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Abstract - The growing sophistication of zero-day attacks 

has rendered traditional Intrusion Detection and Prevention 

Systems (IDPS) almost ineffective in enterprise networks. In 

this paper, we explore the transition to AI-based distributed 

IDPS, focusing particularly on Federated Learning (FL) as a 

core architecture. This approach provides enhanced, 

adaptive threat detection with built-in privacy protections. 

However, implementing this method in practice presents 

several challenges. This work addresses three key issues: the 

balance between scalability and computational overhead, 

privacy concerns in FL, and the vulnerability of AI to 

adversarial attacks. We incorporate cutting-edge solutions 

and draw on real-world examples to argue that only a multi-

layered strategy combining architectural, cryptographic, and 

model-hardening measures can fully unlock the potential of 

these next-generation security systems. 
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1. Introduction 
The growing digital environment faces an uneven battle 

between attackers and defenders in cyberspace. Every day, 

attackers develop new and sophisticated ways to bypass 

security measures, revealing the shortcomings and 

obsolescence of traditional intrusion detection and 

prevention systems (IDPS). The main flaw of IDPS is their 

reliance on “signature systems” for intrusion detection. This 

method of network traffic analysis, known as 'signature 

detection,” is fundamentally outdated, reactive, and 

ineffective. Additionally, detecting zero-day attacks is nearly 

impossible. The system would need to constantly and 

exhaustively target a signature database to be somewhat 

effective against current threats. Contrary to popular belief, 

unbounded detection systems capable of identifying anything 

(anomaly-based detection systems) would only keep systems 

in a „safe mode.‟ Their practical use has been limited due to 

overwhelming the systems with high false positives. 

 

The inadequacy of a signature-based approach to 

intrusion detection systems has sparked an AI (artificial 

intelligence) revolution in cybersecurity. The main shift 

being introduced is the move from static rule-based 

monitoring of the quest systems to dynamic, adaptive, and 

responsive defense. These systems are adaptable and 

accurate when predicting incoming attacks and learning new 

ones, thanks to their low false alarm rates. Support Vector 

Machines (SVMs), Random Forests, Convolutional Neural 

Networks (CNNs), and Long Short-Term Memory (LSTM) 

networks have performed exceptionally well on complex 

tasks crucial for intrusion detection, reinforcing sophisticated 

neural network techniques. Data privacy and protection are 

essential pillars in today's digital world. The centralized 

system of training IDPS systems, which aggregates data from 

the entire network to a single point, significantly increases 

latency and creates a single point of failure with the bounded 

model. This model fails to handle the overwhelming data in 

IoT and enterprise cloud systems or scale to meet 

exponential growth. Unfortunately, it also falls short in 

offering the necessary data privacy and protection measures 

that are so important today. These requirements can seem to 

conflict with company laws and policies. To address these 

architectural hurdles, we moved towards distributed IDPS 

frameworks. 

 

Within this framework, Federated Learning (FL) has 

emerged as the most promising and impactful advancement. 

FL is a type of distributed system where a global model is 

trained collaboratively and in parallel by multiple clients 

(e.g., edge devices, servers) without exchanging their raw, 

privacy-sensitive data. Instead, clients perform local training 

and only send a few model updates, such as gradients, to the 

central server for aggregation. This data-centric approach 

preserves privacy by design, reduces the communication 

bandwidth needed to transmit the complete dataset, and 

enhances overall scalability. This paper examines the 

architecture, challenges, and solutions for AI-powered, 

distributed IDPS, especially on the Federated Learning (FL) 

framework. It begins by identifying three core research 

challenges within the IDPS architecture: inherent privacy and 

security vulnerabilities, the misuse of AI models, and 

vulnerabilities in federated systems architecture that can lead 

to adversarial AI, along with the systemic scalability issue. It 

then presents a set of countermeasures to address these 

challenges. The document proceeds by integrating these 

countermeasures with real-world case studies to demonstrate 

the effectiveness of such advanced systems. Finally, it 

highlights emerging trends in this vital area of cybersecurity. 
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2. Research Topics: Core Challenges in AI-

Powered Distributed IDPS 
Deploying AI-powered, distributed IDPS successfully 

isn't just about implementing advanced algorithms in a 

decentralized setup. It involves navigating a complex balance 

of competing needs. Pursuing higher detection accuracy 

through more complex models often requires more 

computing power, which strains edge devices and impacts 

system scalability. Implementing strong privacy-preserving 

measures can also increase communication and computing 

overhead, potentially harming real-time performance. 

Additionally, making models more resilient to one type of 

threat, like adversarial evasion, might not protect the entire 

federated system from internal attacks. This creates a 

challenging optimization problem where security, privacy, 

and performance must be carefully balanced. The following 

sections explore three key challenges that define the main 

aspects of this problem. 

 

2.1. Scalability, Latency, and Computational Overhead 

One of the main reasons for adopting a distributed 

architecture is to avoid the performance limitations of 

centralized systems. However, decentralization brings its 

own performance challenges. Traditional cyber threat 

intelligence (CTI) and Intrusion Detection Systems (IDS) 

struggle to analyze data flows spanning multiple petabytes 

within IoT ecosystems and enterprise networks. This results 

in high data processing latency and limited scalability, which 

can be disastrous. While distributed systems eliminate the 

single-point bottleneck, they introduce new challenges 

related to system complexity, maintaining consistent data 

across nodes, and increased network latency due to the 

communication required between services for global system 

coherence.  

 

Adding to the problem are the resource-hungry AI 

models themselves. While deep learning architectures are 

effective at detecting anomalies, they require substantial 

computational power during both training and real-time use. 

This makes it hard to deploy them beyond network edge 

devices like IoT sensors, mobile devices, and industrial 

controllers, which are all limited by energy, computing 

power, or memory. Additionally, while the Federated 

Learning (FL) framework has its benefits, it also brings new 

performance challenges. Although FL doesn't require 

transferring raw data, it's essentially an iterative process that 

involves multiple rounds of communication. In each round, 

the system model is sent to clients, who then return local 

updates. This back-and-forth can create too much 

communication overhead in low-bandwidth networks, 

resulting in slower convergence and higher latency. 

 

2.2. Privacy and Security Risks in Federated Architectures 

At its core, Federated Learning aims to protect data 

privacy. However, this creates a key paradox: while raw data 

remains on the local device, the model updates shared during 

training can still be used to compromise that very privacy. 

Although the gradients and model weights sent by each client 

are abstract, they still contain some implicit information 

about the local data used to generate them. This creates a 

new attack surface that could be exploited by a malicious 

central server or an untrustworthy participant in the federated 

network. A major privacy concern is inference attacks, where 

an attacker attempts to reconstruct an individual's private 

information by analyzing shared model updates. Research 

shows that such attacks can recover complete gradients and 

extract representative samples of the training data with high 

fidelity. In cybersecurity, this could lead to the compromise 

of sensitive configurations, proprietary communication 

systems, or private user actions. 

 

Besides privacy breaches, it is essential to protect the 

integrity of the globally trained model from malicious users. 

These threats seek to compromise the model, making it 

unreliable or unsafe. Attacks typically fall into two 

categories: 

 Data Poisoning: A malicious participant 

intentionally introduces incorrect, mislabeled, or 

corrupted data into the local training set. The 

resulting model update reflects these errors, which, 

when aggregated, degrade overall model 

performance or lead to misclassification of certain 

traffic types. 

 Model Poisoning: This involves an attacker 

directly modifying the model update before sending 

it to the server. A particularly dangerous type is the 

backdoor attack, where the attacker embeds a 

hidden trigger in the model update. This allows the 

model to perform normally on most tasks but to 

misclassify certain inputs, such as mislabeling an 

adversarial dataset as benign when the trigger is 

present. 

 

2.3. System Weaknesses: Attacks by Adversarial AI 

Any defense mechanisms surrounding the architecture of 

learning systems are likely to be compromised. The AI 

detection systems, by their design, exhibit vulnerabilities to 

certain types of hostile manipulation. It is a well-known fact 

that AI systems, especially deep neural networks, are often 

more fragile than they are perceived to be. An adversary can 

insert some form of distortion into an input, and such 

distortion attacks of this sort can succeed without detection, 

often making them difficult to identify. By distributing the 

distortion in acceptable ways, the model is tricked into 

incorrect classification with high confidence. Such targeted 

intrusion strikes at the very core of AI's decision-making 

capacity. 

 

Within an IDPS context, these attacks appear in several 

critical forms: 

 Evasion Attacks: This type of attack is the most 

straightforward during system inference. An 

attacker takes malicious action, such as modifying a 

network packet containing an exploit. The goal of 

these modifications is to change the packet just 

enough that it crosses the model‟s decision 

boundary and is classified as „benign traffic." Even 

though the payload is malicious, the attacker can get 

it past the system without triggering IDPS. 
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 Poisoning Attacks: It involves corrupting the very 

first, foundational training dataset. By injecting 

moderate, malicious samples into the dataset used to 

train the IDPS model before deployment, an 

attacker can impair the model‟s accuracy, creating 

extensive blind spots for specific attack types or 

backdoors that can be exploited later on. 

 Model Extraction and Inversion Attacks: With 

the right skills, any attacker can do this if they have 

access to the deployed IDPS model. By 

systematically probing the IDPS system for its 

architecture or parameters, they can reverse 

engineer the system and obtain the model. This 

stolen model can then be used to create more 

advanced evasion attacks, making them more 

effective. In the case of model inversion attacks, 

privacy is also compromised since sensitive data 

can be reconstructed using the model's capabilities 

and outputs. 

 
Fig 1: Security and Privacy Threats 

 

3. Recommendations and Mitigation Strategies   
Tackling the diverse and complex issues related to AI-

powered distributed IDPS requires more than a single-point 

solution. A single, effective defensive strategy cannot rely on 

an advanced algorithm, a single secure protocol, or a strong 

architecture in isolation. Instead, a unified, multi-faceted 

security approach is necessary, integrating architectural 

design, privacy-preserving technologies, and model-level 

hardening. This layered strategy emphasizes a defensive 

system where an attacker must breach multiple diverse 

systems to succeed, making attacks more complex and 

costly. This forms the core of the resilient framework. 

 

3.1. Architecting for Scalability and Efficiency 

Distribution systems often encounter performance 

bottlenecks that can be effectively addressed using the 

Hybrid Edge-Server Framework. This approach shifts more 

complex tasks, such as the pre-training phase of large 

foundational models requiring significant computing power, 

to a powerful central server. Meanwhile, edge devices focus 

on fine-tuning the model. This pretraining method allows 

devices to access their local data without consuming heavy 

resources. It saves resources for device users and makes the 

system easier for sophisticated AI model users to operate. 

Complementing this architectural approach is the 

development of lightweight and optimized AI models. 

Instead of relying on heavy, congested resource networks, 

the focus should be on more efficient systems like 

convolutional neural networks.  

 

These are designed to provide a better balance between 

loss and gain, resulting in higher detection accuracy while 

using fewer resources. They help reduce the model size and 

decrease inference time, making them an ideal choice for 

edge application devices. Finally, when working with hybrid 

systems that include a central analysis component, scalable 

data processing tools like Apache Spark are efficient. These 

platforms are designed for distributed data processing and 

can easily handle the large-scale data aggregation and 

analysis required for tasks like network-wide anomaly 

detection. This approach can truly complement the federated 

learning process, ensuring everything operates more 

smoothly. 

 

3.2. Strengthening Federated Learning with Privacy-

Enhancing Technologies (PETs).   

To reduce the potential privacy risks associated with 

shared model updates in the FL workflow, various Privacy-

Enhancing Technologies (PETs) can be employed. The most 

extensively used is Differential Privacy (DP). It uses a 

mathematical model but offers information survivability and 

privacy guarantees. It accomplishes this by adding a certain 

amount of statistically generated noise to the client-centered 

model before it is sent to the server. This noise obscures the 

influence of individual data points, making it difficult for 
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data aggregators or potential attackers to access or infer 

specific information. Notably, DP relies on Gasper and 

analyses, who stated that “in order to guarantee privacy, a 

trade-off must be made between the amount of noise added, 

and the accuracy of the model. 

 

Secure aggregation protocols are used to protect against 

a compromised or untrustworthy central server. These 

cryptographic techniques, such as Secure Multi-Party 

Computation (SMC) and Homomorphic Encryption (HE), 

allow the server to compute the sum or average of all client 

updates without decrypting or viewing any individual update. 

The aggregation occurs on encrypted data, with only the 

combined result shared. This ensures that even the training 

process coordinator cannot access the individual 

contributions from each client. Additional gradient-based 

defenses can further prevent information leakage. Methods 

like gradient clipping, which limits the maximum size of any 

gradient update, and gradient compression, which sparsifies 

the update vector, can reduce the amount of detailed 

information an attacker can extract from each update 

transmission. 

 

3.3. Building Robust Defenses Against Adversarial 

Manipulation 

The main method to defend against direct adversarial 

attacks on an AI model is through adversarial training. This 

involves adding adversarial examples, designed to fool the 

model, to the original training dataset. As a result, the model 

learns more robust and generalizable features, making its 

decision boundary more tolerant to small changes during 

inference. This approach enhances the model's resistance to 

known attack types. Another layer of defense includes input 

pre-processing and sanitization. These methods are applied 

to the data before it is used in the model. Techniques like 

adding random noise or smoothing filters to the input might 

disrupt the careful arrangement of an adversarial 

perturbation, causing it to fail in its purpose and allowing the 

model to classify the input correctly. 

 

Finally, more advanced model-based defenses aim to 

alter a model's internal attributes to increase its resistance to 

external attacks. Some gradient masking techniques attempt 

to hide or distort model gradients, making it harder for 

attackers to design adversarial samples. Another method, 

known as defensive distillation, trains a second, "distilled" 

model using the soft probability outputs of a larger, initial 

model. This approach is designed to produce a smoother 

decision surface, reducing the model's sensitivity to small 

changes often exploited in adversarial attacks.  

 

 
Fig 2: High-Level Architecture of the AI-Powered Distributed IDPS 

 

3.4. Putting Performance into Practice: Insights from Case 

Studies 

The practical benefits of having distributed AI-enabled 

IDPS systems are increasingly proven through various 

experiments and case studies across different domains. The 

value of these systems is often measured using standard 

evaluation metrics derived from a confusion matrix. This 

includes accuracy (the percentage of correct classifications 

out of all predictions), precision (the proportion of positive 

predictions that are true positives), recall (the proportion of 

actual attacks correctly identified), and the F1 score (the 

harmonic mean of precision and recall, providing a balanced 

measure of performance). Our analysis of results from major 

application areas shows notable performance improvements 

and effective handling of the challenges we previously 

mentioned. 

 

Within the Internet of Things (IoT) realm, where devices 

are numerous and resources are limited, using FL-based 

IDPS proves to be very beneficial. Studies with realistic IoT 

datasets, including CICIoT2023 and ToN_IoT, show that 

distributed models can achieve detection accuracies above 

98% and demonstrate high precision and recall, all while 

running on low-powered devices like the Raspberry Pi. A 

significant breakthrough in this field is the ability to maintain 

extremely high detection rates despite the constraints of low 

inference latency and small model sizes. This confirms that 

edge deployment is practical in real-world situations. 
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The Industrial Control Systems (ICS) and Industrial IoT 

(IIoT) domains emphasize security heavily, and data is often 

highly heterogeneous and siloed. Case studies in this area 

show how customized FL models can be effective. By 

allowing the global model to train, then fine-tuning on a local 

level, each node can adapt to the specific data distribution 

and operational routines of its industrial machines. This 

approach has been shown to reach over 95% accuracy, with 

some cases exceeding the performance of centralized models 

trained on non-IID (non-independent and identically 

distributed) data. It provides a strong solution to the data 

heterogeneity challenge in critical infrastructure 

environments.  

Many benefits of large-scale enterprise and cloud 

environments include increased agility and reduced 

operational costs. Reports indicate that using distributed AI 

to identify and address threats can decrease the success rate 

of breaches by up to 30%. This improvement stems from 

better detection of zero-day threats and significantly fewer 

false positives compared to traditional systems. Additionally, 

by automating root-cause analysis and threat correlation, 

these systems greatly improve the Mean Time to Resolve 

(MTTR) for security incidents, allowing security operations 

teams to better manage complex systems and technologies. 

 

 

Table 1: Summarizes Key Findings from Domains 

Case Study / 

Domain 

Architecture / AI 

Model 

Key Performance Metrics & 

Improvements 

Challenges Addressed 

IoT/Smart Home 

Networks 

FL CNN 

(convolutional neural 

networks) Models 

Accuracy: ~98%; Precision/Recall/F1 >95%. 

Low latency and compact model size on edge 

hardware. 

Privacy, Resource 

Constraints, Scalability 

Industrial Control 

Systems (IIoT) 

Personalized FL with 

CNN+GRU (gated 

recurrent units) 

Accuracy: >95%, outperforming centralized 

models. F1-Score: ~0.94. Effective on non-

IID data. 

Data Heterogeneity (non-

IID), Privacy, Critical 

Infrastructure Security 

Enterprise/Cloud 

Environments 

Distributed AI with 

Ensemble & DL 

Methods 

Empirical evidence of up to 30% reduction in 

successful breaches. Significant decrease in 

false positives. Faster incident resolution 

(MTTR). 

Scalability, Zero-Day 

Threat Detection, 

Operational Efficiency 

General 

Cybersecurity (FL 

Benchmarks) 

FL (FedAvg, FedProx) 

on UNSW-NB15, 

CICIDS2017 

Accuracy >99% in FL settings, comparable to 

centralized performance. Detection accuracies 

>90% with privacy loss <5%. 

Privacy-Preserving 

Collaboration, Data Silos 

 

4. Conclusion   
The growth of AI in distributed systems is arguably the 

most important development and a key part of intrusion 

detection and prevention systems. Systems built on 

frameworks like Federated Learning offer a strong solution 

to the limitations of traditional, centralized, and signature-

based security, providing a path toward scalable, privacy-

preserving, and adaptive security defenses. These systems, 

which can operate in a centralized manner, are highly 

scalable, adaptable to user needs, and, most importantly, 

preserve privacy while providing dynamic, situation-

dependent defenses. Evidence demonstrates the potential for 

very high detection rates for both known and unknown 

threats across diverse settings, from resource-constrained IoT 

networks to critical industrial control systems. However, 

switching to these new methods poses significant challenges. 

The seamless development of these systems depends on 

complex trade-offs between performance, privacy, and 

security. These challenges are particularly intricate, relying 

heavily on computing limitations, the nearly invisible 

privacy leaks in federated model updates, and the 

vulnerability of AI systems to adversarial attacks. Progress in 

these systems is most likely to come from a shift in focus: 

moving from algorithmic tweaks to designing and 

implementing next-generation, layered hybrid defense 

systems that combine architectural innovations, covert 

cryptographic privacy methods, and AI model hardening 

frameworks. 
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