
International Journal of Emerging Research in Engineering and Technology

Pearl Blue Research Group| Volume 4, Issue 4, 99-111, 2023

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V4I1P111

Original Article

Composable Enterprise Architecture: A New Paradigm for

Modular Software Design

Guru Pramod Rusum1, Sunil Anasuri2
1,2Independent Researcher, USA.

Abstract - Composable enterprise architecture has been a contemporary trend that represents a futuristic solution to enabling

organizations to develop flexible, modular, and resilient systems in a world that has undergone a lightning-fast process of

digitalization and is becoming more complex. In contrast to a set of monolithic structures, a composable architecture focuses on

the division of business capabilities into independently deployed components that can be replaced. Agility is supported in this

paradigm because it enables enterprises to respond quickly to changes in the market, innovate at a large scale, and even bring IT
systems more in line with corporate strategy. In this paper, the theory and design considerations of composable architecture are

discussed, such as modular business capabilities, API-first development, event-driven communication, and microservices. It also

looks at the main technology enablers like Kubernetes, service meshes, API gateways and automated DevOps pipelines. The paper

will demonstrate in detailed case studies how composable strategies are being effectively adopted across industries to enhance the

time-to-market, scale, and cost-effectiveness, with some of the explorations of the cases including The Vitamin Shoppe, Spotify, and

leading Indian firms. Besides the emphasis on an implementation strategy and patterns of architectures, the paper ventilates issues

that include organizational inertia, complexity of migration, and fragmentation of tooling. It ends with a prospective view

portraying intelligent orchestration, low-code development, and an autonomous modular system to present how enterprise

software gets designed. The work provides practical reflection to IT leaders, architects, and digital transformation participants

interested in creating adaptive and ready-to-innovate digital environments.

Keywords - Composable Architecture, Modular Software Design, Api-First, Microservices, Cloud-Native, Digital Transformation.

1. Introduction
Modern business processes and the rapidly growing rate at which technologically based companies are transforming have

presented new challenges to the IT structures of businesses. Modern organisations must respond promptly to market changes,

customer demands, and technological advancements. The agility and scalability needed to fulfil these changing requirements are

often not delivered by traditional monolithic architectures, which have tightly coupled components and centralized control. [1-3]
Subsequently, this has created increased demand in a more modular and flexible direction in software design, a type that allows

quick adaptation and constant innovation. To address this need, a design philosophy known as Composable Enterprise Architecture

(CEA) has emerged, enabling enterprises to build their digital systems out of changeable and reusable components.

In essence, CEA advocates for the composability idea, which involves constructing applications and services with modular

components that can be developed, deployed, and modified separately. These modules also interact via agreed-upon interfaces, i.e.,

standard APIs, ensuring interoperability and ease of integration in a heterogeneous environment. Organizations can now avoid the

fixed dependencies of legacy systems and move toward an approach that is more agile, scalable, and responsive to IT with an

improved level of composability. The enabler of the architecture is technology, such as microservices, containerization, service

meshes, and low-code/no-code platforms, which enable the quick composition and recomposition of software components in

response to immediate business objectives.

The move towards composable architectures is not purely a technical transformation, but also a strategic one. It also aligns IT

infrastructure with business by giving non-technical stakeholders a role to play in solution design and innovation. Moreover,

composability enhances organisational resilience, enabling isolated updates, reducing the blast radius of failures, and facilitating

continuous delivery and deployment. Nonetheless, the transition to a composable enterprise model is also fraught with issues, such

as strong governance, more advanced integration plans, and a cultural transformation towards greater decentralisation and

cooperation. The chapter presents the fundamental concepts of Composable Enterprise Architecture, highlights the significance of

this approach in the modern digital environment, and lays the groundwork for further elaboration of the concept in terms of its

principles, advantages, and effective implementation throughout the remainder of this work.

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

100

2. Theoretical Foundations of Composable Architecture
Composable Enterprise Architecture (CEA) is founded on several theoretical and practical principles that have been developed

in response to the growing need for flexibility, speed, and adaptability in software systems. These foundations symbolise a shift

from centralised and rigid architectural traditions to distributed, modular, or business-centric designs. [4-6] In this section, the

author will discuss the major theoretical foundations of CEA, analysing how architecture has evolved to support composability,

how decentralised design can contribute to CEA, the impact of modular engineering patterns on the openness of systems, and how

composability enablers can emerge.

2.1. Architectural Evolution toward Composability

Traditionally, enterprise systems were built using monolithic and tightly coupled designs, with components designed to be

interrelated in a manner that made them difficult to scale or change independently. The weak points of these systems were

increasingly disclosed as the nature of business requirements became more dynamic. Service-Oriented Architecture (SOA) was a

pivotal point, as it provided loosely coupled services; however, in many respects, even SOA was plagued by issues. The emergence
of cloud computing, agile methodologies, and DevOps increased the speed of this evolution in favour of architectures that enabled

quick iteration and deployment. Microservices provided further fine-tuning to this practice by promoting the division of

applications into small, independent services. Composable architecture takes a step further in introducing the idea not only of

technical modularity but also the correlation of modular services with business capabilities, thereby allowing for persistent

innovation and reconfiguration.

2.2. Decentralized Design and Domain-Driven Thinking

The principal concept of composable architecture is decentralization. Composable systems share responsibilities across

separately managed domains, rather than relying on a single centralised control mechanism to manage systems. Domain-Driven

Design (DDD) commonly entails this by focusing on creating software structures that mirror the real-world divisions of a

company. Domain-Driven Design (DDD) encourages the creation of bounded contexts that are purposeful in their own right, with
distinct logics, models, and data, enabling teams to work independently on specific business operations. Such autonomy raises the

speed of development and decreases the degree of inter-team dependence and responsiveness to change. The composable systems

also improve the relationship between IT and strategic objectives by basing architecture on business areas.

2.3. Modular Engineering Patterns and Platform Thinking

The essential part of composability is modular engineering. It is a modelling approach that treats software systems as

assemblies of discrete, self-contained parts that can be developed, deployed, and maintained autonomously. The practice is

informed by traditional software engineering patterns, such as component-based design and microservices architecture, as well as

plug-in frameworks. Platform thinking also extends modularity by modelling the enterprise technology stack as an ecosystem of

composable platforms, each offering core capabilities as a service to others within the platform. Through APIs and event-driven

mechanisms provided by platforms, functionality is offered to both internal and external developers, enabling them to create new

experiences without needing to replicate logic. This modular, platform-oriented design encourages reuse, eases integration, and
promotes the rapid development of new services and applications.

2.4. Enterprise Composability Enablers

The list of technology and organizational attributes promotes CEA adoption. On the technology front, API gateways, service

meshes, container orchestration platforms (e.g., Kubernetes), and low-code/no-code development platforms enable teams to

quickly assemble, deploy, and scale applications. Event-driven architectures and data streaming Infrastructures support loose

coupling and real-time intercommunication between parts. Organizationally, agile development practices, cross-functional teams,

and a culture of continuous improvement and experimentation support the concept of composability. The composability of systems

is enhanced through robust, compliant, and reliable governance frameworks, observability, and security. Collectively, these

facilitators provide the platform and mindset needed to make a composable enterprise work at scale.

3. Design Elements of a Composable Enterprise Architecture
Composable Enterprise Architecture (CEA) is built on a set of key design artefacts that promote the modularisation of business

processes and the integration of business and technical systems. These design aspects ensure that software solutions can be not

only reusable and scalable, but also meet the changing business requirements. [7-10] The main concepts in this approach are

modular business capabilities and API-first development, each of which is crucial to the decoupling of functionality, the

opportunity to enable interoperability, and entrepreneurship. In this section, these major elements of design are explored in detail.

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

101

3.1. Modular Business Capabilities

Central to composable architecture and its realisation is the concept of discrete business capabilities as modular functional

building blocks, comprising discrete units of business functionality, such as customer onboarding, inventory management, or

billing. These capabilities will operate independently, capturing their logic, data, and flows. Organisations can also promote greater

clarity, ownership, and responsiveness within teams by aligning their system components with business functions. Enabling

selective upgrade, scale, or replacement of components of select business capabilities, this modularization allows enterprises to
upgrade, scale, or replace particular parts of the system with no impact on those not subject to such changes.

Bounded contexts in Domain-Driven Design (DDD) are commonly used as definitions in creating modular business

capabilities, provided that each module is both meaningful and coherent within its domain. These capabilities can be built, tested,

and operated independently, facilitating parallel development and mitigating the risk of system-wide failures. Moreover, the fact

that these modules were reusable in different products or services means that efficiency improves and time-to-market increases.

Separation of concerns is also easy and enables greater responsiveness in an IT environment that can subsequently adapt to changes

in line with business strategies.

3.2. API-First Development and Interface Governance

Composable enterprise design is built on an API-first approach. In this model, APIs are treated as the key building blocks,

rather than byproducts of system development. API contracts are specified and described before implementing the underlying
services, enabling various teams to work on them in parallel to ensure consistency throughout the enterprise. APIs are interfaces

that have defined architectures, implementations, and standards for exposing a business capability, enabling seamless

communication and integration of systems across platforms and channels.

API-first development has the advantage of creating interoperability, reusability, and scalability, as service consumers are not

directly connected to the service providers. It also improves developer experience by bringing accessibility and predictability into

functionality. Nonetheless, widespread use of APIs requires interface governance, which is a combination of policies and tools to

govern the API life cycle, versioning, security, and compliance. API gateways, service registries, and developer portals play a

crucial role in enhancing the effectiveness of API discovery, monitoring, and governance. When APIs are well-managed,

enterprises can empower both internal and external ecosystems, create new applications, automate workflows, and innovate at a

faster rate. The pairing of modular business capabilities with API-first design provides a highly flexible, resilient, and collaborative
architectural base that is fundamental to the modern digital enterprise.

3.3. Event-Driven Architecture and Inter-Service Communication

Event-driven architecture (EDA) is the linchpin of a composable enterprise, enabling responsive, loosely coupled inter-service

communication. In contrast to classical request-response protocols, EDA communication is based on broadcasting events, or

changes in the system's state, to interested subscribers in real-time. This pattern enables the asynchronous and independent

decoupling of data producers and consumers, allowing services to react independently and asynchronously, which significantly

improves the system's freedom and responsiveness.

In the composable systems, EDA enables real-time data flow among modular business capabilities without establishing direct

dependencies. For example, a type of event, such as an order being placed, may trigger the updating of inventory, initiate payment

processing, and notify the customer, all via autonomous services. Such a type of communication at scale is possible with
technologies such as message brokers (e.g., Apache Kafka, RabbitMQ) and event buses. Event-driven communication, apart from

improving system performance due to reduced latency, will also make the system more resilient, allowing for retry calls and

fallback measures. Finally, EDA facilitates the dynamic assembly of services, making the composable enterprise more adaptable

and resilient to faults.

3.4. Role of Microservices and Headless Services

Composable enterprise design is based on the microservices architecture, which encourages breaking down applications into

small, self-contained services with unique functions to serve. [11-13] A microservice encompasses a specific business capability

with its data and uses the APIs or events to interact with other services. Such self-governance enables the autonomous

development, deployment, and scaling of services on a highly granular level, which significantly reduces complexity and enhances

agility.

This modularity is also promoted by greater independence of the frontend presentation layer and backend logic in the case of

headless services. A headless service only opens capabilities over APIs, making it ready to be consumed by any frontend, such as a

web app, mobile app, or even a third-party platform. This separation enables greater freedom in designing user interfaces and

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

102

facilitates omnichannel approaches without requiring repetitive development work. Microservices and headless architectures, when

combined, enable organisations to become more dynamic, allowing them to quickly reconfigure their systems to address changing

business requirements. They enable fast innovation, enhance system maintainability, and foster a platform ecosystem that allows

capabilities to be reused across products and services, making them the core pillars of a composable enterprise.

3.5. Security, Observability, and Scalability Considerations

Fig 1: Experience-Driven Composable Architecture

Security, observability and scalability are fundamental design factors as enterprises shift to composable and highly distributed

architectures. Microservices and event-driven systems are often decentralised, which enhances the attack surface and complexity of

interactions between the various components of the system that must be managed securely. Powerful security solutions (including

identity and access management (IAM), OAuth2 to provide security of API, end-to-end encryption, and zero-trust principles) are

also crucial when guarding information and guaranteeing trust in composable systems. The composable architecture is also highly

dependent on observability, as many services act in isolation. Monitoring instruments should provide extensive insight into system

performance at any given level, allowing them to track performance, failures, and anomalies in real-time. By employing techniques

and systems such as centralised logging, distributed tracing, and metrics collection (e.g., Prometheus, Grafana, OpenTelemetry),

teams can gain control over their systems, debug problems with ease, and fine-tune their performance across the entire ecosystem.

Scalability is a fundamental premise of the composable architecture, yet it requires careful planning. The services should be
stateless, responsive, vertically scalable, and run on container orchestration technologies including Kubernetes. Systems are

performant at different loads, thanks to elastic scaling, auto-recovery, and traffic load balancing, which ensure that systems are

constantly operating at the optimum level. Moreover, by incorporating security, observability, and scalability as design principles,

enterprise architects can develop a robust and trustworthy composable architecture that not only supports rapid innovation but also

addresses the challenges of scaling an operation to a large and critical scale.

4. Technology Enablers and Implementation Stack
The optimal achievement of the composable enterprise architecture relies on a strong technological backbone to help underpin

modularity, scale, automation, and interoperability. A contemporary implementation stack requires a set of tools and platforms that

allow for the smooth deployment, integration, and management of loosely coupled services. [14-16] The area deals with some of

the major technology enablers, such as a cloud-native infrastructure service mesh and orchestration patterns, and the fundamental

role of API gateways and developer portals in delivering composability at scale.

4.1. Cloud-Native Infrastructure (Kubernetes, CI/CD)

The composable enterprise systems are based on Cloud-native infrastructure, which provides the necessary scalability,

flexibility, and automation to deploy and run modular services at scale. Kubernetes has become the default platform for container

orchestration, the automated deployment, scaling, and management of containerized microservices. The fact that it can run stateless

and stateful workloads, is horizontally scalable, and enforces resilience through characteristics such as self-healing and rolling
updates, makes it fully compliant with the concept of composability.

Each code change is automatically tested as it is built with minimal human interaction and delivered to production

environments using continuous integration and continuous delivery (CI/CD) pipelines in combination with Kubernetes. CI/CD

tools, such as Jenkins, GitLab CI, and Argo CD, facilitate the implementation of agile development practices by enabling faster

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

103

release cycles, high-quality code, and regular deployment procedures across various environments. Such a cloud-native approach

allows teams to provide modular business capabilities quickly, safely, and at scale.

4.2. Service Mesh and Orchestration Patterns

As they are increasingly deployed within a composable enterprise, service-to-service communications, security, and reliability

become increasingly complex to manage. Service mesh architectures are based on the idea of managing inter-service
communication with the help of a committed infrastructure level that implements inter-service communication policies and

configurations, regardless of application logic. Istio, Linkerd, and Consul are some of the tools that support service discovery, load

balancing, traffic routing, observability, and cross-cutting TLS encryption among multiple microservices. Orchestration patterns

are also crucial for coordinating an elaborate workflow process across modular services. These styles involve both choreography,

where the services respond to events in an autonomous fashion, and orchestration, where a central controller coordinates tasks and

performs sequencing. Workflow tools, such as Kubernetes Operators and workflow engines (e.g., Camunda, Temporal), help

define and manage these workflows. The enterprise can utilise orchestration strategies to ensure the coherent and predictable

behaviour of distributed services through their actions.

4.3. API Gateways and Developer Portals

APIs are the connective tissue of the composable enterprise system, and it is essential to be able to manage them as their

control is key in keeping the systems scalable and governable. Service entries: The API gateway is where requests are routed to
clients and is responsible for performing functions such as authentication, rate limiting, load balancing, caching, and protocol

translation. Kong, Apigee, AWS API Gateway, and Azure API Management are used to introduce a centralised point of control

and visibility for APIs distributed across various services. Developer portals, which complement API gateways, are self-service

portals that enable internal and external developers to discover, test, and consume APIs. These portals provide documentation,

usage guidance, and a sandbox to accelerate integration and foster innovation. Developer portals enable the quick composition and

reuse of services across the enterprise ecosystem, as well as democratised access to modular business capabilities through well-

governed APIs.

4.4. Data Management (RDB, NoSQL, Data Lakes)

Data management in composable enterprise architecture is more sophisticated because services are distributed, and insights are

required in real-time. Composable systems commonly utilize decentralized data ownership, similar to the ownership of information
in monolithic-style systems (except they do not train any central data), as every service takes control of its data storage following

the bounded contexts concept. This decentralised system enhances scalability and independence, but requires a more complex data

approach to ensure consistency, integrity, and accessibility.

Structured, transactional data that requires ACID compliance is essential and is typically available only in relational databases

(RDBs), such as PostgreSQL and MySQL. These databases are most suited for services where a high degree of consistency is

necessary, such as billing or financial transactions. However, most composable apps leverage the flexibility of NoSQL databases

(e.g., MongoDB, Cassandra, and DynamoDB), which are designed to work with unstructured data and achieve high scalability and

performance in distributed systems. Data lakes have become important when large amounts of data are heterogeneous (from many

sources) and frequently in raw or semi-structured formats. Analytics, machine learning, and reporting apps may be centralised on

alternative platforms, such as Amazon S3, Azure Data Lake, or Hadoop-based solutions, without necessarily moving ownership of

operational information to a much larger, modular platform. Data virtualisation, API access layers, and event-streaming (e.g.,
Apache Kafka) enable the gap between data sources to be bridged, facilitating access across services in near real-time. Data

consistency and meeting regulatory requirements are also essential in such a distributed architecture. To achieve this, effective data

governance, metadata management, and privacy controls are necessary.

4.5. Security and Policy Automation

Security is not something that can be compromised in a composable enterprise architecture since services become distributed

through networks, placed in a hybrid cloud environment, and exposed through APIs. Composable systems, being modular and

dynamic, can expand the potential attack surface and necessitate the implementation of zero-trust security, where every service and

request must be authenticated and authorised independently of the source within the network.

Automation of policy is very crucial in ensuring the scale of security. Tools like Terraform and Pulumi, part of infrastructure-
as-code (IaC), and policy-as-code frameworks like Open Policy Agent (OPA) help organisations programmatically describe and

enforce security, compliance, and operational policies in their environments. The policies can also be used to manage, but not

limited to, role-based access controls (RBAC), network segmentation, data encryption, and API usage thresholds. Besides

authentication and authorisation (e.g., OAuth2, JWT, SAML), automated security scanning, container image scanning, and at-run

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

104

security (e.g., with Prisma Cloud, Aqua Security, or Falco) provide proactive threat detection. Secure software supply chain

procedures, such as repository injection of tools like Snyk or GitHub Advanced Security into CI/CD pipelines, are used to help

detect vulnerabilities earlier in the development process. Finally, when security is implemented across all layers of the composable

architecture and the policy is enforced automatically, the transformation of the digital environment can be achieved without

compromising security, compliance, and resiliency issues, while maintaining the agility and fast processes experienced in the

enterprise.

5. System Architecture and Implementation
5.1. Architecture for Composable Enterprise Systems

The highest layer is the Frontend Layer, which encompasses the various user interfaces through which customers access

enterprise services, including web applications, mobile applications, and customer portals. These API calls are channelled via the

API Gateway and Orchestration layer, where functions such as authentication, traffic shaping, and load balancing occur. [17-20]

The Service Orchestrator also designs modular service interactions through decomposing complex user flows by calling applicable
business capabilities.

Decoupled microservices in the Business Services layer under consideration are authentication, order management, inventory,

and billing. An event bus (e.g., Kafka or RabbitMQ) facilitates asynchronous messaging patterns between these services, forming

the event-driven architecture of the system. Microservices are designed to be deployed as stateless services and are containerised to

enable elastic scaling. An API contract layer (e.g., Swagger) will be used to maintain loosely coupled, yet interoperable,

connections, ensuring that both services do not need to evolve together, thereby avoiding ecosystem breakage. The Data & Security

Layer encompasses foundational services of the infrastructure, including identity and access management (IAM), rate limiting,

compliance, and audit logging and appears directly below the service layer in the following diagram. This layer provides various

options for data storage, utilising relational databases (e.g., PostgreSQL) to handle structured, transactional data and NoSQL

databases (such as MongoDB and Cassandra) for non-structured and scalable data requirements. A data lake or warehouse
combines these sources as input to downstream analytics and insight. This layered data approach aligns with the principle of

domain-driven design, where individual services own their data and logic.

This architecture is based on the Cloud Platform Layer, which involves Kubernetes or container orchestration. These CI/CD

pipelines enable auto-deployment (e.g., GitLab CI, Jenkins) and have observability features, such as Prometheus and Grafana, to

monitor system health and performance. Moreover, tools such as Secrets Manager and Service Mesh (e.g., Istio or Linkerd) ensure

secure service-to-service communication, compliance, and fault tolerance. All of these technologies integrate in a way that enables

the provision of a resilient, secure, and scalable platform, representing the composable enterprise paradigm.

5.2. Component Roles and Interactions

In a composable enterprise system, individual architectural components fulfil a specific purpose and communicate with other

components via programs via standardized contracts, APIs, or messaging protocols. The API Gateway at the entry point handles
authentication of requests received, rate-limiting, and directing traffic to the correct set of backend services. It is a simplification of

complexity, guaranteeing both internal and external consumers a safe and unified interface. It is accompanied by the Service

Orchestrator, which handles intricate workflows that enable the seamless interaction of multiple microservices to complete

business transactions, such as processing an order or checking inventory.

Microservices are developed around specific business domains or tasks, such as authentication, billing, or inventory

management, and can therefore be developed, deployed, and scaled independently. These services are exchanged through RESTful

APIs or asynchronous event buses (such as Kafka or RabbitMQ), depending on whether synchronous or reactive processing is

required. In the meantime, this modularity is facilitated by the data layer, in which the data responsibility of each service is isolated

and imposed by the decentralisation of owning either a relational (PostgreSQL) or NoSQL (MongoDB/Cassandra) database.

Security and data governance are based on the IAM (Identity & Access Management) service, cache layer, and compliance
modules.

Communications are also simplified through API contracts (Swagger/OpenAPI), allowing teams to version and integrate

services without tight coupling. Additionally, inter-service communication is facilitated by a service mesh that offers capabilities

such as service discovery, observability, and encryption. Such patterns in interaction guarantee the resiliency, traceability, and easy

replacement of services, despite scaling up the system; any of these features is typical of the composable architecture.

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

105

Fig 2 : Composable Enterprise Architecture

Route Request to Services

Invoke Order

Workflow

Fetch

Customer

Profile

Check Stock

Availability

Initiate Billing

Process

Trigger

Notifications

Emit Billing

Events
Emit

Notification

Logs

Emit Auth

Events

Enforce Security

Policies

Enforce Rate

Limits

Auto Deploy via

GitOps Pipeline

Collect Logs &

Metrics

Inject Secrets

Securely

Web Requests

Mobile Requests

Customer Access

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

106

5.3. Deployment and Configuration Strategy

Flexibility, scalability, and repeatability are required in a composable architecture deployment. To achieve this, the majority of

organisations implement container-based deployment with platforms such as Docker and Kubernetes, providing a declarative

approach to writing service states, auto-scaling, and high availability. Kubernetes manages each microservice as its own container

or pod set, allowing individual microservices to be deployed, scaled up, or rolled back independently of other microservices.

Configuring management through Infrastructure as Code (IaC) with tools like Terraform or Helm makes a lot of sense, as it

allows for consistency across environments. Resource allocations, environment variables, secret management, and network policies

can be version-controlled and automated using configuration files. The important services are frequently deployed using Helm

charts or Kubernetes manifests, enabling the rapid and repeatable deployment of key services, such as API gateways, databases,

and event brokers.

The category of secrets and sensitive configurations is managed safely using secrets management tools (e.g., HashiCorp Vault,

AWS Secrets Manager), which can be deployed in parallel with the deployment pipeline and applied to Kubernetes instances to

dynamically inject secrets. Deployment strategies, such as blue-green deployments and canary releases, have been adopted to

minimise downtime during deployment and thereby cause minimal regressions. With these practices alongside GitOps workflows,

well-defined deployments are automated, can be audited, and tolerate failure, all valuable characteristics of an agile environment in

a composable ecosystem.

5.4. DevOps, Monitoring, and Lifecycle Automation

DevOps practices are crucial to a well-grown, composable enterprise, as they automate software delivery, provide software

observability, and enable the management of the service lifecycle. The build, test, and deployment phases are automated using

CI/CD pipelines, leveraging tools such as GitLab CI, Jenkins, or Argo CD. All these pipelines ensure the iteration of each change

through testing, security scanning, and the uniform release of changes across all environments. Version control integration provides

support for traceability and rollback features, whereas GitOps workflows support declarative deployment patterns and

configuration records.

In distributed systems, operations and performance must be precise based on monitoring and observability. Tools such as

Prometheus and Grafana provide mechanisms for collecting, visualising, and alerting on metrics in real-time. Logs are centralised
via applications such as ELK Stack (Elasticsearch, Logstash, Kibana) or Fluentd, which enable quick tracking of request flows and

anomaly detection. The service mesh layer provides superior observability by offering rich telemetry information about inter-

service communication, response times, and failure rates.

Automated scaling (metric-based scaling (CPU, memory, or application-specific), auto-healing (healing of crashed pods), and

governance (policies based on open policy agent (OPA)) are also considered lifecycle automation. Moreover, CI/CD pipelines are

enhanced by container security scanning, dependency monitoring, and vulnerability management to secure the software supply

chain. Collectively, these DevOps and observability disciplines ensure that composable services are not only fast and flexible but

also steady, safe, and continually enhanced throughout their life cycle.

6. Case Studies and Simulation Results
6.1. Case Study 1: The Vitamin Shoppe – Incremental Decoupling for Agility

The Vitamin Shoppe is an influential health and wellness retailer that faced the well-known challenge of modernising a

historical Java-based monolithic system to sustain business continuity. Instead of taking an expensive and too risky full-scale

replatforming, the company embraced an incremental, composable strategy. It started by decoupling light traffic and low-

complexity services, such as listing products and search functions. It has enabled the company to experiment with a modular

approach in a low-risk setting, proving value to the business in a short amount of time and creating internal enthusiasm to continue

transformation. The outcomes were evident: an increase in development agility, a reduction in time to market when introducing
new features, and a more seamless customer experience. This case supports the belief that composability is a strategic path rather

than a single-shot project.

6.2. Case Study 2: Spotify – Composable Team Structure for Rapid Innovation

Spotify is another example of organisational composability, which redesigns organisations through its team structure. Spotify

instead implemented cross-functional teams called squads, which are small, autonomous teams that own particular services or

items. Each team possesses the whole cycle of a module, including its development, testing, implementation and supervision. As

such, and in addition to the API-based modular nature, any future development can proceed more quickly through iterations, with

constant delivery and scaling, allowing for the easy implementation of new features. Their team-level composability reflected their

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

107

technical nature, allowing Spotify to continue enjoying high innovation velocity, more streamlined decision-making, and a

decreased sensitivity to changes in the rapidly evolving digital environment.

6.3. Case Study 3: Indian Enterprises – Reliance Retail, Tata Digital, and Marico

Indian giants, including Reliance Retail, Tata Digital, and Marico, have adopted composable architectures as a means to

overcome the inflexibility of legacy systems and evolve to address the growing digital ecosystem. These organisations deployed
personalised service layers, orchestrated microservices across multiple cloud environments, and did so in a fast-innovating chassis

utilising modular architectures. Despite the challenges they faced, including the complexity of integration and skill gap, the gains

were enormous. They stated that their time-to-market dropped significantly, their scalability improved, and their cost optimisation

increased. The transition to composability has also enhanced their ability to adapt to market-changing customer expectations,

especially in dynamic markets.

Table 1: Comparative Impact of Composability on Key Performance Metrics

Metric Before Composability After Composability

Feature Deployment Speed Slow Rapid

Cost Efficiency Lower Improved

Service Personalization Generic Highly Personalized

Scalability Limited Cloud-Scale

6.4. Case Study 4: Global Enterprises – LKQ Europe, Diageo, Zoro.com, James Hardie
Companies such as LKQ Europe, Diageo, Zoro.com, and James Hardie have deployed the composable enterprise to resolve

technical debt associated with monolithic platforms. Their tactic was based on gradual adoption, with the goal of re-architecting

business-critical components rather than replacing an entire system. The organisations have introduced modular, independently

deployable, and loosely coupled services that enable them to respond to changes in customer demands and minimise risk within a

short period. The transition to composability led to enhanced digital agility, resistance to disruption, and accelerated time-to-

market, particularly in the face of highly unpredictable customer behaviour and supply chains.

6.5. Simulation Results and Quantitative Data

The quantitative value of composable enterprise architecture has been gained in recent research and case studies of enterprises

in the industry. Modular organisations across various industries have experienced significant revenue growth, operational

flexibility, and technological maturity. A summary of these findings can be found in the following table:

Table 2: Quantitative Benefits of Composable Enterprise Architecture

Metric / Outcome Traditional Architecture Composable Architecture

Revenue Growth (Financial Sector, 2025 projection) Baseline +30% Higher

API-First Adoption Rate (2023 → 2024) 66% 74%

Composability Adoption (Large/Mid-size Orgs, 2024) Lower 70%

Global Composable Infrastructure Market (2020) — $3.3 Billion

Feature Deployment Speed (Indian Enterprises) Slow Rapid

Cost Efficiency (Indian Enterprises) Lower Improved

Note: Some figures represent forecasts beyond 2023 based on industry research and analyst projections.

These findings confirm that composability is not just an architectural trend; it achieves a quantifiable business value. In

emerging markets and digital-born organisations, in particular, composable approaches are enabling quicker innovation,

streamlined spending, and client-focused delivery. With the composable infrastructure segment experiencing steady growth, it

neutralises the number of organizations to be next in line, making it one of the paradigms of enterprise systems geared toward the

future.

7. Challenges and Limitations
7.1. Organizational and Cultural Barriers

A major challenge in the enterprise architecture of the composable approach, however, lies not in technology but in the

mindset and culture of an organisation. Most companies are organised as old silos with strong hierarchies and centralised decision-

making processes. The shift toward a composable organisational paradigm requires decentralisation, cross-functional cooperation,

and greater team independence, all of which may contradict well-established corporate practices. The adoption is commonly

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

108

hindered by resistance to change, the absence of executive sponsorship, and inadequate knowledge of the composability principles

among business leaders. Additionally, the change will require cultural input to promote experimentation, agility, and continuous

delivery, which may be foreign to companies that operate on and are accustomed to long release cycles and waterfall project

management.

Fig 3: Layered Challenges in Adopting Composable Enterprise Architecture

7.2. Complexity of Migration from Legacy Systems

There is considerable technical complexity involved in migrating monolithic or tightly coupled legacy systems to a modular,

composable architecture. Legacy systems are often intertwined with numerous business operations, and their dependencies and
weak connectivity are frequently undocumented, creating a challenging and time-consuming issue. The process of refactoring such

systems requires profound expertise in the current architecture, proper identification of bounded contexts, and a step-by-step

migration plan. Most of the time, organisations find themselves with hybrid environments where they must maintain both legacy

and modern services, which introduces further challenges in terms of data synchronisation, interoperability, and performance. The

transition can be lost easily without a solid roadmap, which makes the transition costly.

7.3. Tooling Fragmentation and Vendor Lock-in

Composable architectures rely on APIs, microservices, an orchestration platform, and multiple development tools — each with

its standards and interfaces. The large number of tools and vendors may result in a lack of uniformity, or a kind of fragmentation,

in which multiple teams use different technologies in a form of siloes, hindering consistency and interoperability. Additionally, the

use of proprietary platforms or third-party orchestration tools may result in vendor lock-in, making it either economically
inaccessible or technically impossible to switch providers. This also restricts architectural flexibility and carries long-term risks

regarding the cost of licensing, service availability, and ecosystem support. To mitigate these risks, it is essential to integrate

tooling strategy broadly with open standards and governance policies.

7.4. Cost, Maintenance, and Skill Requirements

The cost of implementing and managing a composable enterprise architecture may be significant in the short term. Expenses

include new systems (e.g., service mesh, container orchestration), licenses for the tools, cloud-based services, and the need to

modernise existing systems. Moreover, organisations need to invest in training and hiring qualified personnel to utilise and work

with distributed systems, cloud-native technologies, DevOps practices, and API governance. The larger components also incur

increased maintenance overhead, including inter-service communication, security, observability, and lifecycle upgrades. Failure to

plan well and have talent in-house can render an enterprise unable to fully realise the ROI of composability, instead introducing

operational inefficiencies.

8. Future Trends and Research Directions
8.1. Intelligent Composability (AI-driven Orchestration)

Artificial intelligence (AI) and machine learning (ML) will also play a big role in the future of composable enterprise

architecture. Intelligent composability is the leveraging of orchestration systems powered by AI to automatically control, optimise,

and transform modular building blocks in real-time, based on practical data and the current context. These include predictive

scaling, dynamic service composition, anomaly detection, and automated selection at runtime. For example, the resources
distributed by AI-powered orchestrators may be rearranged among services when overloaded or when workloads are detected to be

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

109

failing. The capabilities have also increased operational effectiveness, besides minimising human interaction, enabling businesses

to be more adaptive and resilient in complex environments.

8.2. Low-Code / No-Code for Modular Assembly

No-code and low-code are gaining prominence as an aid to fast-tracking modular development, notably in the context of

organisations constrained technically. Business users and citizen developers can utilise these platforms to build, configure, and
integrate applications in a modular form, leveraging visual interfaces and pre-built templates. Low-code/no-code tools can enable

non-developers to be competent in aligning business capabilities by integrating APIs, building workflows and stitching together

data sources, when aligned with composable architecture principles. The democratisation of software development enables a

shorter innovation cycle and increased collaboration between IT and business departments. Nevertheless, current studies are

required to ascertain that these platforms can embody scalability, governance, and deep integration into enterprise-level systems.

8.3. Composability Standards and Interoperability

Standardised practices and interoperability structures are essential as more organisations adopt composable models. There are

problems with harmonised definitions, data models, and API specifications, so currently, communication and integration across

platforms may be hindered by a lack of consistent definitions, data models, and API specifications. This gap can be filled with new

standards (like MACH (Microservices, API-first, Cloud-native and Headless) and OpenAPI) that encourage services and vendor

interoperability. The main advancements will include the creation of composability design principles, metadata schema and
certification protocols to guarantee that components can be reused and integrated without alteration. This field is also researching

open-source, composable ecosystems and federated governance models to promote the adoption of the industry as a whole.

8.4. Self-Adaptive and Autonomous Modular Systems

Self-adaptive systems: A self-adaptive system is one of the most impactful future goals of composable architecture. These are

systems composed of modular services that can autonomously restructure themselves to respond to internal or external stimulus

events, such as changes in workload, service degradation, or altered business rules. Self-adaptive systems, which utilise AI,

telemetry data, and closed-loop feedback, employ dynamic workflow optimisation, configuration updates, and fault recovery

through AI, telemetry data, and closed-loop feedback, all without requiring manual intervention. The development of self-repairing

and self-optimising enterprise systems aligns with the vision of hyper-automation and digital twins. Further research is required to

develop patterns of architecture, governance, and ethics that enable autonomous behaviour in enterprise systems.

9. Conclusion
Composable enterprise architecture represents a revolutionary shift in organisational design, construction, and properties of

digital systems. Enterprises can achieve a whole new level of agility, scalability, and responsiveness by adopting modularity, API-

first strategies, event-driven communications, and cloud-native infrastructure. The paradigm helps organisations align their

technological capabilities with the quickly evolving business needs to keep pace as teams work in higher-risk, faster-paced

environments with reduced risk and technical debt. Based on case studies and simulation data, it is evident that composability can
enhance operational efficiency while promoting strategic differentiation within a competitive environment. Nonetheless, a

composable enterprise is not the easiest mission. Legacy complexity, organizational inertia, skills shortage, tooling fragmentation,

and others may impede the situation. Thus, effective adoption must follow a roadmap, executive sponsorship and a culture of

experimentation and decentralization. In the future, the potential for composability can be further increased by emerging trends

such as AI-based orchestration, low-code modular assembly, and autonomous systems. Composable enterprise architecture has the

potential to be the next generation of digital ecosystems, with care taken on its application and subsequent investment.

References
[1] SAP’s ―Composable Business Processes: The Journey Toward a Composable Enterprise‖ — a feature article by Martin Heinig

published February 8, 2022 .

[2] Wang, G., & Fung, C. K. (2004, January). Architecture paradigms and their influences and impacts on component-based

software systems. In the 37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the (pp. 10-

pp). IEEE.

[3] Attie, P., Baranov, E., Bliudze, S., Jaber, M., & Sifakis, J. (2016). A general framework for architecture composability. Formal

Aspects of Computing, 28(2), 207-231.

[4] "The importance of composable architecture" — published in ETCIO Southeast Asia on April 12, 2022, tracing the evolution

of enterprise architecture from monolithic ERP frameworks toward modular systems

[5] Assimakopoulos, N. A., & Papaioannou, P. (2018). Domain-Driven Design and Soft Systems Methodology as a Framework to
Avoid Software Crises. Acta Europeana Systemica, 8, 191-204.

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

110

[6] Laisi, A. (2019). A reference architecture for event-driven microservice systems in the public cloud.

[7] Petrasch, R. (2017, July). Model-based engineering for microservice architectures using Enterprise Integration Patterns for

inter-service communication. In 2017, 14th International Joint Conference on Computer Science and Software Engineering

(JCSSE) (pp. 1-4). IEEE.

[8] Abhishek Srivastava’s blog post, “The new world of composable enterprises?” (January 18, 2022), highlighting the role of

packaged business capabilities, APIs, and modularity
[9] Azevedo, C. L., Iacob, M. E., Almeida, J. P. A., van Sinderen, M., Pires, L. F., & Guizzardi, G. (2015). Modelling resources

and capabilities in enterprise architecture: A well-founded ontology-based proposal for ArchiMate. Information systems, 54,

235-262.

[10] Oster, C., Kaiser, M., Kruse, J., Wade, J., & Cloutier, R. (2017). Applying Composable Architectures to the Design and

Development of a Product Line of Complex Systems. Systems Engineering, 19(6), 522–534.

[11] Zhang, J., Wang, Y., & Liu, X. (2022, November). Cloud-native CI/CD platform. In NCIT 2022; Proceedings of International

Conference on Networks, Communications and Information Technology (pp. 1-5). VDE.

[12] Duarte Maia, J. T., & Figueiredo Correia, F. (2022, July). Service mesh patterns. In Proceedings of the 27th European

Conference on Pattern Languages of Programs (pp. 1-12).

[13] Lazzari, L., & Farias, K. (2021). An Exploratory Study on the Effects of Event-Driven Architecture on Software Modularity.

[14] Mens, T., Demeyer, S., Hainaut, J. L., Cleve, A., Henrard, J., & Hick, J. M. (2008). Migration of legacy information systems.

Software evolution, 105-138.
[15] Wieder, P., & Nolte, H. (2022). Toward data lakes as central building blocks for data management and analysis. Frontiers in

Big Data, 5, 945720.

[16] Basole, R. C. (2019). On the evolution of service ecosystems: A Study of the Emerging API Economy. In Handbook of

Service Science, Volume II, Service Science: Research and Innovations in the Service Economy, p. 479-495.

[17] M., De Lucia, A., Scanniello, G., & Tortora, G. (2009). Evaluating legacy system migration technologies through empirical

studies. Information and Software Technology, 51(2), 433-447.

[18] Manda, J. K. (2022). AI-driven Network Orchestration in 5G Networks: Leveraging AI and Machine Learning for Dynamic

Network Orchestration and Optimization in 5G Environments. Educational Research (IJMCER), 4(2), 356-365.

[19] "The New World of Composable Enterprises?" (2022): This blog post discusses the emerging trend of composable enterprises

and their impact on business agility.

[20] Tolk, A. (2013, October). Interoperability, composability, and their implications for distributed simulation: Towards
mathematical foundations of simulation interoperability. In 2013 IEEE/ACM 17th International Symposium on Distributed

Simulation and Real Time Applications (pp. 3-9). IEEE.

[21] Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD Kernels. International

Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-67. https://doi.org/10.63282/3050-

9246.IJETCSIT-V1I3P107

[22] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial

Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-

55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[23] Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance

Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-

66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107

[24] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control Migrations. International
Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-59. https://doi.org/10.63282/3050-

9262.IJAIDSML-V2I4P106

[25] Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier

Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-

87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108

[26] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International

Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-

V2I1P107

[27] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio

Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-

62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
[28] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI,

BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

Guru Pramod Rusum & Sunil Anasuri / IJERET, 4(1), 99-111, 2023

111

[29] Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated

Remediation in Batch Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4), 70-

81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108

[30] Anasuri, S., Rusum, G. P., & Pappula, kiran K. (2022). Blockchain-Based Identity Management in Decentralized

Applications. International Journal of AI, BigData, Computational and Management Studies, 3(3), 70-

81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109
[31] Pedda Muntala, P. S. R. (2022). Enhancing Financial Close with ML: Oracle Fusion Cloud Financials Case

Study. International Journal of AI, BigData, Computational and Management Studies, 3(3), 62-

69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108

[32] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C Insurance. International

Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-

9246.IJETCSIT-V3I4P108

[33] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching

Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-

76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

