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Abstract - The growing sophistication of zero-day attacks
has rendered traditional Intrusion Detection and Prevention
Systems (IDPS) almost ineffective in enterprise networks. In
this paper, we explore the transition to Al-based distributed
IDPS, focusing particularly on Federated Learning (FL) as a
core architecture. This approach provides enhanced,
adaptive threat detection with built-in privacy protections.
However, implementing this method in practice presents
several challenges. This work addresses three key issues: the
balance between scalability and computational overhead,
privacy concerns in FL, and the vulnerability of Al to
adversarial attacks. We incorporate cutting-edge solutions
and draw on real-world examples to argue that only a multi-
layered strategy combining architectural, cryptographic, and
model-hardening measures can fully unlock the potential of
these next-generation security systems.
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1. Introduction

The growing digital environment faces an uneven battle
between attackers and defenders in cyberspace. Every day,
attackers develop new and sophisticated ways to bypass
security measures, revealing the shortcomings and
obsolescence of traditional intrusion detection and
prevention systems (IDPS). The main flaw of IDPS is their
reliance on “signature systems” for intrusion detection. This
method of network traffic analysis, known as 'signature
detection,” is fundamentally outdated, reactive, and
ineffective. Additionally, detecting zero-day attacks is nearly
impossible. The system would need to constantly and
exhaustively target a signature database to be somewhat
effective against current threats. Contrary to popular belief,
unbounded detection systems capable of identifying anything
(anomaly-based detection systems) would only keep systems
in a ‘safe mode.” Their practical use has been limited due to
overwhelming the systems with high false positives.

The inadequacy of a signature-based approach to
intrusion detection systems has sparked an Al (artificial
intelligence) revolution in cybersecurity. The main shift
being introduced is the move from static rule-based
monitoring of the quest systems to dynamic, adaptive, and
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responsive defense. These systems are adaptable and
accurate when predicting incoming attacks and learning new
ones, thanks to their low false alarm rates. Support Vector
Machines (SVMs), Random Forests, Convolutional Neural
Networks (CNNSs), and Long Short-Term Memory (LSTM)
networks have performed exceptionally well on complex
tasks crucial for intrusion detection, reinforcing sophisticated
neural network techniques. Data privacy and protection are
essential pillars in today's digital world. The centralized
system of training IDPS systems, which aggregates data from
the entire network to a single point, significantly increases
latency and creates a single point of failure with the bounded
model. This model fails to handle the overwhelming data in
loT and enterprise cloud systems or scale to meet
exponential growth. Unfortunately, it also falls short in
offering the necessary data privacy and protection measures
that are so important today. These requirements can seem to
conflict with company laws and policies. To address these
architectural hurdles, we moved towards distributed IDPS
frameworks.

Within this framework, Federated Learning (FL) has
emerged as the most promising and impactful advancement.
FL is a type of distributed system where a global model is
trained collaboratively and in parallel by multiple clients
(e.g., edge devices, servers) without exchanging their raw,
privacy-sensitive data. Instead, clients perform local training
and only send a few model updates, such as gradients, to the
central server for aggregation. This data-centric approach
preserves privacy by design, reduces the communication
bandwidth needed to transmit the complete dataset, and
enhances overall scalability. This paper examines the
architecture, challenges, and solutions for Al-powered,
distributed IDPS, especially on the Federated Learning (FL)
framework. It begins by identifying three core research
challenges within the IDPS architecture: inherent privacy and
security vulnerabilities, the misuse of Al models, and
vulnerabilities in federated systems architecture that can lead
to adversarial Al, along with the systemic scalability issue. It
then presents a set of countermeasures to address these
challenges. The document proceeds by integrating these
countermeasures with real-world case studies to demonstrate
the effectiveness of such advanced systems. Finally, it
highlights emerging trends in this vital area of cybersecurity.



2. Research Topics: Core Challenges in Al-

Powered Distributed IDPS

Deploying Al-powered, distributed IDPS successfully
isn't just about implementing advanced algorithms in a
decentralized setup. It involves navigating a complex balance
of competing needs. Pursuing higher detection accuracy
through more complex models often requires more
computing power, which strains edge devices and impacts
system scalability. Implementing strong privacy-preserving
measures can also increase communication and computing
overhead, potentially harming real-time performance.
Additionally, making models more resilient to one type of
threat, like adversarial evasion, might not protect the entire
federated system from internal attacks. This creates a
challenging optimization problem where security, privacy,
and performance must be carefully balanced. The following
sections explore three key challenges that define the main
aspects of this problem.

2.1. Scalability, Latency, and Computational Overhead

One of the main reasons for adopting a distributed
architecture is to avoid the performance limitations of
centralized systems. However, decentralization brings its
own performance challenges. Traditional cyber threat
intelligence (CTI) and Intrusion Detection Systems (IDS)
struggle to analyze data flows spanning multiple petabytes
within 10T ecosystems and enterprise networks. This results
in high data processing latency and limited scalability, which
can be disastrous. While distributed systems eliminate the
single-point bottleneck, they introduce new challenges
related to system complexity, maintaining consistent data
across nodes, and increased network latency due to the
communication required between services for global system
coherence.

Adding to the problem are the resource-hungry Al
models themselves. While deep learning architectures are
effective at detecting anomalies, they require substantial
computational power during both training and real-time use.
This makes it hard to deploy them beyond network edge
devices like 10T sensors, mobile devices, and industrial
controllers, which are all limited by energy, computing
power, or memory. Additionally, while the Federated
Learning (FL) framework has its benefits, it also brings new
performance challenges. Although FL doesn't require
transferring raw data, it's essentially an iterative process that
involves multiple rounds of communication. In each round,
the system model is sent to clients, who then return local
updates. This back-and-forth can create too much
communication overhead in low-bandwidth networks,
resulting in slower convergence and higher latency.

2.2. Privacy and Security Risks in Federated Architectures
At its core, Federated Learning aims to protect data
privacy. However, this creates a key paradox: while raw data
remains on the local device, the model updates shared during
training can still be used to compromise that very privacy.
Although the gradients and model weights sent by each client
are abstract, they still contain some implicit information
about the local data used to generate them. This creates a

new attack surface that could be exploited by a malicious
central server or an untrustworthy participant in the federated
network. A major privacy concern is inference attacks, where
an attacker attempts to reconstruct an individual's private
information by analyzing shared model updates. Research
shows that such attacks can recover complete gradients and
extract representative samples of the training data with high
fidelity. In cybersecurity, this could lead to the compromise
of sensitive configurations, proprietary communication
systems, or private user actions.

Besides privacy breaches, it is essential to protect the
integrity of the globally trained model from malicious users.
These threats seek to compromise the model, making it

unreliable or unsafe. Attacks typically fall into two
categories:
e Data Poisoning: A malicious participant

intentionally introduces incorrect, mislabeled, or
corrupted data into the local training set. The
resulting model update reflects these errors, which,

when  aggregated, degrade overall model
performance or lead to misclassification of certain
traffic types.

e Model Poisoning: This involves an attacker

directly modifying the model update before sending
it to the server. A particularly dangerous type is the
backdoor attack, where the attacker embeds a
hidden trigger in the model update. This allows the
model to perform normally on most tasks but to
misclassify certain inputs, such as mislabeling an
adversarial dataset as benign when the trigger is
present.

2.3. System Weaknesses: Attacks by Adversarial Al

Any defense mechanisms surrounding the architecture of
learning systems are likely to be compromised. The Al
detection systems, by their design, exhibit vulnerabilities to
certain types of hostile manipulation. It is a well-known fact
that Al systems, especially deep neural networks, are often
more fragile than they are perceived to be. An adversary can
insert some form of distortion into an input, and such
distortion attacks of this sort can succeed without detection,
often making them difficult to identify. By distributing the
distortion in acceptable ways, the model is tricked into
incorrect classification with high confidence. Such targeted
intrusion strikes at the very core of Al's decision-making
capacity.

Within an IDPS context, these attacks appear in several
critical forms:

e Evasion Attacks: This type of attack is the most
straightforward during system inference. An
attacker takes malicious action, such as modifying a
network packet containing an exploit. The goal of
these modifications is to change the packet just
enough that it crosses the model’s decision
boundary and is classified as ‘benign traffic." Even
though the payload is malicious, the attacker can get
it past the system without triggering IDPS.
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e Poisoning Attacks: It involves corrupting the very
first, foundational training dataset. By injecting
moderate, malicious samples into the dataset used to
train the IDPS model before deployment, an
attacker can impair the model’s accuracy, creating
extensive blind spots for specific attack types or
backdoors that can be exploited later on.

e Model Extraction and Inversion Attacks: With
the right skills, any attacker can do this if they have
access to the deployed IDPS model. By
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Fig 1: Security and Privacy Threats

3. Recommendations and Mitigation Strategies

Tackling the diverse and complex issues related to Al-
powered distributed IDPS requires more than a single-point
solution. A single, effective defensive strategy cannot rely on
an advanced algorithm, a single secure protocol, or a strong
architecture in isolation. Instead, a unified, multi-faceted
security approach is necessary, integrating architectural
design, privacy-preserving technologies, and model-level
hardening. This layered strategy emphasizes a defensive
system where an attacker must breach multiple diverse
systems to succeed, making attacks more complex and
costly. This forms the core of the resilient framework.

3.1. Architecting for Scalability and Efficiency

Distribution systems often encounter performance
bottlenecks that can be effectively addressed using the
Hybrid Edge-Server Framework. This approach shifts more
complex tasks, such as the pre-training phase of large
foundational models requiring significant computing power,
to a powerful central server. Meanwhile, edge devices focus
on fine-tuning the model. This pretraining method allows
devices to access their local data without consuming heavy
resources. It saves resources for device users and makes the
system easier for sophisticated Al model users to operate.
Complementing this architectural approach is the
development of lightweight and optimized Al models.
Instead of relying on heavy, congested resource networks,

the focus should be on more efficient systems like

convolutional neural networks.

These are designed to provide a better balance between
loss and gain, resulting in higher detection accuracy while
using fewer resources. They help reduce the model size and
decrease inference time, making them an ideal choice for
edge application devices. Finally, when working with hybrid
systems that include a central analysis component, scalable
data processing tools like Apache Spark are efficient. These
platforms are designed for distributed data processing and
can easily handle the large-scale data aggregation and
analysis required for tasks like network-wide anomaly
detection. This approach can truly complement the federated
learning process, ensuring everything operates more
smoothly.

3.2. Strengthening Federated Learning with Privacy-

Enhancing Technologies (PETS).

To reduce the potential privacy risks associated with
shared model updates in the FL workflow, various Privacy-
Enhancing Technologies (PETs) can be employed. The most
extensively used is Differential Privacy (DP). It uses a
mathematical model but offers information survivability and
privacy guarantees. It accomplishes this by adding a certain
amount of statistically generated noise to the client-centered
model before it is sent to the server. This noise obscures the
influence of individual data points, making it difficult for
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data aggregators or potential attackers to access or infer
specific information. Notably, DP relies on Gasper and
analyses, who stated that “in order to guarantee privacy, a
trade-off must be made between the amount of noise added,
and the accuracy of the model.

Secure aggregation protocols are used to protect against
a compromised or untrustworthy central server. These
cryptographic techniques, such as Secure Multi-Party
Computation (SMC) and Homomorphic Encryption (HE),
allow the server to compute the sum or average of all client
updates without decrypting or viewing any individual update.
The aggregation occurs on encrypted data, with only the
combined result shared. This ensures that even the training
process coordinator cannot access the individual
contributions from each client. Additional gradient-based
defenses can further prevent information leakage. Methods
like gradient clipping, which limits the maximum size of any
gradient update, and gradient compression, which sparsifies
the update vector, can reduce the amount of detailed
information an attacker can extract from each update
transmission.
3.3. Building Robust Adversarial
Manipulation

The main method to defend against direct adversarial
attacks on an Al model is through adversarial training. This

Defenses Against

Distributed Inrusion Detection System Architecture

involves adding adversarial examples, designed to fool the
model, to the original training dataset. As a result, the model
learns more robust and generalizable features, making its
decision boundary more tolerant to small changes during
inference. This approach enhances the model's resistance to
known attack types. Another layer of defense includes input
pre-processing and sanitization. These methods are applied
to the data before it is used in the model. Techniques like
adding random noise or smoothing filters to the input might
disrupt the careful arrangement of an adversarial
perturbation, causing it to fail in its purpose and allowing the
model to classify the input correctly.

Finally, more advanced model-based defenses aim to
alter a model's internal attributes to increase its resistance to
external attacks. Some gradient masking techniques attempt
to hide or distort model gradients, making it harder for
attackers to design adversarial samples. Another method,
known as defensive distillation, trains a second, "distilled"
model using the soft probability outputs of a larger, initial
model. This approach is designed to produce a smoother
decision surface, reducing the model's sensitivity to small
changes often exploited in adversarial attacks.
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Fig 2: High-Level Architecture of the Al-Powered Distributed IDPS

3.4. Putting Performance into Practice: Insights from Case

Studies

The practical benefits of having distributed Al-enabled
IDPS systems are increasingly proven through various
experiments and case studies across different domains. The
value of these systems is often measured using standard
evaluation metrics derived from a confusion matrix. This
includes accuracy (the percentage of correct classifications
out of all predictions), precision (the proportion of positive
predictions that are true positives), recall (the proportion of
actual attacks correctly identified), and the F1 score (the
harmonic mean of precision and recall, providing a balanced
measure of performance). Our analysis of results from major
application areas shows notable performance improvements

and effective handling of the challenges we previously
mentioned.

Within the Internet of Things (1oT) realm, where devices
are numerous and resources are limited, using FL-based
IDPS proves to be very beneficial. Studies with realistic 10T
datasets, including CICloT2023 and ToN_loT, show that
distributed models can achieve detection accuracies above
98% and demonstrate high precision and recall, all while
running on low-powered devices like the Raspberry Pi. A
significant breakthrough in this field is the ability to maintain
extremely high detection rates despite the constraints of low
inference latency and small model sizes. This confirms that
edge deployment is practical in real-world situations.
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The Industrial Control Systems (ICS) and Industrial 10T
(I1oT) domains emphasize security heavily, and data is often
highly heterogeneous and siloed. Case studies in this area
show how customized FL models can be effective. By
allowing the global model to train, then fine-tuning on a local
level, each node can adapt to the specific data distribution
and operational routines of its industrial machines. This
approach has been shown to reach over 95% accuracy, with
some cases exceeding the performance of centralized models
trained on non-1ID (non-independent and identically
distributed) data. It provides a strong solution to the data
heterogeneity  challenge in  critical infrastructure
environments.

Many benefits of large-scale enterprise and cloud
environments include increased agility and reduced
operational costs. Reports indicate that using distributed Al
to identify and address threats can decrease the success rate
of breaches by up to 30%. This improvement stems from
better detection of zero-day threats and significantly fewer
false positives compared to traditional systems. Additionally,
by automating root-cause analysis and threat correlation,
these systems greatly improve the Mean Time to Resolve
(MTTR) for security incidents, allowing security operations
teams to better manage complex systems and technologies.

Table 1: Summarizes Key Findings from Domains

Case Study / Architecture / Al Key Performance Metrics & Challenges Addressed
Domain Model Improvements
loT/Smart Home FL CNN Accuracy: ~98%; Precision/Recall/F1 >95%. Privacy, Resource
Networks (convolutional neural Low latency and compact model size on edge Constraints, Scalability

networks) Models

hardware.

Personalized FL with
CNN+GRU (gated
recurrent units)

Industrial Control
Systems (110T)

Accuracy: >95%, outperforming centralized
models. F1-Score: ~0.94. Effective on non-

Data Heterogeneity (non-
[1D), Privacy, Critical

11D data. Infrastructure Security

Distributed Al with
Ensemble & DL
Methods

Enterprise/Cloud
Environments

Empirical evidence of up to 30% reduction in
successful breaches. Significant decrease in
false positives. Faster incident resolution

Scalability, Zero-Day
Threat Detection,
Operational Efficiency

(MTTR).
General FL (FedAvg, FedProx) | Accuracy >99% in FL settings, comparable to Privacy-Preserving
Cybersecurity (FL on UNSW-NB15, centralized performance. Detection accuracies | Collaboration, Data Silos
Benchmarks) CICIDS2017 >90% with privacy loss <5%.
4. Conclusion References
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