcare facilities, takes part in the potential of medical AI model training in optimal 

organizational collaboration between hospitals without transferring or exposing patient-sensitive data. They have demonstrated 

the ability to securely and efficiently use setups such as federated setups to train deep learning models that conduct a task like 

cancer detection in a matter of minutes across various data silos. Such use cases highlight the versatility and performance of FL 

in mission-critical settings that require privacy, low latency, and data ownership. 

 

2.5. Research Gaps 

Along with the improvements, Federated Learning has several issues that remain unresolved, which restrict its expansion. 

Among the research gaps, one must mention the lack of robustness against adversarial clients. As FL is executed in possibly 

malicious settings, malicious actors can contaminate updates, throttle model performance, or steal the personal information of 

other actors. Strong aggregation and anomaly detection are also emerging as methods of defence. The convergence of models 

in non-i.i.d. or skewed data distributions is yet another urgent question; it is well-represented by FL conditions of practice. 

Learning algorithms based on traditional machine learning assume uniformity of data distribution, whereas in FL, the 

distribution is usually heterogeneous and specific to each client, which makes the convergence process slow and unstable. 

Finally, there are still deployment barriers to real-time deployment, particularly to edge devices with limited computation and 

communication resources. The trade-off between the complexity of a model, latency during training, and energy usage is an 

optimization issue that must be solved on several system levels. To achieve scalability, security, and viable practicability of FL 
in mission-critical use cases, it is necessary to address these research gaps. 
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3. Methodology 
3.1. Federated Learning System Architecture 

Federated Learning (FL) system architecture involves systems that enable collaboration in training a model across 

multiple decentralised devices or institutions, without requiring access to the raw data of the institution or device. A typical 

architecture consists of three main design elements: clients (or participants), a central server (or coordinator), and a secure 

communication layer. [11-14] Clients are usually smartphones, hospitals, or edge devices and receive local datasets and do 

local training. Each client downloads the global model to the server, and the model is trained using the client's data. The only 

information that belongs to the client is sent back to the server, which can be in the form of updated model parameters (e.g., 

gradients or weights). These local updates are then combined using algorithms like Federated Averaging (FedAvg) to create a 

new model at the global level. This is repeated in multiple rounds of training until convergence. The kind of privacy-preserving 

methods that the architecture might employ to guarantee scalability and confidentiality could include Differential Privacy 

(DP), Secure Multi-party Computation (SMPC), or Homomorphic Encryption (HE).  

 
Such methods are useful in preventing the leakage of sensitive data during updates to a model when passing or 

aggregating data. The strength of the FL system considers the heterogeneity of client data distribution (non-IID), computing 

power, and network reliability levels. Thus, clients can be asynchronous, and incomplete participation is a common rule. 

Moreover, FL systems integrate client selection to maximize performance and nondiscrimination. Clients may not be involved 

in every round, and those with good connectivity or representative data may be prioritised. A model orchestration module is 

typically incorporated into the server and is responsible for updating schedules, aggregating data, and monitoring performance. 

In general, the FL architecture focuses on data locality, safe aggregation, decentralized learning coordination. This architecture 

is particularly valuable in fields where the privacy of data is sensitive, e.g., the healthcare system, financial systems, and 

mobile apps, where intelligence can be shared collectively without endangering the ownership of data and the confidence of 

users. 

 

3.2. Model Training Procedure 

The essence of Federated Learning is its decentralized training process of training models, which is aimed to maximize 

data privacy and accomplishing collaborative training. Among the most popular algorithms here is the Federated Averaging 

(FedAvg) algorithm. The FedAvg algorithm enables a central server to orchestrate learning on a group of clients (a group of 

devices or data silos) that have local data, which any of the other clients cannot access during the training process. The training 

begins when the server initialises a global model and sends it to a selected group of clients. Each client would then train locally 

with their data on the model for a couple of epochs. Define let 𝑤 o be the weight parameters on the model updated by a client 𝑘 

and 𝑛 o the number of local data points on client 𝑘. As soon as the local training is over, their new weights are sent by the 

clients back to the server. The server then combines these updates to create a new global model using the FedAvg formula: In 

this case, 𝑤 denotes the updated stage global model weights, 𝐾 denotes the number of participating clients, and 𝑁 is the total 
number of data samples among all participating clients. Such weighted averaging helps ensure that a larger client dataset 

affects the global model proportionally more. Such iteration is then repeated until convergence after several iterations. Notably, 

the raw data are not shared; only the parameters of the model are, which means that the privacy of the data is maintained. 

Nevertheless, the non-IID data, different computing capabilities, and possible communication latencies that are common in the 

FL setting have to be accounted for in the training process. Nonetheless, FedAvg is a scaling option with robust privacy that is 

applicable as a base distributed learning algorithm. 

 

3.3. Communication Protocol 

 
Fig 2:  Communication Protocol 

 

 Client Selection: Client selection is a process that determines which subset of devices is used in every training round, 
playing a crucial role in the communication protocol of Federated Learning. We cannot and should not involve all 

clients simultaneously due to the resource allocation ratio. These selection strategies can be random, progressive, or 
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depend on the amount of data or the availability and reliability of a device. A good client selection process helps level 

performance and fairness, as well as enhance communication efficiency. Focusing on clients with diverse or rep data 

will also help enhance the model to generalize and help to avoid the instability that underpowered or low-power 

clients can induce during training. 

 Update Compression:  In order to minimize the communication overhead, which is a bottleneck in FL, update 

compression methods are used to reduce the size of the transmitted data between the clients and the server. They are 
quantization, scarification, and sketching, which enable the transfer of smaller model updates that do not affect the 

accuracy of the model much. For example, only a portion of the gradients can be transmitted by clients, or each 

parameter can be represented with fewer bits. With appropriate implementation, update compression could 

significantly reduce bandwidth requirements, making FL more feasible in edge devices with limited access or low 

energy requirements. 

 Asynchronous vs. Synchronous Communication: Federated Learning systems may use synchronous or 

asynchronous communication. In synchronous FL, all chosen clients are required to be fully trained locally and to 

update the server to resume aggregating the model. Again, although such an approach can be used to guarantee 

consistency, a lack of consistency can result from delays caused by slower or disconnected clients ("stragglers"). 

Conversely, asynchronous FL can enable clients to send updates at their own pace, and the server can update the 

global model every time new information is added. This minimizes wasted time and enhances efficiency, but it may 
create staleness in updates, which may affect convergence. The two can be chosen according to the application's needs 

and system limitations. 

 

3.4. Privacy Mechanisms 

 Noise Injection:  One of the common techniques used in Federated Learning (to avoid information leakage of 

sensitive information) is noise injection based on Differential Privacy (DP). [15-18] DP permanently adds the 

necessary measure of measured, unpredictable noise to the gradients or parameters of the model, and only then sends 

them to the server, thus making it impossible to even predict the contribution of a certain data point. This provides a 

formal mathematical guarantee of privacy. DP comes with the privacy-accuracy trade-off, as too much noise may 

impair model performance, even though user confidentiality is enhanced. Close attention to setting the privacy budget 

is required to keep this balance. 

 Homomorphic Encryption for Secure Updates: Homomorphic Encryption (HE) enables processing on encrypted 
data, allowing clients to directly send the updated encrypted model to the server, which will never have access to the 

raw data. The server can combine such encrypted updates and produce a new worldwide model without decrypting 

individual updates. HE offers end-to-end privacy that can seal the data even when the server is breached. 

Nevertheless, such a method can be computationally expensive and thus may not be very practical for very large 

models or devices with limited computing resources, such as in low-end devices. 

 Secure Aggregation Protocol: The Secure Aggregation Protocol is described to enable the server to calculate the 

aggregate of multiple model updates without disclosing any of them. Secret sharing mechanisms (or cryptographic 

masking) are employed where only the result of aggregation is disclosed. The protocol proposed by Bonawitz et al. 

(2017) has become one of the commonly referenced ones, as even when some clients drop out, their updates will still 

be hidden. Security aggregation can be considered the foundation of privacy-preserving FL, where the clients can 

form a coalition with a potentially untrusted server without requiring any trust or trust linkage, stating that it is part of 
the untrusted party. 

 

 
Fig 3:  Privacy Mechanisms 
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3.5. Algorithmic Variants 

 
Fig 4:  Algorithmic Variants 

 

 FedAvg: The basic algorithm in Federated Learning is FedAvg (Federated Averaging), which consists of clients 

selected to perform local training on their data and send the updated model weights to a central server. The server 

combines these updates with a weighted average, which is typically based on the number of data samples from each 

client. When data follows non-IID distributions, FedAvg can perform poorly. FedAvg is simple, scalable, and suitable 

in most applications, but it can have issues with non-IID data distributions, which entail a setting where the 

distribution of data among clients is not identically and independently distributed. 

 FedProx:  FedProx is an augmented version of FedAvg that is capable of handling statistical and system 

heterogeneity (which are part of a real-world FL environment). It adds a proximal term to the local optimization 

objective, and it must punish local models that are too distant from the global model. This regularization promotes the 

desired consistency between local and global steps to enhance both the stability and convergence of the clients when 

the distributions of their data are very different or when they have very different computational capacities. FedProx 

has a very specific application in situations where client participation and data quality are highly heterogeneous. 

 FedMA:  FedMA (Federated Matched Averaging) allows us to train the algorithm layer by layer by matching neurons 

across different models between clients and then averaging. Rather than averaging model weights directly, which may 

be undesirable when the neuron order or structure differs between models, FedMA aligns and aggregates similar 

neurons. This method is useful when heterogeneous architectures of neural networks should be used or 

personalization is required. The FedMA enhances the efficiency of the model combination in sophisticated modeling, 
assisting more adaptable and precise pooling in an FL setting. 

 

3.6. System Design Considerations 

 
Fig 5: System Design Considerations 

 

 Device Selection Strategy: In Federated Learning, the choice of devices that participate in a particular round of 

training is crucial for ensuring efficiency, fairness, and optimal performance. Because not every client is free or 

competent at any given moment, a reliable device selection procedure takes into account the aspects of gadget 

dependability, processing power, battery life, data quality, and network stability to inform this process. Random 

selection is fair in that it does not give an advantage to one particular device; however, it can cause suboptimal 
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performance when poorly resourced devices are regularly selected. More sophisticated strategies will minimize the 

relationship with devices that have varied and representative data or minimum resource levels and therefore enhance 

speed of convergence and model generalization, and ensure disruptions to systems remain minimum. 

 Update Frequency: The frequency of updates, i.e., the frequency at which clients update the models on the central 

server, directly impacts the efficiency of training, communication costs, and the performance of the model. A higher 

frequency of updates can produce quicker convergence, but also cause a large communication overhead and increased 
resource consumption on devices. Meanwhile, low-frequency communication can decrease communication and slow 

learning, or produce obsolete model contributions. Other FL systems employ adaptive update methods, in which the 

frequency is dynamically varied with respect to the learning phase, client dynamics, or network performance. 

Optimization of update frequency is thus a very important part of system design, considering a trade-off between 

responsiveness and resource utilization. 

 Bandwidth Management: In FL, bandwidth management is vital when the connection is especially limited, such as 

through mobile networks or edge networks. The full model parameter is data-intensive, resulting in overload, high 

latency, and excessive battery consumption. The methods that are used to decrease the volume of transmitted data 

include model compression, quantization, sparse updates, and prioritized communication. It is also possible to 

schedule updates when the network is heavily used (or otherwise) or use bandwidth-aware client selection to ensure 

that stronger connections are not used beyond their capabilities. The optimization of bandwidth helps to make the FL 
system scalable, energy-efficient, and responsive to a wide range of clients. 

 

3.7. Framework Implementation 

To enable Federated Learning systems, it is necessary to have powerful tools and frameworks that assist in the distributed 

training of models, privacy processes, and scalability. PySyft with PyTorch and TensorFlow Federated (TFF) are among the 

most popular ecosystems to develop FL on. Building off PyTorch, the OpenMined community created PySyft, an open-source, 

privacy-preserving and decentralized machine learning library in Python. PySyft tries to simplify the sophisticated processes, 

such as secure multi-party computation (SMPC), differential privacy, and federated learning and translate them into a simple 

API. Using PySyft, founders can create multiple virtual clients that train on different partitions of data and incorporate privacy-

preserving methods, such as masking gradients or encrypted computation. PyTorch is deeply integrated with PySyft so that the 

framework is suitable for any researcher requiring flexible model designs, easy debugging and trying novel FL algorithms. 

Additionally, it is capable of handling real-time deployment, as it connects with real-edge devices, and can be used both 
academically and practically.  

 

There is, on the other hand, TensorFlow Federated (TFF), which is considered an official FL framework by Google, built 

on TensorFlow, and specifically aimed at federated learning research and development. TFF provides a separation between 

model and orchestration logic (federated or otherwise) and enables users to express machine learning models in standard 

TensorFlow and wrap those models with federated operations. TFF can run in either a simulation environment, which is useful 

when training a model using synthetic or pre-partitioned data for prototyping, or in the real world, where federated clients are 

utilised. By its functional programming style and compatibility with the TensorFlow ecosystem, it is scalable, optimized, and 

deployable at a large production scale, such as to be used in the Gboard or Android services environment at Google. Each of 

the frameworks has its distinct benefits: PySyft provides better customization and support of research applications, whereas 

TFF is production-ready and is well-integrated with the systems of industry scale. They form the cutting edge in the 
establishment of federated learning, which allows secure, private, and scalable AI applications to be deployed on devices and 

institutions. 

 

4. Results and Discussion 
4.1. Experimental Setup 

In the case of assessing the effectiveness and utility of Federated Learning in a realistic decentralized setting, we 

developed an experimental framework that utilized popular datasets, edge devices, and deep learning algorithms. For datasets, 
we selected the two commonly accepted mapping problems in image classification: MNIST and CIFAR-10. MNIST is a 

grayscale dataset of 28x28 pixel handwritten digits, whereas CIFAR-10 is a colour dataset with 32x32 pixel examples in 10 

object classes. These training datasets were divided in a non-IID fashion to represent the kind of diversity that would generally 

occur in practical FL settings, in which each simulated client receives a subset of the data targeted towards certain classes, 

based on statistical heterogeneity. To test the FL, an environment of 10 Raspberry Pi 4 computers and the associated clients 

was used. These edge devices have limited computing capabilities and memory (average 4GB RAM and ARM Cortex-A72 

CPUs), offering a suitable environment for experimenting with the potential viability of FL under resource-constrained 

conditions. To coordinate the FL rounds, a standard FedAvg aggregation strategy was applied on a central server, which was 

operated by a separate host machine.  

 

The server managed the distribution of the model, chose which client to work with, and aggregated parameters, while 
maintaining a secure and efficient connection to all Raspberry Pis. In the case of the learning models, we applied two 

architectures: the Convolutional Neural Network (CNN) and the Long Short-Term Memory (LSTM) architecture. The image 



Guru Pramod Rusum & Kiran Kumar Pappula / IJERET, 3(2), 79-88, 2022 

 

86 

classification tasks on MNIST and CIFAR-10 were conducted primarily using the CNN model, which leveraged both 

convolutional and pooling layers to extract spatial features. The sequential input data was used to test the LSTM model and 

examine how FL could be applied to time-series tasks, although it is less frequently used in these contexts. Both models were 

trained using PyTorch, optionally including PySyft, to facilitate decentralised training. The configuration was designed to 

measure the training accuracy, convergence rate, resource consumption, and communication overhead in a realistic sensorium-

based federated learning scenario. 
 

4.2. Performance Metrics 

Table 1: Performance Metrics 

Method MNIST Accuracy CIFAR-10 Accuracy 

Centralized 98.1% 85.4% 

FL (FedAvg) 97.2% 83.1% 

FL + DP 95.6% 79.8% 

 

 
Fig 6: Graph representing Performance Metrics 

 

 Centralized Learning:  With centralized learning arrangement, data from all the clients will be integrated on a single 

server where the model will be trained with the entire data. The method is usually the most accurate as the model can 

use all available data without being constrained by the distribution. To use as a benchmark, we set the accuracy to 

98.1% regarding the accuracy of MNIST and 85.4% regarding CIFAR-10 with a centralized CNN model in our 

experiment. These results show the best result in the case that there are no privacy and communication restrictions. 

 Federated Learning (FedAvg): We mimicked a practical sense of a federated setting by making use of the Federated 

Averaging (FedAvg) algorithm to keep information on a collection of 10 Raspberry Pi boards. FedAvg also 

performed well in the absence of the centralized data access and due to non-IID distribution: 97.2 and 83.1 accuracies 

on MNIST and CIFAR-10, respectively. The small trade-off in performance against the centralized-learning setting 

assesses the difficulty of statistical diversity and decentralized optimization and indicates that FL can still be used to 

attain a performance close to a centralized learning regime with data privacy protection. 

 Federated Learning with Differential Privacy (FL + DP):  We introduced additional privacy by adding noise to the 

gradients to use a simple form of Differential Privacy (DP) when conducting local training. Although this method 

enhances the confidentiality of data, it also compromises model performance. As anticipated, the accuracy decreased a 

bit, and the FL + DP configuration delivered 95.6 percent on MNIST and 79.8 percent on CIFAR-10. These findings 

verify that privacy-enhancing protocols, such as DP, can be incorporated into FL systems without significant 
deterioration of performance levels, provided that great attention is paid to setting the appropriate noise level to 

achieve the trade-off between privacy and accuracy. Altogether, the metrics are indicative of the fact that Federated 

Learning, despite the increased protection guarantees, can be presented as a feasible alternative to centralized training. 

 

4.3. Discussion 

The experimental findings suggest significant and workable trade-offs in Federated Learning (FL) systems. It can only be 

considered one of the most conspicuous findings that there was a minor decrease in precision when comparing FL to 

centralized training. Although the traditional approach of centralized learning a complete dataset yielded the best results, the 

FedAvg FL approach performed very similarly to the centralized approach, providing 97.2 and 83.1 percent accuracy on 
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MNIST and CIFAR-10, respectively, showing that FL can train models quite well even when the information is distributed and 

stored locally. The introduction of Differential Privacy (DP) further lowered accuracy to some extent, as the introduction of 

noise lowered both the MNIST and CIFAR-10 results to 95.6% and 79.8%, respectively. Nevertheless, such a small loss is an 

agreeable compromise compared to more robust privacy assurances, particularly in sensitive areas such as healthcare or 

finance. In this way, FL turns out to be the privacy-friendly variant of central faculty learning, providing a reasonable trade-off 

in performance and data security.  
 

Communication efficiency is one of the biggest bottlenecks in FL despite these advantages. The traffic overhead 

associated with sending model updates from each client to the central server in several training rounds is very high, particularly 

in networks with small bandwidth or in edge devices that have restricted bandwidth, limited power, and memory. 

Communication costs may negatively impact the real-time deployment and scalability, even when using techniques such as 

update compression and client sampling. Future optimization may be carried out in reducing either the frequency or the size of 

updates, as well as through bandwidth-aware protocols. The rate of client participation is another key factor in determining 

performance. During our experiments, we often encountered the fact that the speed of model convergence and the end value 

depended on the number and type of clients included in each iteration. Poor-quality or non-representative data on some clients, 

or periodic access to edge devices, may delay the training process or introduce bias. This way, it is crucial to employ intelligent 

client selection methods and fault-tolerance mechanisms to maintain system robustness, as well as the models, in actual FL 

implementations. 

 

5. Conclusion 
Federated Learning (FL) is a revolutionary technology in machine learning that enables a group of devices or clients to 

collaboratively train models without exchanging raw data. There are increasing issues about data ownership, data privacy, and 

adherence to regulations, making this decentralized paradigm a solution that ensures that sensitive data is not left in the hands 

of third parties. It is scalable by design, which is why the framework is appropriate for edge computing, IoT, and other data-
sensitive industries, such as healthcare and finance. FL inherits excellent privacy guarantees due to the incorporation of 

powerful privacy mechanisms, including Differential Privacy, Homomorphic Encryption, and Secure Aggregation. Moreover, 

advancements in communication schemes and client synchronisation have also rendered FL far more implementable in real-life 

applications. Our experiment confirms that FL is a plausible and successful alternative to centralised learning, particularly at a 

time and place when centralisation of data and its privacy is not an absolute priority. 

 

This is the work of a comprehensive investigation into Federated Learning, both in theory and in practice. We first 

provided a comprehensible methodology that would entail FL algorithms such as FedAvg, FedProx and FedMA and would be 

characterized by their special solutions to aggregation and converging the model. The system architecture was also reviewed, 

which was vital in identifying the key attributes of client-service interactions and reliable communication paths. The literature 

survey is a significant contribution, as it summarises the fundamentals of the research, privacy mechanisms, and one of the 

widely used frameworks, such as TF Federated, PySyft, and FATE. To demonstrate the viability of FL, we conducted 
experiments using the CNN and LSTM models on Raspberry Pi machines with the MNIST and CIFAR-10 datasets. The 

resulting measurements and discussions provide praxial evidence of the trade-offs between accuracy, privacy, and 

communication efficiency. 

 

Although the present paper proves the usefulness of Federated Learning, there are a few points where future studies or 

improvements can be made. The first direction would be to select the most optimal clients, allowing only those with the most 

suitable devices in terms of availability, data quality, and network stability to participate in training rounds, thereby increasing 

convergence and minimising overhead. The last imperative direction is enhancing resilience to malicious clients, such as 

designing secure aggregation schemes capable of identifying and counteracting poisoned or corrupt updates. Moreover, the 

development of cross-silo FL, which involves cooperation between institutions such as hospitals or banks, must be conducted 

under close regulation, secure data storage and retrieval, and an audit trail. Solving these problems will be crucial to the 
effective use of FL in enterprise and mission-critical settings. 
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