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Abstract - Predictive Maintenance (PdM) has taken a pivotal
role in the current Enterprise Resource Planning (ERP)
systems, particularly in application to main infrastructure
and national defense logistics. The advent of Artificial
Intelligence (Al) has increased the ability of PdM greatly,
providing real-time diagnostics, failure predictions, and
decision-making on the strategic level in the most sensitive
areas. The current paper focuses on combining Al-based
PdM models with the ERP systems that focus on the critical
infrastructure and defense logistics. We present a detailed
discussion of artificial intelligence algorithms, including
deep learning, reinforcement learning, and Bayesian
networks, in the context of fault detection, and apply them to
be used in defense logistics cases. The paper also explores
the role of Al-based PdM in increasing the reliability of
equipment, resource utilization, the combat-readiness of
equipment, and security in operations. The thorough
literature review reveals the development of predictive
maintenance and the integration of ERP. Following this, an
architecture containing the proposed Al-based PdM in
defence is proposed. The model is tested using both real-
world data and simulations. Based on experimental findings,
there is a considerable increase in the accuracy of fault
prediction, maintenance planning and general performance
of the logistics. The paper then concludes with a discussion
on the difficulties, constraints, and prospects of Al in
mission-critical logistics scenarios.

Keywords - Artificial Intelligence, Predictive Maintenance,
ERP Systems, Defense Logistics, Critical Infrastructure,
Deep Learning, Failure Prediction.

1. Introduction

The most well-known and widely used ERP system is a
digital framework that supports large organisations in
optimising the management of resources, processes, and
operations across departments. In industries like the critical
infrastructure and defense where there is high concern over
efficiency, reliability, and coordination, ERP solutions like
SAP, Oracle, and IFS are important in data consolidation and
workflow optimization. [1-3] A new addition to ERP
features is combining Predictive Maintenance (PdM). PdM
analyses information on equipment sensors, operation
records, and previous maintenance logs to predict possible
equipment failure before it occurs. By integrating PdM into
ERP systems, they may overcome a reactive or planned
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maintenance approach and adopt a proactive maintenance
approach that reduces unexpected maintenance costs and
extends the service life of assets. This not only enhances
operational continuity but also maximises maintenance
planning, inventory, and resource allocation, which are
essential within high-profile setups such as defence logistics
and infrastructure management.

1.1. Importance in Defense Logistics

e Operational Readiness: Operational readiness is
vital in the case of defense logistics. Security is at
stake, and the lives of personnel are placed at great
risk when equipment fails to function during
missions. Predictive maintenance within an ERP
guarantees the capability that military equipment,
consisting of vehicles, aircraft, and weapon
systems, is constantly ready to be deployed. With a
prediction of the impending failures, the defense
forces will have the capability of carrying out
maintenance activities in advance, thus preventing
surprise failures and ensuring the availability of all
vital systems whenever they are required.

e Supply Chain Efficiency: The supply chains
concerning defense are sophisticated chains that
usually work with a limited budget and a short
timeline. PdM enhances the performance of supply
chains by providing accurate forecasts of spare parts
needs and maintenance schedules. This enables the
logistics teams to determine the most beneficial
level of inventory and minimize the overflow
products and delays in the delivery of products due
to a shortage of units. Integrated with ERP systems,
the insights simplify procurement, warehousing,
and distribution processes, enhancing the overall
agility of the defense supply chain.

e Cost Reduction and Resource Optimization:
Maintenance methods that are not planned and that
require emergency repair work are expensive and
resource-intensive. By applying PdM in defense
logistics, one can reduce all of these costs due to the
possibility of performing timely interventions,
which are implemented based on data-driven
decision-making. Maintenance works can be
performed during low operational periods, which
will ease the manpower and equipment load.
Moreover, the ERP Integration will enable a more



efficient planning of personnel, tools and spare parts
and as a result, costs are reduced in operations
through better utilization of resources.

e Strategic Decision-Making: Information on
predictive maintenance systems may provide
important information regarding the health of the
asset, the usage trends, and the patterns in terms of
failures. This information, together with ERP
analytics, aids in higher-level strategy planning and
risk control decisions. These insights can help the
commanders and decision-makers prioritize the
upgrade to the fleet, prepare more effective budgets,
and evaluate the long-term viability of the

operations. This analytics-centered methodology
makes defense logistics more tactical and strategic.
e Compliance and Documentation: The rules of
conduct and regulation in defense organizations are
very strict. This is why predictive maintenance
systems, combined with ERP platforms, guarantee
total traceability of maintenance events, the
utilisation of assets, and the history of a service.
Such document automation helps make the audit
process more convenient, transparent, and
compliant with the maintenance standards of the
military and international defence regulations.
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Fig 1: Importance of Defense Logistics

1.2. Al-Driven Predictive Maintenance Models in ERP
Systems

The integration of Al-powered predictive maintenance
(PdM) models within Enterprise Resource Planning (ERP)
systems represents a significant leap in the digital
transformation of maintenance operations, particularly in
fields where maintenance is classified as mission-critical,
such as defence or infrastructure. [4,5] Conventional
preventive and reactive maintenance plans (fix after
breakdown and plans that service by schedule) are usually
ineffective and expensive to the extent that they cause a
breakdown (unplanned downtime) and over servicing,
respectively. At this point, Al-based PdM has helped
overcome such challenges by predicting failures based on
data-driven analytics, resulting in knowledge about the
occurrence of the failure and allowing maintenance
personnel to react quickly and catch the failure before it
happens, thereby taking proactive action. They are trained
based on Machine Learning (ML) and Deep Learning (DL)
actors, e.g., Long Short-Term Memory (LSTM) networks to
predict time series, Autoencoders to identify anomalies and
Reinforcement Learning to optimize a maintenance strategy
over time. These models can utilise data analysis, such as
sensor data, maintenance history, and usage trends, to
identify potential faults resulting from subtle degradation
over time or unusual behaviour likely to lead to a fault. Once
incorporated into ERP solutions such as SAP, Oracle, or IFS,
Al-PdM models become highly useful in maximizing the
utilization of their current maintenance. The ERP platform
becomes the central point, allowing unrestricted data flows
between equipment, maintenance planners, inventories, and
decision-makers in real-time. As an example, consider that if
the machine learning algorithm predicts that a device is

about to break, the ERP software can automatically create a
work order to repair the machine, verify that necessary spare
parts are available, assign and schedule technicians, and so
forth, creating a timely and concerted effort. Such integration
not only enhances maintenance accuracy and efficiency but
also aligns with the wider operational objectives of asset
durability, cost management, and domestic preparedness.
Additionally, the fact that ERP software is centralized
guarantees that knowledge gained through PdM models is
available to any department, thus providing a higher level of
visibility and collaboration. The convergence of Al and ERP,
in turn, transforms the maintenance process into a strategic
process, or rather, a feature, and provides significant benefits
in the areas of reliability, efficiency, and operational
continuity.

2. Literature Survey
2.1. Evolution of Predictive Maintenance

The name change - predictive maintenance in the last
few decades has been immense, as the shift has been made
from time-based maintenance to a more fully formed
condition-based monitoring, and most recently, Al-based
maintenance. Firstly, maintenance was performed at periodic
intervals, regardless of the equipment's condition. [6-9] Such
a process usually initiates unnecessary downtime or failure.
Introducing condition-based monitoring enabled a more data-
driven technique, based on sensors and diagnostic-based
evaluation of the well-being of the apparatus in real-time.
The era of predictive maintenance has come in with artificial
intelligence. The Al models, primarily those based on
Machine Learning (ML) and Deep Learning (DL), can be
used to provide predictive analytics that prevent impending
failures through early interventions. Such systems are
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learning all the time from both past, current, and present
data, which makes them increasingly more accurate with
fewer costs incurred regarding maintenance.

2.2. Al in Maintenance Systems

Modern maintenance systems have come to rely heavily
on Artificial Intelligence (Al) to transform the way industries
deal with asset health and operating reliability.
Manufacturing, aviation, and energy are some of the areas
where Al techniques have been successfully applied, as their
use reduces the cost of equipment failure. An ideal method
that may be used to address the prediction of equipment
degradation with time is to analyze time-series data using
Recurrent Neural Networks (RNNs). The advanced version
of the RNNs is the Long Short-Term Memory (LSTM)
networks. Convolutional Neural Networks (CNNs) are
traditionally used for image processing, an area to which
they are applied in visual inspection data. Probabilistic
models, such as Bayesian Networks, allow for making
decisions in an environment of uncertainty; they are
particularly helpful when the system under study involves a
number of interacting parts. Such Al models can help to
perform more realistic diagnostics, efficient maintenance
planning, and longer asset life.

2.3. ERP Systems and Defense Logistics

Defense logistics: the role of Enterprise Resource
Planning (ERP) systems in defense logistics. ERP systems
have been introduced to aid in the management of both
maintenance functions and supply chains, as well as mission
achievability. Some of the most popular ERP platforms like
SAP, Oracle, and IFS have been used extensively in the
defense organizations largely because of their powerful data
integration capabilities and process automation. The systems
become the central storage point of maintenance records,
movie stock, and staff details, and all departments are
synchronized to operate as well. Combining Al technologies
and ERP systems increases their capabilities by providing the
means of predictive analytics, anomaly detection, and
intelligent automation. When applied in defence terms, this
integration can aid in critical decision-making and improve
high equipment availability and operational profitability in
acts requiring extreme performance.

2.4. Comparative Studies

Recent literature contains comparative studies that
indicate the effectiveness of different Al techniques in
various industries. For example, A. Kumar et al. (2021)
utilised LSTM models in the aerospace industry, achieving a
predictive accuracy of 92%, which demonstrates that the
model can be effectively implemented in the industry to
manage time series in a high-reliability setting. B. Bayesian
Networks can handle uncertainty, and probabilistic reasoning
was done in the energy industry, with an accuracy of 88%.
This proves that this framework addresses uncertain and
probabilistic reasoning (Smith et al., 2022). C. Lee et al.
(2023) have used both CNN and the data of an ERP system
to predict the situation in military vehicles and managed to
reach an incredible accuracy of 94%. These experiments not
only confirm the effectiveness of certain Al methods but also

emphasise the importance of domain-specific adaptations
and the quality of data in achieving high predictive
performance.

2.5. Challenges ldentified

Among the promising potential of Al in predictive
maintenance are several challenges that still hinder the
adoption of this technology. The problem of data
heterogeneity can still be viewed as an important obstacle to
overcome since the maintenance information typically
originates in a variety of sources relying on different formats,
and thus it is not easy to standardize and unify. Security and
compliance are also significant considerations, particularly in
sectors such as defence and energy, where data sensitivity
and regulatory requirements are high. Moreover, the
deployment of real-time decision-making systems is
technically and infrastructure-demanding, as these systems
require rapid data processing, low latency, and high
reliability. The challenges should be handled to meet the full
potential of Al-based predictive maintenance in different
sectors.

3. Methodology
3.1 Proposed Architecture

Al Modeling Layer

Data ERP Integration

Preprocessing Layer
Layer

Decision Engine

Data Acquisition [ .
Layer ‘\Ql
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Fig 2: Proposed Architecture

e Data Acquisition Layer: The layer will capture
raw data across a broad source of outputs like
sensors, machine logs and telemetry. [10-14] In the
case of a defense or industrial setting, this will
contain temperature sensors, vibration probes,
operational records and usage reports. Old and live
recordings at this stage would be very important
because it is the basis of predictive maintenance and
stable Al modeling.

e Data Preprocessing Layer: When the data has
been obtained, it moves to the preprocessing layer,
which includes cleaning, filtering, and normalizing
it. It should be achieved by eliminating noise,
treating missing values, and scaling features to
provide consistency across datasets. Producing
informative and sensible forms of data is essential
to enhance the performance of machine learning
models, which is facilitated by high-quality
preprocessing to ensure that the information
provided to the models is organised, consistent, and
manageable.
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Al Modeling Layer: The preprocessed data is used
to train and gain machine learning and deep
learning models in this layer. Methods such as
LSTM, CNN, or Random Forest can be used to
identify patterns and predict failures based on the
use case, and then classify the health status of
equipment. The models are refined and tested
repeatedly until they approach optimal estimation of
prediction and reproducibility under the conditions
of practical application.

ERP Integration Layer: The layer allows a smooth
flow of communication between the Al system and
the already established Enterprise Resource
Planning (ERP), e.g., SAP or Oracle. The
information and results of the Al models are
incorporated in ERP modules through RESTful
APIs to manage inventory, maintenance, and
resource distribution. The combination enables
automation of updates and synchronization
overshadowing in the larger logistics and operations
scheme of things.

Decision Engine: The Decision engine is the
intelligence hub of the system. Depending on its
model outputs and predetermined business rules, it
produces actionable insights, such as maintenance
alerts, risk warnings, and scheduling
recommendations. This layer supports real-time
decision-making, providing prioritized actions to
the maintenance teams and feeds to the ERP system
to be completed, again completing the cycle of
predictive maintenance activity.

3.2. Algorithm Selection

Algorithm Selection

01 02 03
Long Short-Term Autoencoders Reinforcement
Memory (LSTM) Learning

Fig 3: Algorithm Selection

Long Short-Term Memory: The Long Short-Term
Memory (LSTM) networks are a particular type of
Recurrent Neural Network (RNN) that is
specifically tailored to model time-series data. The
behavior of equipment in predictive maintenance
tends to have time dependencies, e.g. the gradual
degradation with time. This means that LSTM
networks are capable of learning long-term sensor
dependencies and trends, and predicting future
conditions and equipment failures before they
occur. It renders LSTM a robust tool in predicting
maintenance  requirements  using historical
operational data.

Autoencoders: Autoencoders are a type of
unsupervised artificial neural network that learns
efficient representations of data. They can be
trained to restore normal operating conditions
within the framework of predictive maintenance.
The reconstruction error increases when there is a
mismatch between the expected data known by the
autoencoder and the incoming data that is too
anomalous, e.g., anomalous vibration or
temperature readings. This causes autoencoders to
be applicable in the detection of an illogical
behavior of their equipment, which is a possible
sign of a developing fault or failure scenario.
Reinforcement Learning: Reinforcement Learning
(RL) is a branch of machine learning in which an
agent learns optimal actions in an environment
through experience and feedback received in the
form of rewards or penalties. Scheduling In
maintenance planning, RL may also be used to
dynamically  optimize  scheduling strategies,
balancing elements such as operational availability,
cost and risk. A system based on RL can learn to
adapt to new and changing conditions through
continuous learning of its outcomes, making it more
efficient at maintenance over time and leading to a
decrease in asset downtime and an increase in their
lifespan.

3.3. Data Sources

Fig 4: Data Sources

Equipment Health Sensors: These sensors are
installed in devices and equipment to monitor real-
time parameters, including temperature, vibration,
pressure, and humidity. They are the major
repository of condition-related data, which records
the physical condition and performance of the
equipment at every moment. With the constant
gathering of such data, the system will be able to
identify wear, misalignment, or failure early on and
make accurate calculations in time to resolve the
pending maintenance issues.
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Maintenance Logs: Maintenance logs are historical
records of previous work, including repairs, part
replacements, checks, and faults. This unstructured
and structured data gives a lot of context to train Al
models, as it indicates the patterns of failure and
effectiveness of the corrective measures. These logs
facilitate the analysis of common failure modes and
allow for an estimate of when such trouble may
appear again.

Operational Schedules: The use, workloads and
work cycles of machinery are recorded in
operational schedules. This information plays a
pivotal role in knowing the effects of operational
stress on the wear and tear of an asset. An example
is machines working under greater loads or for an
extended period of time, which are likely to fail
earlier. Combining this information will enable the
predictive models to take usage intensity as another
variable on which to base their predictions of
maintenance requirements.

Environmental Data: Operating environmental
factors, such as ambient temperatures, humidity,
dust, and vibration from nearby equipment, may
have a significant impact on the efficiency and
lifetime of the equipment. The closer the
environmental data is captured and integrated, the
higher the chance that the model will be able to
detect abnormal behaviors and failure before it
happens. This is more so necessary in defense and
industrial environments where weather extremes are
quite eminent and in most cases cause faster wear.

3.4. Model Training and Validation

Data Collection: The initial phase of model
development involves collecting a rich set of data
that contains both past and real-time information on
vehicles or equipment. Telemetry Television
coverage of the entire machine is achieved in real-
time, and the historical data provides information on
the past disruptions and equipment failures. [15-19]
This pooled data makes it possible that this model

will be able to learn a great number of ways in
which it can be operated and can generalize to
future scenarios better.

Preprocessing: Unprepared raw data is seldom
available to be fed to models, so it is an essential
step. Standardization Techniques, like min-max
scaling, are used to put data features on a standard
scale, and we do not want the model to give
importance to features that have a higher scale in
terms of numbers. There are deficient values that
occur frequently in sensor data, which are
approximated using interpolation to provide
continuity in the data. These preprocessing steps
improve the quality and usability of the input data,
and this has a direct forcing on model performance.
Model Training: During training, data are
normally subdivided into training and testing sets,
generally in proportions of 80/20, to test the
generalization behaviour. Furthermore, K-fold
cross-validation is also used to further evaluate the
stability of the model and minimize overfitting. This
method involves splitting the training data into k
parts, training the model on all except one of the
parts, and testing on the left-out part multiple times.
It provides a more robust assessment and can be
used to tune hyperparameters to achieve optimal
results.

Evaluation Metrics: The evaluation of the model
also follows after training, based on several
established performance measures: Accuracy,
Precision, Recall, and F1 Score. Accuracy is a
measure of the correctness of overall predictions,
whereas Precision is a measure of the correctness of
the number of positive predictions. Recall quantifies
how well the model finds all the available relevant
examples, and the F1 Score focuses on combining
Precision and Recall. The combination of these
metrics provides an overall perspective on the
model's effectiveness in situations where an
imbalanced dataset is used or in cases involving
serious fault detection.

Data Collection

Model Training

Model Training and

Validation

Preprocessing

LEvalualion
Metrics

Fig 5: Model Training and Validation
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4. Results and Discussion
4.1. Performance Evaluation

e Accuracy: Accuracy refers to the overall accuracy
across all classes of predictions made by the model.
The LSTM model achieved good results with an
accuracy rate of 94.5%, and it is quite reliable in
time-series prediction of failures. The autoencoder
was next with 91.2, which is also good, as it is
unsupervised. The RL-based scheduler achieved a
better score of 96.1 percent compared to the other
two classes, and this shows its high capability of
making the best maintenance decision based on
interactions with the system and previous results.

e F1 Score: The F1 Score is the harmonic average of
Precision and Recall that provides a middle-ground
measure, particularly under the circumstances of
class imbalance, which occurs in maintenance
problems such as a rare occurrence of failures. The
LSTM model obtained an F1 Score of 93.0%, and
the results indicated its reliable performance in
predicting prospective failures. The Autoencoder

achieved a score of 89.00%, which rates it as
slightly less effective in identifying anomalies. The
highest score of the RL-based scheduler (95.0%)
indicates that the scheduler not only makes a correct
prediction but also tends to capture true positives
with minimal false alarms.

e Downtime Reduction: The reduction of downtime
is a crucial performance indicator that can be used
to evaluate the viability of predictive maintenance
systems in the real world. The LSTM model
reduced equipment downtime by 30.0%, and the
Autoencoder reduced it by 25.0% due to its ability
to detect anomalies in early stages, compared to the
traditional approach. The greatest improvement was
achieved by the RL-based scheduler, which showed
a 40.0% improvement rate. This indicates that the
scheduler is strong in addressing the issue of
optimality in maintenance scheduling and resource
assignment. This translates quite simply into
operational efficiency and lower costs.

Table 1: Performance Evaluation

Metric LSTM | Autoencoder | RL-based Scheduler
Accuracy 94.5% 91.2% 96.1%
F1 Score 93.0% 89.0% 95.0%
Downtime Reduction | 30.0% 25.0% 40.0%
120.00%
100.00%
80.00% -—
60.00% Accuracy
F1 Score
40.00% -+— ) )
Downtime Reduction
20.00% -+— — — —
0.00% . )
LSTM Autoencoder RL-based
Scheduler

Fig 6: Graph representing Performance Evaluation

4.2. Case Study: Defense Vehicle Fleet

The study was an Assessment in a selected case study, a
fleet of 100 armored vehicles used in defense was analyzed,
and an Artificial Intelligence-based Predictive Maintenance
(PdM) system was implemented for the maintenance of
military vehicles to increase the operational readiness and
limit the number of unplanned downtimes. Under stringent
field operations and environmental influences, a set of
health-monitoring sensors in these vehicles provided real-
time data on parameters such as engine temperature, engine
vibration, fuel efficiency, and the wear rate of the brakes.
Along with live telemetry, past maintenance records of the
engine, and operational schedules were added to the system,
forming a strong dataset to train and validate the model. The
essence of the PdM system was that it included a

combination of LSTM networks to predict time series,
Autoencoders to detect anomalies, and a scheduler based on
Reinforcement Learning (RL) in order to optimize the
maintenance intervals. During the deployment period, the
system was able to forecast 85 per cent of major mechanical
failures at least five days in advance. This early warning
feature allowed maintenance teams to implement preventive
measures — such as replacing high-risk components or
adjusting operational usage — before a failure occurred,
preventing disruptions to missions or vehicles becoming
immobile. It is worth noting that it translated to an overall
35% decrease in emergency repairs and a 30% increase in
fleet availability. The predictive model was also connected
with the ERP system of the defense that automatically
generated work orders and also matched spare parts supply
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with the future service needs, which enabled the logistics to
be streamlined and minimized the amount of manual
intervention. In addition, the insights of the system gave the
high-level command personnel insight into the trend of the
health of the fleet, such that data-assisted decisions about
deployment and resource allocation could be made. The PdM
framework lowered total lifecycle costs and greatly
improved mission readiness by removing as much
uncertainty as possible in the maintenance of vehicles. The
potential of Al technologies in the field of defense logistics
is quite obvious, given the results of this case study, and will
result in the further use of Al technologies by military
organizations in general.

4.3. Integration with ERP

To maximise the advantages of the Al-driven Predictive
Maintenance (PdM) system, it was seamlessly incorporated
with an existing SAP-based Enterprise Resource Planning
(ERP) system used by the defence logistics team. It was
intended to provide a link between predictive analytics and
operational implementation, so that the discoveries produced
by the Al models would involve the execution of
maintenance practices in real-time and practical actions.
RESTful APIs were created to facilitate -effective
communication between the Al system and SAP modules,
particularly in the processes of equipment maintenance,
inventory, and service booking. Vehicle health sensor data,
anomaly detection optimization models, operational
schedules/plans, and part availability were fed continuously
to the ERP system and cross-checked with priority setting
and automation of the maintenance processes. The most
important aspect of this integration was the creation of a
home-grown dash-board in the SAP system. This dashboard
provided real-time warnings of possible equipment failure,
system anomalies, and immediate maintenance needs. The
alarm messages were classified according to levels of
severity. They could also be traced by unique vehicle
identification, allowing technicians and fleet managers to
immediately identify which assets needed attention. The
dashboard provided graphical overviews of vehicle health
trends, fault history, predicted failure schedules, and vehicle
maintenance history, in addition to live notifications. This
guaranteed complete traceability and enhanced the
interaction among the maintenance, logistics, and operational
planning workforces. Moreover, the automated generation of
work orders was set up so that the system could flag in real-
time and put in writing a preventative maintenance project
whenever a high-risk concern was noted. Not only was this
able to cut administrative overhead, but it also allowed a
proper maintenance performance with available parts and
people. Advanced reporting and preserving the compliance
documentation were also achieved through the integration,
and this is essential in the defense operations where issues of
traceability and audit readiness are essential. All in all, the
end-to-end interoperability of the PdM solution and the SAP
ERP platform established a circular maintenance
environment, changing reactive procedures into proactive,
data-led decision-making structures that improved the total
presence of the fleet and mission accessibility.

4.4. Benefits and Impact

e Improved Mission Readiness: The Al-based
predictive  maintenance  system  substantially
increased mission readiness by providing early
indications of potential failures and facilitating
predictive  maintenance  scheduling.  Defense
vehicles operated under perfect conditions and
fewer breakdowns when deployed. Maintenance
crews could correct the problems before they
escalated, and there was always some critical asset
that we could not afford to lose. This preventive
measure resulted in less downtime and increased the
stability of the wvehicle fleets, which directly
contributed to the prosperity and safety of military
missions.

e Reduced Logistics Costs: The incorporation of
predictive analytics in the ERP systems enabled the
process of improved planning and use of resources,
which significantly reduced the costs of logistics.
Time could be used effectively to facilitate
maintenance without the occurrence of emergency
repairs and requisition of parts at the eleventh hour.
The system also aided in the management of
inventory, as all component needs are forecasted
based on incoming maintenance, which reduces
possessions and deficiencies. The organization
saved on labour cost, replacement parts and
administrative activities as the number of major
breakdowns of major equipment was prevented and
maintenance operations were streamlined.

e Enhanced Asset Lifespan: Effective overwatch
and just-in-time repair extended the structural life of
defence vehicles and their vital systems. Preemptive
trends of degradation, which were identified
through the system, facilitated maintenance that
minimized the wear and tear, the occurrence of
catastrophic failures, and ensured standards of
performance were maintained. This has, at the very
least, ensured the long-term structural and
functional integrity of high-value assets, as well as
reduced the time-consuming and expensive
replacements or overhauls of these assets. The
outcome was to have a more sustainable fleet,
longer service intervals and less total cost of
ownership.

5. Conclusion

The given paper proposes a detailed Al-powered
predictive maintenance (PdM) system that can effectively
manage critical infrastructure, particularly defence logistics.
The system involved advanced machine learning algorithms,
such as LSTM networks, Autoencoders, and Reinforcement
Learning-based schedulers with real-time data acquisition
(preprocessing) to generate accurate forecasts on equipment
failures. Another important factor of the proposed solution
was that it could be easily embedded in an SAP-based
Enterprise Resource Planning (ERP) system, thus placing the
decision-making, maintenance scheduling, and resource
allocation processes in automated settings. The model
showed high performance on all main measures, such as the
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accuracy, F1 score, and downtime minimization, thus serving
as one of the most powerful assets to improve mission
readiness, decreasing the costs of logistics, and prolonging
the life of high-value defense equipment. The adequacy of
the model was proven in the case study conducted in a fleet
of 100 armored vehicles, whereby 85 percent of the critical
failures were forecasted at least five days before their
occurrence, and extreme gains in the efficiency of the
operations were recorded. It is an example of moving
towards proactive approaches to maintenance in the defense
sector and establishing a strong basis of intelligent logistics
and asset management activities.

Although the results obtained are encouraging, there are
some limitations associated with the usage of the proposed
system that still need to be considered. First, LSTM and
Autoencoder models wused in deep learning require
substantial computational resources, which necessitate high-
performance graphics cards, constant data stream support,
automated deployments, and efficient training. This can be a
significant obstacle in resource-constrained  settings.
Secondly, there is the possibility of combining real-time
sensor data fusion with occasionally outdated logs, a
problem that raises questions regarding data privacy and
security, especially in military applications where sensitive
data must be strictly managed. Finally, the complexity of the
Al models may pose a problem in terms of interpretability. It
is not always easy to know how (or even why) specific
predictions have been made, and this can become a barrier to
user confidence and regulatory acceptance of potentially
high-stakes applications.

Further studies are needed that investigate the
application of federal learning algorithms: the techniques
enable the training of predictive models on decentralized
datasets without exposing raw data, thereby providing
greater security and privacy. The framework is easily
generalised to handle more complex spheres, such as those of
naval and aerospace logistics, where maintenance issues are
further complicated by environmental conditions and
schedule sensitivity. Finally, adaptive learning mechanisms
will help the system identify and adapt to unfamiliar or
emerging fault types, ensuring the model remains viable and
useful as equipment and operating profiles evolve. These
advancements shall make the system more applicable and
resilient in changing defense conditions.
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