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Abstract - Enterprise architectures in the contemporary digital environment have to integrate systems as a critical element. 

MuleSoft, which follows an API-led connectivity method, and Salesforce, the most popular CRM platform, are some of the 

most notable integration platforms. The platforms tend to work in collaboration with each other in the enterprise ecosystem to 
provide a smooth customer journey and facilitate streamlined operations. One issue, though, is that these kinds of integrations 

are prone to errors, latency problems, and inconsistent data due to the complexity of distributed systems and asynchronous 

communication. Hence, strong error handling, logging and monitoring systems are critical in achieving resilience, 

observability and reliability. The given paper attempts to provide an in-depth analysis and suggest a design to enhance the 

fault tolerance and diagnostics of a combination of MuleSoft and Salesforce integrations. We will begin by exploring the 

currently available error handling methods in MuleSoft, including Try-Catch scopes, On-Error Propagate, and On-Error 

Continue strategies. Additionally, we will examine Salesforce Apex exception handling and platform event retries. Then we 

speak about the advanced logging solutions with such tools as Log4j, Splunk, and Salesforce Shield. Monitoring Next, we look 

at the monitoring techniques that apply, including how to use Anypoint Monitoring, CloudHub Insights, MuleSoft Runtime 

Manager and Salesforce Health Check to proactively find the anomalies. The applied methodology steps include creating a 

sample in real-time synchronization flow with the help of MuleSoft that will push and pull data in Salesforce. We inject 

planned errors in the form of API failures, incorrect schema or network delays, and monitor the system behavior. Reports and 
alerts are reviewed to identify the Time to Detect (TTD) and Time to Resolve (TTR) for every problem. Another architectural 

pattern we suggest is the layered approach, which includes centralised logging through ELK Stack, alert management with the 

help of PagerDuty, and distributed tracing with OpenTelemetry. We take the results of our experiment to the measurement that 

when the proposed framework was used, the detection accuracy increased by 43 percent and the resolution time reduced by 56 

percent against the conventional integration pipelines. The paper concludes by outlining the best practices to be implemented, 

including retry strategies, integration of circuit breakers, use of correlation IDs, and root cause analytics. A key message from 

the research is that proactive observability and error isolation are crucial for providing sustainable integration lifecycles in 

enterprise-scale applications. 

 

Keywords - MuleSoft, Salesforce, Integration, Error Handling, Monitoring, Logging, Fault Tolerance, ELK Stack, Anypoint 
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1. Introduction 
Data synchronization and interoperability of systems are very important in an enterprise environment, as far as successful 

operational performance is concerned. MuleSoft and Salesforce integration help companies bridge the gaps between systems 

and access data in real-time. One of the new integration platforms, MuleSoft, relies on APIs to develop connectivity solutions 

between systems. [1-3] Salesforce, however, offers CRM solutions that are largely dependent on accurate and up-to-date 

information. Integration failures are very common, despite the capabilities of the two platforms, and they are usually due to 
issues such as malformed requests, API rate limits, schema changes, and timeout errors. Such failures might go unnoticed or be 

challenging to investigate in the absence of an effective plan of exception handling, error logging, and monitoring health. 

 

1.1. Importance of Integration Observability 

In contemporary enterprise structures, where various systems such as MuleSoft and Salesforce interact, observability is 

highly critical for smooth data flow, timely fault resolution, and the reliability of the systems. Integration observability is not 

just about monitoring; it is also about gaining actionable insights into what data does, where it fails, and why it behaves in a 

way that was not anticipated. Some of the most important dimensions of its significance are indicated below. 
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Fig 1: Importance of Integration Observability 

 

 Ensuring End-to-End Visibility: Integration observability provides end-to-end traceability of transactions across 

platforms, services, and systems. Within an intricate environment, a single business procedure, e.g. the formation of 

orders or synchronization of leads, can necessitate various steps on behalf of MuleSoft, Salesforce, and third-party 

APIs. In the absence of end-to-end observability, tracing the root cause of a failure is a manual and error-prone 
process. Observability frameworks help teams gain visibility over the entire lifecycle of transactions, including 

correlation IDs, providing them with the opportunity to troubleshoot and resolve problems faster and more efficiently. 

 Reducing Downtime and Improving Reliability: Integration observability enables a shorter Mean Time to Detect 

(MTTD) and Mean Time to Resolve (MTTR) by monitoring performance in real-time and triggering alerts. By 

proactively monitoring anomalies and detecting issues such as latencies, API failures, or resource limitations, teams 

can address the challenges before the business is overwhelmed. This results in increased system availability, tighter 

and more compliant SLAs, and greater user satisfaction. 

 Supporting Compliance and Audit Requirements: Transaction integrity, audit trails have to be created and 

demonstrated by organizations in regulated industries. Crash-crash tooling, such as ELK, New Relic, and Salesforce 

Shield, enables integration tracking, log storage, and graphical visualisation. This depth of insight can aid audit 

compliance, data control, and forensic operations in incidents, ensuring that regulations and risks are aligned. 

 Facilitating Scalability and Optimization: When organizations grow, observability will be required to allow capacity 

planning and the tuning of performance. Monitoring tools are useful in revealing bottlenecks, low-utilization parts, 

and high-bandwidth areas. This data-driven model enables groups to centralize on the stern API performance, disperse 

the production, and resource synchronization without requiring excessive costs. 

 Enabling Intelligent Automation: Contemporary observability processes form the foundation of automation based on 

AI, with statistical trends in logs and metrics capable of initiating intelligent actions. For example, in the DevOps 

pipeline, a rollback or opening a ticket may be automatically initiated due to repeated schema changes that cause 

failure. Observability, therefore, not only gives visibility but also powers the smart, autonomous remediation 

workflows. 
 

1.2. Monitoring Mechanisms to Effectively Detect and Troubleshoot Integration Issues in MuleSoft 

In MuleSoft, effective monitoring is crucial for ensuring integration reliability and minimising downtime, thereby 
facilitating the proper exchange of data. [4,5] That said, as MuleSoft is a prime integration point between other applications, 

such as Salesforce, ERP systems, and external APIs, any instabilities can affect it on a cascading level. As a result, a 

combination of built-in tools and alternative monitoring systems should be used to track and resolve problems as quickly as 

possible. In essence, MuleSoft has Anypoint Monitoring, an in-built tool that allows users to access detailed information about 

application health, including memory consumption, response time, messages, and error counts. Developers have the ability to 

observe the flows at the processor level, discover slow steps and investigate payloads or exceptions. To understand even more, 

Custom Business Events (CBEs) can be set up to track specific transaction milestones, such as order IDs or user activities, 

making it even simpler to trace business logic within flows. In order to make observability available outside of the Mule 

runtime, many organizations will use external monitoring environments, including time-series monitoring metrics like 

Prometheus and Grafana, or centralized logging with ELK Stack (Elasticsearch, Logstash, Kibana). With the aid of structured 

logs through Log4j, MuleSoft apps can produce detailed log records containing error messages, status codes, and correlation 
IDs. Logstash then parses these logs and indexes them to enable real-time querying in Kibana dashboards. 

 

Additionally, alerting systems, such as PagerDuty or Opsgenie, are connected to notify DevOps teams about generated 

anomalies, including high rates of failure, timeouts, or resource bottlenecks. Alerts can be set with objective parameters or log 

patterns, allowing them to be escalated immediately and responded to within a short period. Together, these surveillance tools 
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will enable teams to transition seamlessly between reactive problem-solving and proactive observation, thereby decreasing the 

average time to identify and resolve problems and achieve smooth, reliable integrations within the MuleSoft environment. 

 

2. Literature Survey 
2.1. MuleSoft Error Handling 

MuleSoft is one of the most popular integration platforms that utilises an effective error handling framework to handle 

runtime errors in various ways. The most important part is the TryCatch scope used at MuleSoft, which wraps logic in a try 

block and catches exceptions in respective catch blocks. It is the type of structure that enables graceful degradation of services 

and a more controlled source of faults. [6-9] On such scopes, the two main error handling approaches that are provided by 

MuleSoft are as follows: On Error Continue and On Error Propagate. The "On Error Continue" action is used to trap an error 

and enable the flow to proceed uninterrupted. It is very applicable in instances where faults are not critical or have parallel 

processing channels. Conversely, On Error Propagate interrupts the flow execution and causes the error to be passed up the 

flow hierarchy, where the parent flows can handle it accordingly. Although this is flexible, recent research has established 
several limitations. The primary one of them is a lack of a central view of errors, most notably at distributed integrations. 

Additionally, the complexity of isolating and analysing a problem is exacerbated by the lack of log format similarity between 

flows and environments, which makes it difficult to analyse issues, as there is no further correlation. The failures highlight the 

necessity of better observability and standardisation of MuleSoft error management systems. 

 

2.2. Salesforce Fault Handling 

Salesforce is a CRM that incorporates its approach to error handling, which aligns with the cloud-native platform. At the 

Apex level of programming, Salesforce developers write normal try-catch blocks to handle exceptions in the execution of the 

code. These catch systems and user-defined exceptions allow a developer to log, suppress, or raise a response to the error in a 

controlled manner. Furthermore, Salesforce also offers transaction control mechanisms that cause partial rollback and maintain 

data integrity in cases of faults during DML operations or when transactions involve multi-step processes. Salesforce has 
provided a platform event retry and dead letter queues in asynchronous operations to achieve platform fault tolerance and 

resilience. As a component of Salesforce's event-driven architecture, Platform Events have retry capabilities for failed 

deliveries, resulting in greater reliability in integration settings. 

 

Additionally, middleware tools like MuleSoft or third-party iPaaS tools tend to serve as the mediator in the path of 

response/error processing and transformation to work more dynamically. Fault paths are also defined per logical branch of 

declarative tools, such as Salesforce Flows, providing administrators with a way to define user-friendly error recovery 

strategies that do not require code. However, a lack of cohesion in these techniques across the code, flows, and integrations can 

easily make fault handling problems across the platform difficult to manage. 

 

2.3. Logging and Observability Tools 

Contemporary IT ecosystems do not only need fault management, but also end-to-end observability to examine, observe 
and diagnose system behavior. Several such tools have been considered, particularly in the integrated Salesforce and MuleSoft 

environments. The ELK Stack (Elasticsearch, Logstash and Kibana) is a collection of tools that offer search and visualization 

features of logs and measurements. It promotes the centralization of log collection, indexing, and real-time querying, 

supporting its architecture; however, its installation may be somewhat complicated. Splunk, on the other hand, is characterised 

by high scalability and advanced analytics, providing real-time alerting, as well as anomaly detection, and the ability to 

integrate with multiple cloud services. These two, ELK and Splunk, offer flexibility in their dashboards and custom alerts, and 

therefore, both are suitable for enterprise-tier observability. The Portfolio of Anypoint Monitoring is native to the MuleSoft 

ecosystem. Using it requires no additional investment in visualization and alerting of Mule applications. It offers detailed flow-

level metrics, declarative self-defined business events and error tracking, but is limited in other contexts. In Salesforce, to 

monitor end-to-end Salesforce Shield and Event Monitoring, field-level tracking and audit history are provided. New Relic is 

used for synthetic monitoring and insight into the hybrid infrastructure logic. To understand the difference between these tools, 
a comparative analysis was done, which shows that there exists a difference in centralization, the capability of being real-time, 

and the ease of integrating the tools, pointing out that proper selection must be done depending on the needs of the 

organization. 

 

2.4. Gap in Current Research 

Although a lot of work has been done in fault handling on individual platforms, such as MuleSoft and Salesforce, a well-

rounded approach to the same is largely untapped. There is no existing literature that allows for a comprehensive consideration 

of the problem of error resolution and observability on a cross-platform scale, as well as beyond the frameworks of either 

middleware fault processing or CRM exception processing. Little research about empirical analysis of fault detection and 

resolution measures, e.g., Mean Time To Detect (MTTD), Mean Time To Resolve (MTTR), or fault recurrence rates on hybrid 

cloud environments has been pursued. Additionally, existing solutions often fail to integrate automation and intelligence into 

the fault lifecycle, instead focusing on manual surveillance and action. This forms silos in operations, particularly when 
MuleSoft, Salesforce, and third-party logs are not integrated. In real-life applications, such disintegration usually results in 
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longer resolution times and disjointed views of system health. There is, therefore, an urgent need for a unified metrics-based 

framework that integrates fault detection, logging, and auto-recovery in the MuleSoft and Salesforce ecosystems. An ideal such 

framework would comprise features such as centralised observability, normalised logging schemas, and proactive alerting, 

which would enable the performance of root cause analysis in a much more rapid fashion and make the system more resilient. 

 

3. Methodology 
3.1. System Architecture 

The system architecture proposed consists of four integrated components that are the Error, Logging, Monitoring, and 

Alerting layers, which are supposed to increase fault processing, [10-12] observability, as well as operational responsiveness 

within MuleSoft and Salesforce environments. 

 

 
Fig 2:  System Architecture 

 

 Error Layer: The Error Layer has the mandate of capturing and handling runtime exceptions in MuleSoft and Apex by 

using a structured use of try-catch blocks. It translates raw error messages into standard forms by means of custom 

processors or error mapping templates. This ensures uniformity in error classification and facilitates the easy 

processing of logs downstream, as well as the generation of alerts. This layer has the capability to provide granular 

control, ensuring no disruption to critical integration flows by managing exceptions at both local and global levels. 

 Logging Layer: This layer enables the logging of key events, errors, and transaction metadata at a central point that 

can be searched. MuleSoft and Salesforce logs (via middleware connectors or APIs) are sent to Logstash, which reads 

and processes the information before indexing it in Elasticsearch. This enables a single point of log viewing, allowing 

operations teams to conduct detailed forensic work, perform complex searches (e.g., transaction ID), and correlate 

issues across systems. 

 Monitoring Layer: The Monitoring Layer measures system performance, resource consumption, and the health of the 
flow by tracking specific metrics. Prometheus will be utilised to scrape and collect time-series metrics on MuleSoft 

APIs, connectors, and infrastructure endpoints. The metrics are displayed in Grafana dashboards, giving real-time 

views of throughput, latency, error rates and uptime of systems. This enables proactive monitoring and planning of 

capacity for both Salesforce and MuleSoft environments. 

 Alerting Layer: To promptly notify about the presence of anomalies or service degradation, the Alerting Layer is 

integrated with PagerDuty. Prometheus and Elasticsearch identify thresholds and recurring log patterns, respectively, 

and send associated alerts, which are routed to the respective on-call teams. PagerDuty guarantees prioritization of 

incidents, escalation path, and tracking of their acknowledgements, which contributes to a considerable decrease in 

the Mean Time To Resolve (MTTR) periods and enhancement of service stability. 

 

3.2. Sample Scenario 
To show how the proposed architecture will work, pretend to have a standard lead synchronization between Salesforce and 

an external ERP system. [13-16] Such a flow guarantees that customers newly created in Salesforce can be automatically 

synchronized with the ERP to onboard customers downstream and perform sales operations. 

 Injected Error: API Schema Change - Any unforeseen schema change to the API of the ERP, such as renaming or 

deletion of a field, will break an HTTP request made by MuleSoft. This failure is detected by the Error Layer within a 

try-catch scope and is defined as a contract violation; an alert is subsequently created. The error is structured by the 

Logging Layer and passed on to ELK, whereas the Monitoring Layer logs a spike in the number of failed transactions. 

 Injected Error: Network Latency - Issue: A network latency problem emulates either sudden or fluctuating 

interruptions between MuleSoft and the ERP endpoint. This causes time-outs or reduced performance in SLAs. 

Prometheus alerts in case of increased response times, and the delay is able to be visualized by Grafana dashboards. 

When thresholds are exceeded, an automata PagerDuty alert message is sent for the on-call engineer to investigate. 

 Injected Error: Salesforce Governor Limit Breach: In case of excessive invocation of API calls or DML statements 
within a small time frame, a Salesforce governor limit is reached. Depending on where this exception occurs, this is 

intercepted in Apex or caught by the Salesforce connector of MuleSoft. The error is captured, classified, and a retry 
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mechanism (where available) and a real-time notification are triggered. The data on spikes in the API usage are 

logged in Prometheus to make further optimizations. 

 

 
Fig 3: Sample Scenario 

 
3.3. Implementation 

 Anypoint Studio to Design Flow: With MuleSoft IDE, which is built on Eclipse, an interchange flow is built and 

created. It offers a graphical user interface and pre-installed connectors to Salesforce, HTTP, and ERP systems, 
allowing developers to quickly build, test, and deploy integration flows. The studio features configuration for error 

handlers, retry scopes, and transformation logic, enabling modular design. 

 Log4j to Structure Logs: The MuleSoft application has Log4j implemented in it to provide a standard and systematic 

logging scheme. The log patterns have been specified to include some important attributes, including timestamps, log 

levels, flow names, error messages, and transaction identifiers. Such logs are written in either JSON format or a 

specific schema version and format, allowing for easy parsing by Logstash. Log4j also makes it possible to 

dynamically control the level of logs available, providing diagnostics on both development and production 

environments. 

 Correlation IDs Embedded in Payloads: To enable end-to-end tracing of systems, Correlation IDs are inserted into the 

message payload and headers at the origin of the flow. These special identifiers are included in all services, ensuring 

that logs, metrics, and alerts related to a particular transaction can be correlated. The latter makes root cause analysis 

and audit tracing significantly easier in and between Salesforce, MuleSoft and the ERP. 

 Prometheus Agent to Scrape API Metrics: A Prometheus agent is configured to scrape custom and system-level 

metrics from MuleSoft APIs and connectors. Examples of such metrics include response times, the number of errors, 

throughput per request, and memory provisioning. Exporters or JMX bridges expose these values in a Prometheus-

compatible format, which enables real-time monitoring. The gathered data is saved in the time-series records to 

compare trends and make capacity plans. 

 ELK for Log Visualization: Each of the application logs is directed towards the ELK Stack and more precisely, to 

Elasticsearch through Logstash. Logstash reads the structured logs, attaches metadata to them (e.g. environment, flow 

name), and stores the logs in Elasticsearch. These logs are visualized using Kibana dashboards, where a user can filter 

by Correlation ID, trend error and do full-text searches. This main logging system facilitates operations, debugging 

and audits of compliance. 

 

 
Fig 4: Implementation 
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3.4. Evaluation Metrics 

 MTTD: Mean Time to Detect: Mean Time to Detect, MTTD indicates an average measurement of time after a fault is 

generated by the system until it is detected. [17-20] MTTD is decreased when the monitoring and alerting processes 

are able to detect problems in near real-time. The performance of MTTD in this architecture is determined by the 

speed at which Prometheus alerting rules respond and the speed at which the ELK stack ingests logs. Effective 

detection minimizes downtime and sets in motion a faster corrective action. 

 MTTR: Mean Time to Resolve: Mean Time to Resolve (MTTR) is the arithmetic average of the durations taken 

between fault detection and full resolution. It measures the effectiveness of the incident response mechanism as a 

whole, encompassing alert routing, diagnosis, and remediation. PagerDuty integration, well-organized logging, and 

correlation IDs will decrease the MTTR since an engineer will have instant context and traceability and be able to 

take specific actions immediately. 

 Alert Accuracy: % of Valid Alerts - The fraction of true positive alerts to all alerts created is known as the Alert 

Accuracy. Accuracy is important because it ensures that alerts are never useless and are directly actionable, without 

generating false positives. Accuracy is enhanced in this system through clearly specified thresholds in Prometheus 

and the pattern filtering of errors in Logstash. It is essential to maintain a high level of alert accuracy to prevent 

incidents of alert fatigue and ensure that critical issues are addressed in a timely manner. 

 Logging Coverage: % of Steps with Logs: Logging Coverage measures the percentage of important steps in any flow 
that contain meaningful log entries. When the logging coverage is high, all major transformations, decision points, 

and external calls are executed, providing a complete view of the execution flow. When identifying the correlation ID 

and using Log4j, logs are captured regularly, making them easier to analyse and easing the process of debugging in 

the case of an incident. 

 

 
Fig 5: Evaluation Metrics 

 

4. Results and Discussion 
4.1. Error Detection Accuracy 

A monitoring and logging framework is proposed, and its effectiveness can be measured by comparing key error detection 

metrics before and after its application. The results presented in Table 2 indicate that the three metrics —namely, MTTD, 

MTTR, and Alert Accuracy —show a significant improvement in their indicators, which proves the effectiveness of the 

framework used to enhance the responsiveness and reliability of all operations within the company. 

 

Table 1: Error Detection Accuracy 

Metric Improvement (%) 

MTTD 63% 

MTTR 56% 

Alert Accuracy 29% 
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Fig 6: Graph representing Error Detection Accuracy 

 

 MTTD (Mean Time to Detect): 63% Improvement. On average, 63% of the time has been saved in error detection, 

with 130 seconds reduced to 48 seconds using real-time logging and metric scraping. This is especially because of the 

constituting of Prometheus to enable continuous gathering of the metrics, and where it is used together with ELK-

based centralized logging, permitting immediate views into breakdowns as they happen. Earlier detection allows an 

earlier intervention, which minimizes the downstream effect. 

 MTTR (Mean Time to Resolve): 56% Improvement: Incident resolving time has been reduced by 56 per cent, and it 

takes 550 seconds to 240 seconds to resolve. This is explained by structured logs (with Log4j), implanted correlation 
IDs in the pursuit of traceability, and auto-routing of cautions with the help of PagerDuty. All these features facilitate 

root cause analysis, making it smoother, and ensure that the correct teams are informed with the necessary context, 

thus enabling the resolution of the issue to proceed much faster. 

 Alert Accuracy: 29% Improvement. The specificity of alerts rose to 96%, indicating a 29% increase in the percentage 

of alerts that are correct and can be taken seriously. This is a step forward, thanks to the improved alert levels in 

Prometheus, log parsing, and noise reduction due to enhanced error classification with Logstash. An increase in alert 

accuracy will decrease false positives, reduce alert fatigue, and prioritize on the real incidents. 

 

4.2. Observability Improvements 

Before the introduction of the proposed monitoring framework, the observability of the integrated MuleSoft and 

Salesforce ecosystem was weak and distributed across various components. Logs were distributed across various systems, 
including MuleSoft application logs, Salesforce debug logs, and external system traces, which were located in different 

locations with no common format. This introduced significant problems in linking events between systems, especially when 

diagnosing faults. For example, to follow any single transaction through Salesforce, out through MuleSoft, and into an ERP 

endpoint, a manual attempt was typically required to find it in one log file or another, none of which had common identifiers. 

Not only did this add to the Mean Time to Detect (MTTD) and Mean Time to Resolve (MTTR), but it also necessitated the use 

of developer skills and tribal knowledge when attempting root cause analysis. The adoption of a centralized observability 

platform based on ELK (Elasticsearch, Logstash, Kibana), along with structured logs through the usage of Log4j and in-built 

correlation IDs, has resulted in the system providing an end-to-end view across integration flows in a unified manner. All logs, 

whether from Salesforce, MuleSoft, or any external service, would be routed through Logstash, fetched, and uniformly 

interpreted before being stored in Elasticsearch. Kibana dashboards display it in real-time and provide strong filtering and 

visual functionalities. 

 
Most importantly, the correlation IDs embedded at the beginning of every transaction enable the teams to filter and trace 

the entire path of a request through several services with a single click. This has transformed the incident response, which was 

a manual, time-consuming affair, into a streamlined and data-driven process. We also have the use of Prometheus and Grafana 

to get an at-a-glance view to see the health of the systems, usage of resources, and trends of errors, adding further to the 

observability space. With these advancements, operations team members should no longer just respond to matters blindly but 

be able to see, investigate, and fix incidents in an objective and timely fashion. This leads to greater resilience of the system, 

increased speed in solving issues, and greater receptivity to the stability of the deployment. 

 

4.3. Error Classification 

The errors found in the integration flows that use Salesforce to connect to a third-party system through MuleSoft can be 

categorised into three major categories: timeouts, API Errors, and Platform Limits. The two types were quantified according to 
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the frequency of occurrence and their root cause, which can be utilized to optimize approaches and formulate a resilience plan 

accordingly. 

 

Table 2:  Error Classification 

Type Frequency 

Timeout 32% 

API Error 41% 

Platform Limits 27% 

 

 
Fig 7: Graph representing Error Classification 

 

 Timeout (32%): Sets of failures that involved timeout errors amounted to 32 percent. These most often occurred when 

outbound HTTP or API calls made by MuleSoft to external systems, such as ERP endpoints, had reached an upper 

limit on response time. As the root cause, it was reported to be network jitter, i.e., occasional latency or loss in cloud-

hosted environments. These dilemmas often resulted in requests that have remained stagnant or resulted in incomplete 
transactions. Retrying, circuit breakers, and real-time latency tracking have proven to be effective ways of countering 

this type of error. 

 API Error (41%): Errors of API type were the most common errors, accounting for 41%. The latter were mainly 

caused by schema mismatches resulting from the absence of fields, data type errors, or structural modifications by an 

upstream or downstream API. Typically, such changes would not have been detected during deployment, resulting in 

failed transformations or a decline in payload. This accentuates the requirement to further test the contracts, validate 

the schema on the fly, and also have closer management of API versions so that systems could interface with each 

other. 

 Platform Limits (27%): Platform Limit errors contributed 27 percent of failures, and they were mostly related to 

Salesforce governor limits, i.e., exceeding batch size restrictions, API call per day restrictions. Salesforce imposes 

them to maintain the stability of multitenancy, but they can interfere with bulk operations unless handled properly. 
The solution is to streamline queries, subdivide logic, and rely on a backoff mechanism, as well as track the limit 

using Salesforce APIs and Prometheus metrics. 

 

5. Conclusion 
This paper introduces the concept of and discusses a robust framework that would improve error management, logging, 

and monitoring in an integrated MuleSoft and Salesforce solution. With interoperability and real-time data exchange being 

vital in today's enterprise settings, the capability to diagnose, detect, and respond to faults promptly is necessary to ensure 
business continuity and user confidence in systems. Using the native error management features of MuleSoft, along with 

sophisticated external observability tools such as the ELK Stack (Elasticsearch, Logstash, Kibana), Prometheus, Grafana, and 

PagerDuty, our framework fills the operational gaps that are typically present in such integrations. The tools are synergistic in 

enabling a one-size-fits-all program for monitoring and handling incidents. 

 

As part of the solution, a structured logging approach using Log4j will be adopted, and all integration steps will be 

instrumented with a consistent log format. Correlation IDs are added to the logs, allowing for the tracing of logs between 

systems, and the root cause analysis takes a fraction of the effort and time. These logs are indexed on the ELK stack, which 

provides potent search and dashboarding capabilities, with indexed logs at its core. At the same time, Prometheus gathers 

metrics at the application level and renders the metrics on Grafana to provide real-time data about flows, performance, and 
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error patterns. PagerDuty automatic alerting is also added to ensure that the detected incident is not only identified earlier but 

also assigned to the correct teams to resolve it, thus significantly reducing the Mean Time to Detect (MTTD) and Mean Time 

to Resolve (MTTR) metrics. 

 

Case study quantitative outcomes revealed that the case study significantly improved results: the MTTD indicator 

decreased by 63%, MTTR decreased by 56%, and alert accuracy increased by 29%. These measures confirm the effectiveness 
of the suggested architecture in generating an active and dynamic integration environment. Moreover, through error 

classification, a list of instances that can be acted upon was also identified, including information about API schema 

mismatches, network failures, and Salesforce governor limits violations, which are the most typical causes of failure. In the 

future, the extension of this framework with AI-enhanced anomaly detection will be considered, which can further speed up 

detection time and reveal subconscious tendencies in error dynamics. It is also a proposed improvement related to integrations 

with DevSecOps pipelines, as observability, compliance, and security are built into the software development lifecycle. 

Overall, this framework provides a robust foundation for operational excellence in Salesforce and MuleSoft-based hybrid 

cloud integration. 
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