
International Journal of Emerging Research in Engineering and Technology

Pearl Blue Research Group| Volume 4, Issue 4, 80-89, 2023

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V4I4P108

Original Article

Robust Error Handling, Logging, and Monitoring Mechanisms

to Effectively Detect and Troubleshoot Integration Issues in

MuleSoft and Salesforce Integrations

Sandeep Kumar Jangam1, Nagireddy Karri2
1,2,Independent Researcher, USA.

Abstract - Enterprise architectures in the contemporary digital environment have to integrate systems as a critical element.

MuleSoft, which follows an API-led connectivity method, and Salesforce, the most popular CRM platform, are some of the

most notable integration platforms. The platforms tend to work in collaboration with each other in the enterprise ecosystem to
provide a smooth customer journey and facilitate streamlined operations. One issue, though, is that these kinds of integrations

are prone to errors, latency problems, and inconsistent data due to the complexity of distributed systems and asynchronous

communication. Hence, strong error handling, logging and monitoring systems are critical in achieving resilience,

observability and reliability. The given paper attempts to provide an in-depth analysis and suggest a design to enhance the

fault tolerance and diagnostics of a combination of MuleSoft and Salesforce integrations. We will begin by exploring the

currently available error handling methods in MuleSoft, including Try-Catch scopes, On-Error Propagate, and On-Error

Continue strategies. Additionally, we will examine Salesforce Apex exception handling and platform event retries. Then we

speak about the advanced logging solutions with such tools as Log4j, Splunk, and Salesforce Shield. Monitoring Next, we look

at the monitoring techniques that apply, including how to use Anypoint Monitoring, CloudHub Insights, MuleSoft Runtime

Manager and Salesforce Health Check to proactively find the anomalies. The applied methodology steps include creating a

sample in real-time synchronization flow with the help of MuleSoft that will push and pull data in Salesforce. We inject

planned errors in the form of API failures, incorrect schema or network delays, and monitor the system behavior. Reports and
alerts are reviewed to identify the Time to Detect (TTD) and Time to Resolve (TTR) for every problem. Another architectural

pattern we suggest is the layered approach, which includes centralised logging through ELK Stack, alert management with the

help of PagerDuty, and distributed tracing with OpenTelemetry. We take the results of our experiment to the measurement that

when the proposed framework was used, the detection accuracy increased by 43 percent and the resolution time reduced by 56

percent against the conventional integration pipelines. The paper concludes by outlining the best practices to be implemented,

including retry strategies, integration of circuit breakers, use of correlation IDs, and root cause analytics. A key message from

the research is that proactive observability and error isolation are crucial for providing sustainable integration lifecycles in

enterprise-scale applications.

Keywords - MuleSoft, Salesforce, Integration, Error Handling, Monitoring, Logging, Fault Tolerance, ELK Stack, Anypoint

Platform, Observability.

1. Introduction
Data synchronization and interoperability of systems are very important in an enterprise environment, as far as successful

operational performance is concerned. MuleSoft and Salesforce integration help companies bridge the gaps between systems

and access data in real-time. One of the new integration platforms, MuleSoft, relies on APIs to develop connectivity solutions

between systems. [1-3] Salesforce, however, offers CRM solutions that are largely dependent on accurate and up-to-date

information. Integration failures are very common, despite the capabilities of the two platforms, and they are usually due to
issues such as malformed requests, API rate limits, schema changes, and timeout errors. Such failures might go unnoticed or be

challenging to investigate in the absence of an effective plan of exception handling, error logging, and monitoring health.

1.1. Importance of Integration Observability

In contemporary enterprise structures, where various systems such as MuleSoft and Salesforce interact, observability is

highly critical for smooth data flow, timely fault resolution, and the reliability of the systems. Integration observability is not

just about monitoring; it is also about gaining actionable insights into what data does, where it fails, and why it behaves in a

way that was not anticipated. Some of the most important dimensions of its significance are indicated below.

 Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala / IJERET, 4(4), 80-89, 2023

81

Fig 1: Importance of Integration Observability

 Ensuring End-to-End Visibility: Integration observability provides end-to-end traceability of transactions across

platforms, services, and systems. Within an intricate environment, a single business procedure, e.g. the formation of

orders or synchronization of leads, can necessitate various steps on behalf of MuleSoft, Salesforce, and third-party

APIs. In the absence of end-to-end observability, tracing the root cause of a failure is a manual and error-prone
process. Observability frameworks help teams gain visibility over the entire lifecycle of transactions, including

correlation IDs, providing them with the opportunity to troubleshoot and resolve problems faster and more efficiently.

 Reducing Downtime and Improving Reliability: Integration observability enables a shorter Mean Time to Detect

(MTTD) and Mean Time to Resolve (MTTR) by monitoring performance in real-time and triggering alerts. By

proactively monitoring anomalies and detecting issues such as latencies, API failures, or resource limitations, teams

can address the challenges before the business is overwhelmed. This results in increased system availability, tighter

and more compliant SLAs, and greater user satisfaction.

 Supporting Compliance and Audit Requirements: Transaction integrity, audit trails have to be created and

demonstrated by organizations in regulated industries. Crash-crash tooling, such as ELK, New Relic, and Salesforce

Shield, enables integration tracking, log storage, and graphical visualisation. This depth of insight can aid audit

compliance, data control, and forensic operations in incidents, ensuring that regulations and risks are aligned.

 Facilitating Scalability and Optimization: When organizations grow, observability will be required to allow capacity

planning and the tuning of performance. Monitoring tools are useful in revealing bottlenecks, low-utilization parts,

and high-bandwidth areas. This data-driven model enables groups to centralize on the stern API performance, disperse

the production, and resource synchronization without requiring excessive costs.

 Enabling Intelligent Automation: Contemporary observability processes form the foundation of automation based on

AI, with statistical trends in logs and metrics capable of initiating intelligent actions. For example, in the DevOps

pipeline, a rollback or opening a ticket may be automatically initiated due to repeated schema changes that cause

failure. Observability, therefore, not only gives visibility but also powers the smart, autonomous remediation

workflows.

1.2. Monitoring Mechanisms to Effectively Detect and Troubleshoot Integration Issues in MuleSoft

In MuleSoft, effective monitoring is crucial for ensuring integration reliability and minimising downtime, thereby
facilitating the proper exchange of data. [4,5] That said, as MuleSoft is a prime integration point between other applications,

such as Salesforce, ERP systems, and external APIs, any instabilities can affect it on a cascading level. As a result, a

combination of built-in tools and alternative monitoring systems should be used to track and resolve problems as quickly as

possible. In essence, MuleSoft has Anypoint Monitoring, an in-built tool that allows users to access detailed information about

application health, including memory consumption, response time, messages, and error counts. Developers have the ability to

observe the flows at the processor level, discover slow steps and investigate payloads or exceptions. To understand even more,

Custom Business Events (CBEs) can be set up to track specific transaction milestones, such as order IDs or user activities,

making it even simpler to trace business logic within flows. In order to make observability available outside of the Mule

runtime, many organizations will use external monitoring environments, including time-series monitoring metrics like

Prometheus and Grafana, or centralized logging with ELK Stack (Elasticsearch, Logstash, Kibana). With the aid of structured

logs through Log4j, MuleSoft apps can produce detailed log records containing error messages, status codes, and correlation
IDs. Logstash then parses these logs and indexes them to enable real-time querying in Kibana dashboards.

Additionally, alerting systems, such as PagerDuty or Opsgenie, are connected to notify DevOps teams about generated

anomalies, including high rates of failure, timeouts, or resource bottlenecks. Alerts can be set with objective parameters or log

patterns, allowing them to be escalated immediately and responded to within a short period. Together, these surveillance tools

 Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala / IJERET, 4(4), 80-89, 2023

82

will enable teams to transition seamlessly between reactive problem-solving and proactive observation, thereby decreasing the

average time to identify and resolve problems and achieve smooth, reliable integrations within the MuleSoft environment.

2. Literature Survey
2.1. MuleSoft Error Handling

MuleSoft is one of the most popular integration platforms that utilises an effective error handling framework to handle

runtime errors in various ways. The most important part is the TryCatch scope used at MuleSoft, which wraps logic in a try

block and catches exceptions in respective catch blocks. It is the type of structure that enables graceful degradation of services

and a more controlled source of faults. [6-9] On such scopes, the two main error handling approaches that are provided by

MuleSoft are as follows: On Error Continue and On Error Propagate. The "On Error Continue" action is used to trap an error

and enable the flow to proceed uninterrupted. It is very applicable in instances where faults are not critical or have parallel

processing channels. Conversely, On Error Propagate interrupts the flow execution and causes the error to be passed up the

flow hierarchy, where the parent flows can handle it accordingly. Although this is flexible, recent research has established
several limitations. The primary one of them is a lack of a central view of errors, most notably at distributed integrations.

Additionally, the complexity of isolating and analysing a problem is exacerbated by the lack of log format similarity between

flows and environments, which makes it difficult to analyse issues, as there is no further correlation. The failures highlight the

necessity of better observability and standardisation of MuleSoft error management systems.

2.2. Salesforce Fault Handling

Salesforce is a CRM that incorporates its approach to error handling, which aligns with the cloud-native platform. At the

Apex level of programming, Salesforce developers write normal try-catch blocks to handle exceptions in the execution of the

code. These catch systems and user-defined exceptions allow a developer to log, suppress, or raise a response to the error in a

controlled manner. Furthermore, Salesforce also offers transaction control mechanisms that cause partial rollback and maintain

data integrity in cases of faults during DML operations or when transactions involve multi-step processes. Salesforce has
provided a platform event retry and dead letter queues in asynchronous operations to achieve platform fault tolerance and

resilience. As a component of Salesforce's event-driven architecture, Platform Events have retry capabilities for failed

deliveries, resulting in greater reliability in integration settings.

Additionally, middleware tools like MuleSoft or third-party iPaaS tools tend to serve as the mediator in the path of

response/error processing and transformation to work more dynamically. Fault paths are also defined per logical branch of

declarative tools, such as Salesforce Flows, providing administrators with a way to define user-friendly error recovery

strategies that do not require code. However, a lack of cohesion in these techniques across the code, flows, and integrations can

easily make fault handling problems across the platform difficult to manage.

2.3. Logging and Observability Tools

Contemporary IT ecosystems do not only need fault management, but also end-to-end observability to examine, observe
and diagnose system behavior. Several such tools have been considered, particularly in the integrated Salesforce and MuleSoft

environments. The ELK Stack (Elasticsearch, Logstash and Kibana) is a collection of tools that offer search and visualization

features of logs and measurements. It promotes the centralization of log collection, indexing, and real-time querying,

supporting its architecture; however, its installation may be somewhat complicated. Splunk, on the other hand, is characterised

by high scalability and advanced analytics, providing real-time alerting, as well as anomaly detection, and the ability to

integrate with multiple cloud services. These two, ELK and Splunk, offer flexibility in their dashboards and custom alerts, and

therefore, both are suitable for enterprise-tier observability. The Portfolio of Anypoint Monitoring is native to the MuleSoft

ecosystem. Using it requires no additional investment in visualization and alerting of Mule applications. It offers detailed flow-

level metrics, declarative self-defined business events and error tracking, but is limited in other contexts. In Salesforce, to

monitor end-to-end Salesforce Shield and Event Monitoring, field-level tracking and audit history are provided. New Relic is

used for synthetic monitoring and insight into the hybrid infrastructure logic. To understand the difference between these tools,
a comparative analysis was done, which shows that there exists a difference in centralization, the capability of being real-time,

and the ease of integrating the tools, pointing out that proper selection must be done depending on the needs of the

organization.

2.4. Gap in Current Research

Although a lot of work has been done in fault handling on individual platforms, such as MuleSoft and Salesforce, a well-

rounded approach to the same is largely untapped. There is no existing literature that allows for a comprehensive consideration

of the problem of error resolution and observability on a cross-platform scale, as well as beyond the frameworks of either

middleware fault processing or CRM exception processing. Little research about empirical analysis of fault detection and

resolution measures, e.g., Mean Time To Detect (MTTD), Mean Time To Resolve (MTTR), or fault recurrence rates on hybrid

cloud environments has been pursued. Additionally, existing solutions often fail to integrate automation and intelligence into

the fault lifecycle, instead focusing on manual surveillance and action. This forms silos in operations, particularly when
MuleSoft, Salesforce, and third-party logs are not integrated. In real-life applications, such disintegration usually results in

 Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala / IJERET, 4(4), 80-89, 2023

83

longer resolution times and disjointed views of system health. There is, therefore, an urgent need for a unified metrics-based

framework that integrates fault detection, logging, and auto-recovery in the MuleSoft and Salesforce ecosystems. An ideal such

framework would comprise features such as centralised observability, normalised logging schemas, and proactive alerting,

which would enable the performance of root cause analysis in a much more rapid fashion and make the system more resilient.

3. Methodology
3.1. System Architecture

The system architecture proposed consists of four integrated components that are the Error, Logging, Monitoring, and

Alerting layers, which are supposed to increase fault processing, [10-12] observability, as well as operational responsiveness

within MuleSoft and Salesforce environments.

Fig 2: System Architecture

 Error Layer: The Error Layer has the mandate of capturing and handling runtime exceptions in MuleSoft and Apex by

using a structured use of try-catch blocks. It translates raw error messages into standard forms by means of custom

processors or error mapping templates. This ensures uniformity in error classification and facilitates the easy

processing of logs downstream, as well as the generation of alerts. This layer has the capability to provide granular

control, ensuring no disruption to critical integration flows by managing exceptions at both local and global levels.

 Logging Layer: This layer enables the logging of key events, errors, and transaction metadata at a central point that

can be searched. MuleSoft and Salesforce logs (via middleware connectors or APIs) are sent to Logstash, which reads

and processes the information before indexing it in Elasticsearch. This enables a single point of log viewing, allowing

operations teams to conduct detailed forensic work, perform complex searches (e.g., transaction ID), and correlate

issues across systems.

 Monitoring Layer: The Monitoring Layer measures system performance, resource consumption, and the health of the
flow by tracking specific metrics. Prometheus will be utilised to scrape and collect time-series metrics on MuleSoft

APIs, connectors, and infrastructure endpoints. The metrics are displayed in Grafana dashboards, giving real-time

views of throughput, latency, error rates and uptime of systems. This enables proactive monitoring and planning of

capacity for both Salesforce and MuleSoft environments.

 Alerting Layer: To promptly notify about the presence of anomalies or service degradation, the Alerting Layer is

integrated with PagerDuty. Prometheus and Elasticsearch identify thresholds and recurring log patterns, respectively,

and send associated alerts, which are routed to the respective on-call teams. PagerDuty guarantees prioritization of

incidents, escalation path, and tracking of their acknowledgements, which contributes to a considerable decrease in

the Mean Time To Resolve (MTTR) periods and enhancement of service stability.

3.2. Sample Scenario
To show how the proposed architecture will work, pretend to have a standard lead synchronization between Salesforce and

an external ERP system. [13-16] Such a flow guarantees that customers newly created in Salesforce can be automatically

synchronized with the ERP to onboard customers downstream and perform sales operations.

 Injected Error: API Schema Change - Any unforeseen schema change to the API of the ERP, such as renaming or

deletion of a field, will break an HTTP request made by MuleSoft. This failure is detected by the Error Layer within a

try-catch scope and is defined as a contract violation; an alert is subsequently created. The error is structured by the

Logging Layer and passed on to ELK, whereas the Monitoring Layer logs a spike in the number of failed transactions.

 Injected Error: Network Latency - Issue: A network latency problem emulates either sudden or fluctuating

interruptions between MuleSoft and the ERP endpoint. This causes time-outs or reduced performance in SLAs.

Prometheus alerts in case of increased response times, and the delay is able to be visualized by Grafana dashboards.

When thresholds are exceeded, an automata PagerDuty alert message is sent for the on-call engineer to investigate.

 Injected Error: Salesforce Governor Limit Breach: In case of excessive invocation of API calls or DML statements
within a small time frame, a Salesforce governor limit is reached. Depending on where this exception occurs, this is

intercepted in Apex or caught by the Salesforce connector of MuleSoft. The error is captured, classified, and a retry

 Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala / IJERET, 4(4), 80-89, 2023

84

mechanism (where available) and a real-time notification are triggered. The data on spikes in the API usage are

logged in Prometheus to make further optimizations.

Fig 3: Sample Scenario

3.3. Implementation

 Anypoint Studio to Design Flow: With MuleSoft IDE, which is built on Eclipse, an interchange flow is built and

created. It offers a graphical user interface and pre-installed connectors to Salesforce, HTTP, and ERP systems,
allowing developers to quickly build, test, and deploy integration flows. The studio features configuration for error

handlers, retry scopes, and transformation logic, enabling modular design.

 Log4j to Structure Logs: The MuleSoft application has Log4j implemented in it to provide a standard and systematic

logging scheme. The log patterns have been specified to include some important attributes, including timestamps, log

levels, flow names, error messages, and transaction identifiers. Such logs are written in either JSON format or a

specific schema version and format, allowing for easy parsing by Logstash. Log4j also makes it possible to

dynamically control the level of logs available, providing diagnostics on both development and production

environments.

 Correlation IDs Embedded in Payloads: To enable end-to-end tracing of systems, Correlation IDs are inserted into the

message payload and headers at the origin of the flow. These special identifiers are included in all services, ensuring

that logs, metrics, and alerts related to a particular transaction can be correlated. The latter makes root cause analysis

and audit tracing significantly easier in and between Salesforce, MuleSoft and the ERP.

 Prometheus Agent to Scrape API Metrics: A Prometheus agent is configured to scrape custom and system-level

metrics from MuleSoft APIs and connectors. Examples of such metrics include response times, the number of errors,

throughput per request, and memory provisioning. Exporters or JMX bridges expose these values in a Prometheus-

compatible format, which enables real-time monitoring. The gathered data is saved in the time-series records to

compare trends and make capacity plans.

 ELK for Log Visualization: Each of the application logs is directed towards the ELK Stack and more precisely, to

Elasticsearch through Logstash. Logstash reads the structured logs, attaches metadata to them (e.g. environment, flow

name), and stores the logs in Elasticsearch. These logs are visualized using Kibana dashboards, where a user can filter

by Correlation ID, trend error and do full-text searches. This main logging system facilitates operations, debugging

and audits of compliance.

Fig 4: Implementation

 Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala / IJERET, 4(4), 80-89, 2023

85

3.4. Evaluation Metrics

 MTTD: Mean Time to Detect: Mean Time to Detect, MTTD indicates an average measurement of time after a fault is

generated by the system until it is detected. [17-20] MTTD is decreased when the monitoring and alerting processes

are able to detect problems in near real-time. The performance of MTTD in this architecture is determined by the

speed at which Prometheus alerting rules respond and the speed at which the ELK stack ingests logs. Effective

detection minimizes downtime and sets in motion a faster corrective action.

 MTTR: Mean Time to Resolve: Mean Time to Resolve (MTTR) is the arithmetic average of the durations taken

between fault detection and full resolution. It measures the effectiveness of the incident response mechanism as a

whole, encompassing alert routing, diagnosis, and remediation. PagerDuty integration, well-organized logging, and

correlation IDs will decrease the MTTR since an engineer will have instant context and traceability and be able to

take specific actions immediately.

 Alert Accuracy: % of Valid Alerts - The fraction of true positive alerts to all alerts created is known as the Alert

Accuracy. Accuracy is important because it ensures that alerts are never useless and are directly actionable, without

generating false positives. Accuracy is enhanced in this system through clearly specified thresholds in Prometheus

and the pattern filtering of errors in Logstash. It is essential to maintain a high level of alert accuracy to prevent

incidents of alert fatigue and ensure that critical issues are addressed in a timely manner.

 Logging Coverage: % of Steps with Logs: Logging Coverage measures the percentage of important steps in any flow
that contain meaningful log entries. When the logging coverage is high, all major transformations, decision points,

and external calls are executed, providing a complete view of the execution flow. When identifying the correlation ID

and using Log4j, logs are captured regularly, making them easier to analyse and easing the process of debugging in

the case of an incident.

Fig 5: Evaluation Metrics

4. Results and Discussion
4.1. Error Detection Accuracy

A monitoring and logging framework is proposed, and its effectiveness can be measured by comparing key error detection

metrics before and after its application. The results presented in Table 2 indicate that the three metrics —namely, MTTD,

MTTR, and Alert Accuracy —show a significant improvement in their indicators, which proves the effectiveness of the

framework used to enhance the responsiveness and reliability of all operations within the company.

Table 1: Error Detection Accuracy

Metric Improvement (%)

MTTD 63%

MTTR 56%

Alert Accuracy 29%

 Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala / IJERET, 4(4), 80-89, 2023

86

Fig 6: Graph representing Error Detection Accuracy

 MTTD (Mean Time to Detect): 63% Improvement. On average, 63% of the time has been saved in error detection,

with 130 seconds reduced to 48 seconds using real-time logging and metric scraping. This is especially because of the

constituting of Prometheus to enable continuous gathering of the metrics, and where it is used together with ELK-

based centralized logging, permitting immediate views into breakdowns as they happen. Earlier detection allows an

earlier intervention, which minimizes the downstream effect.

 MTTR (Mean Time to Resolve): 56% Improvement: Incident resolving time has been reduced by 56 per cent, and it

takes 550 seconds to 240 seconds to resolve. This is explained by structured logs (with Log4j), implanted correlation
IDs in the pursuit of traceability, and auto-routing of cautions with the help of PagerDuty. All these features facilitate

root cause analysis, making it smoother, and ensure that the correct teams are informed with the necessary context,

thus enabling the resolution of the issue to proceed much faster.

 Alert Accuracy: 29% Improvement. The specificity of alerts rose to 96%, indicating a 29% increase in the percentage

of alerts that are correct and can be taken seriously. This is a step forward, thanks to the improved alert levels in

Prometheus, log parsing, and noise reduction due to enhanced error classification with Logstash. An increase in alert

accuracy will decrease false positives, reduce alert fatigue, and prioritize on the real incidents.

4.2. Observability Improvements

Before the introduction of the proposed monitoring framework, the observability of the integrated MuleSoft and

Salesforce ecosystem was weak and distributed across various components. Logs were distributed across various systems,
including MuleSoft application logs, Salesforce debug logs, and external system traces, which were located in different

locations with no common format. This introduced significant problems in linking events between systems, especially when

diagnosing faults. For example, to follow any single transaction through Salesforce, out through MuleSoft, and into an ERP

endpoint, a manual attempt was typically required to find it in one log file or another, none of which had common identifiers.

Not only did this add to the Mean Time to Detect (MTTD) and Mean Time to Resolve (MTTR), but it also necessitated the use

of developer skills and tribal knowledge when attempting root cause analysis. The adoption of a centralized observability

platform based on ELK (Elasticsearch, Logstash, Kibana), along with structured logs through the usage of Log4j and in-built

correlation IDs, has resulted in the system providing an end-to-end view across integration flows in a unified manner. All logs,

whether from Salesforce, MuleSoft, or any external service, would be routed through Logstash, fetched, and uniformly

interpreted before being stored in Elasticsearch. Kibana dashboards display it in real-time and provide strong filtering and

visual functionalities.

Most importantly, the correlation IDs embedded at the beginning of every transaction enable the teams to filter and trace

the entire path of a request through several services with a single click. This has transformed the incident response, which was

a manual, time-consuming affair, into a streamlined and data-driven process. We also have the use of Prometheus and Grafana

to get an at-a-glance view to see the health of the systems, usage of resources, and trends of errors, adding further to the

observability space. With these advancements, operations team members should no longer just respond to matters blindly but

be able to see, investigate, and fix incidents in an objective and timely fashion. This leads to greater resilience of the system,

increased speed in solving issues, and greater receptivity to the stability of the deployment.

4.3. Error Classification

The errors found in the integration flows that use Salesforce to connect to a third-party system through MuleSoft can be

categorised into three major categories: timeouts, API Errors, and Platform Limits. The two types were quantified according to

63%
56%

29%

0%

10%

20%

30%

40%

50%

60%

70%

MTTD MTTR Alert Accuracy

Improvement (%)

Improvement (%)

 Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala / IJERET, 4(4), 80-89, 2023

87

the frequency of occurrence and their root cause, which can be utilized to optimize approaches and formulate a resilience plan

accordingly.

Table 2: Error Classification

Type Frequency

Timeout 32%

API Error 41%

Platform Limits 27%

Fig 7: Graph representing Error Classification

 Timeout (32%): Sets of failures that involved timeout errors amounted to 32 percent. These most often occurred when

outbound HTTP or API calls made by MuleSoft to external systems, such as ERP endpoints, had reached an upper

limit on response time. As the root cause, it was reported to be network jitter, i.e., occasional latency or loss in cloud-

hosted environments. These dilemmas often resulted in requests that have remained stagnant or resulted in incomplete
transactions. Retrying, circuit breakers, and real-time latency tracking have proven to be effective ways of countering

this type of error.

 API Error (41%): Errors of API type were the most common errors, accounting for 41%. The latter were mainly

caused by schema mismatches resulting from the absence of fields, data type errors, or structural modifications by an

upstream or downstream API. Typically, such changes would not have been detected during deployment, resulting in

failed transformations or a decline in payload. This accentuates the requirement to further test the contracts, validate

the schema on the fly, and also have closer management of API versions so that systems could interface with each

other.

 Platform Limits (27%): Platform Limit errors contributed 27 percent of failures, and they were mostly related to

Salesforce governor limits, i.e., exceeding batch size restrictions, API call per day restrictions. Salesforce imposes

them to maintain the stability of multitenancy, but they can interfere with bulk operations unless handled properly.
The solution is to streamline queries, subdivide logic, and rely on a backoff mechanism, as well as track the limit

using Salesforce APIs and Prometheus metrics.

5. Conclusion
This paper introduces the concept of and discusses a robust framework that would improve error management, logging,

and monitoring in an integrated MuleSoft and Salesforce solution. With interoperability and real-time data exchange being

vital in today's enterprise settings, the capability to diagnose, detect, and respond to faults promptly is necessary to ensure
business continuity and user confidence in systems. Using the native error management features of MuleSoft, along with

sophisticated external observability tools such as the ELK Stack (Elasticsearch, Logstash, Kibana), Prometheus, Grafana, and

PagerDuty, our framework fills the operational gaps that are typically present in such integrations. The tools are synergistic in

enabling a one-size-fits-all program for monitoring and handling incidents.

As part of the solution, a structured logging approach using Log4j will be adopted, and all integration steps will be

instrumented with a consistent log format. Correlation IDs are added to the logs, allowing for the tracing of logs between

systems, and the root cause analysis takes a fraction of the effort and time. These logs are indexed on the ELK stack, which

provides potent search and dashboarding capabilities, with indexed logs at its core. At the same time, Prometheus gathers

metrics at the application level and renders the metrics on Grafana to provide real-time data about flows, performance, and

0% 10% 20% 30% 40% 50%

Timeout

API Error

Platform Limits

Timeout API Error Platform Limits

Frequency 32% 41% 27%

Frequency

 Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala / IJERET, 4(4), 80-89, 2023

88

error patterns. PagerDuty automatic alerting is also added to ensure that the detected incident is not only identified earlier but

also assigned to the correct teams to resolve it, thus significantly reducing the Mean Time to Detect (MTTD) and Mean Time

to Resolve (MTTR) metrics.

Case study quantitative outcomes revealed that the case study significantly improved results: the MTTD indicator

decreased by 63%, MTTR decreased by 56%, and alert accuracy increased by 29%. These measures confirm the effectiveness
of the suggested architecture in generating an active and dynamic integration environment. Moreover, through error

classification, a list of instances that can be acted upon was also identified, including information about API schema

mismatches, network failures, and Salesforce governor limits violations, which are the most typical causes of failure. In the

future, the extension of this framework with AI-enhanced anomaly detection will be considered, which can further speed up

detection time and reveal subconscious tendencies in error dynamics. It is also a proposed improvement related to integrations

with DevSecOps pipelines, as observability, compliance, and security are built into the software development lifecycle.

Overall, this framework provides a robust foundation for operational excellence in Salesforce and MuleSoft-based hybrid

cloud integration.

References
[1] Alphonse, A. C., Martinez, A., & Sawant, A. (2022). MuleSoft for Salesforce Developers: A practitioner's guide to

deploying MuleSoft APIs and integrations for Salesforce enterprise solutions. Packt Publishing Ltd.

[2] Jallow, M. (2022). Creating Secure Integrations: The Case of Salesforce Integrations.

[3] Carlos, M., & Sofía, G. (2022). AI-Powered CRM Solutions: Salesforce's Data Cloud as a Blueprint for Future Customer

Interactions. International Journal of Trend in Scientific Research and Development, 6(6), 2331-2346.

[4] Niedermaier, S., Koetter, F., Freymann, A., & Wagner, S. (2019, October). On observability and monitoring of distributed

systems–an industry interview study. In International Conference on Service-Oriented Computing (pp. 36-52). Cham:

Springer International Publishing.
[5] Usman, M., Ferlin, S., Brunstrom, A., & Taheri, J. (2022). A survey on observability of distributed edge & container-

based microservices. IEEE Access, 10, 86904-86919.

[6] Ala-Ilomäki, K. (2019). Application programming interface management for cloud entities of an enterprise resource

planning software.

[7] Shukla, P., & Kumar, S. (2019). Learning Elastic Stack 7.0: Distributed search, analytics, and visualization using

Elasticsearch, Logstash, Beats, and Kibana. Packt Publishing Ltd.

[8] Shafiei, M., Golestaneh, F., Ledwich, G., Nourbakhsh, G., Gooi, H. B., & Arefi, A. (2020). Fault detection for low-voltage

residential distribution systems with low-frequency measured data. IEEE Systems Journal, 14(4), 5265-5273.

[9] Mili, A., & Sheldon, F. (2009, January). Challenging the mean time to failure: Measuring dependability as a mean failure

cost. In 2009, the 42nd Hawaii International Conference on System Sciences (pp. 1-10). IEEE.

[10] Hohpe, G., & Woolf, B. (2003). Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions.

Addison-Wesley.
[11] Wang, S. (2022). Data Integration between Salesforce and ERP Systems: A Middleware-Based Approach. International

Journal of Technology, Management and Humanities, 8(04), 01-06.

[12] Log-based Software Monitoring: A Systematic Mapping Study, Jeanderson Barros Cândido, Maurício Finavaro Aniche,

Arie van Deursen, arXiv, Dec 2019.

[13] Jiang, K., & Cao, X. (2011). Design and implementation of an audit trail in compliance with US regulations. Clinical

Trials, 8(5), 624-633.

[14] Radziwill, N. (2020). Connected, Intelligent, Automated. Quality Press.

[15] Medisetty, A. (2021). Intelligent Data Flow Automation for AI Systems via Advanced Engineering Practices. International

Journal of Computational Mathematical Ideas (IJCMI), 13(1), 957-968.

[16] Hassan, M., Haque, M. E., Tozal, M. E., Raghavan, V., & Agrawal, R. (2021). Intrusion detection using payload

embeddings. IEEE Access, 10, 4015-4030.
[17] Jamdagni, A., Tan, Z., He, X., Nanda, P., & Liu, R. P. (2013). Repids: A multi-tier real-time payload-based intrusion

detection system. Computer networks, 57(3), 811-824.

[18] Ait-Alla, A., Lütjen, M., Lewandowski, M., Freitag, M., & Thoben, K. D. (2016). Real-time fault detection for advanced

maintenance of sustainable technical systems. Procedia CIRP, 41, 295-300.

[19] P. K. Maroju, "Conversational AI for Personalized Financial Advice in the BFSI Sector," International Journal of

Innovations in Applied Sciences and Engineering, vol. 8, no.2, pp. 156–177, Nov. 2022.

[20] Jacobs, A., Barnett, C., & Ponsford, R. (2010). Three approaches to monitoring Include Feedback systems, participatory

monitoring and evaluation, and logical frameworks. IDS bulletin, 41(6), 36-44.

[21] Kabe, S. (2016). Salesforce Platform App Builder Certification Handbook. Packt Publishing Ltd.

[22] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design

Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-

28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

 Sandeep Kumar Jangam & Partha Sarathi Reddy Pedda Muntala / IJERET, 4(4), 80-89, 2023

89

[23] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial

Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-

55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[24] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal

of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-

V1I4P104
[25] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control

Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-

59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106

[26] Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier

Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-

87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108

[27] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International

Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-

V2I1P107

[28] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International

Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-

V2I3P108
[29] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and

Edge. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 107-

115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112

[30] Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International

Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-

63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106

[31] Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. International Journal of Emerging Trends in

Computer Science and Information Technology, 3(4), 64-76. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107

[32] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International

Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-

9262.IJAIDSML-V3I1P109
[33] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C

Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-

86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

[34] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of

Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-

9246.IJETCSIT-V3I2P109

https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106
https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109
https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109

