International Journal of Emerging Research in Engineering and Technology

L2,

NS

e

LS

[
-

Pearl Blue Research Group| VVolume 6 Issue 3 PP 129-132, 2025

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.1JERET-V613P115

Original Article

Study of Quantum Hardware and Software Components for
Developers to Build Quantum Applications

Bharathram Nagaiah
Independent Researcher.

Received On: 11/07/2025 Revised On: 29/07/2025

Abstract - Quantum computing is a new theory that holds
untold potential to transform the way complicated problems
are solved, especially in cryptography, optimization, and
quantum chemistry. The paper provides an in-depth analysis of
both hardware and software elements that support quantum
computing, but concentrates on those that are of the most
interest to the developers. We start by discussing quantum
hardware, the mechanisms of operation of qubits, the
technologies in operation, and the resulting issues of
coherence and scalability. The discussion goes further to
software stacks, which include quantum programming
language, quantum-programming-language-related compilers,
guantum-simulators, and quantum-programming-related
cloud-programming platforms. Practical examples of quantum
applications in the world of quantum and case studies are
given to show the prevailing feasibility and shortcomings.
Lastly, we set out to define a systematic approach that
developers can use to get the best practices in place to start
and progress in quantum application development work. Its
purpose is to fill the gap between the theoretical possibilities
and efficient applied implementation, making developers feel a
gain of knowledge and an instrument that would allow them to
connect and interact with this game-changing technology.

Keywords - Quantum Computing, Qubits, Quantum Software,
Quantum Hardware, Quantum Development, Quantum
Programming.

1. Introduction

Quantum computing has evolved in the recent decade
from a scientific theory to an area of practical technological
advances. Whereas classical computers use bits to record either
a 0 or 1, quantum computers use qubits, which can take the
form of superpositions of other states, so that the system is in a
position to process so many combinations, in parallel, in such a
way that it retrieves the information being sought. These
distinctive features make quantum computers well-suited to
solve problems of some classes exponentially faster than
classical systems. [1]

This promise notwithstanding, quantum computing has not
yet come of age. A large number of the current quantum
technologies fall in the NISQ (Noisy Intermediate-Scale

Accepted On: 30/08/2025 Published On: 12/09/2025
Quantum) computer category. These devices are handicapped
by small qubit numbers, large inaccuracies, and short
coherence times. For interested developers who may want to
create apps to work within such a system, there are certain
obstacles that have to be tackled that are exclusive to classical
computing. Besides, there is a lack of quantum software
unification, and there are competing platforms and
programming languages.[2]

Developers must have basic knowledge of the hardware
and software quantum stack to work in such complexity. This
article gives an in-depth insight into these facets, giving a
developer-focused primer on what the state of quantum
technology is today. We do have a full range of topics,
including physical qubit implementations, software
development kits (SDKs), and application design processes to
create applications that work. [3]

2. Methodology

This paper adopts a multidimensional perspective to explore
the current landscape of quantum computing, evaluate the tools
available in the market, and offer practical recommendations
for developers aiming to build quantum applications. All the
steps were made to make sure that the research not only
approaches technical depths but is relevant to developers. The
following elements were used as the methodology:

e Full Literature Review: We initiated our research
with a wide scope of materials, including peer-
reviewed scientific journals, white papers, and
technical literature of large market industry actors,
IBM, Google, Microsoft, and D-Wave. These sources
gave an overview of how quantum hardware and
software were designed, used, and developed. It was
stressed to define innovations (since 2020), trends,
and current limitations in the sphere. [4]

e Platform Benchmarking: One of the tests, which
was done in a practical way, is on a number of
popular quantum development platforms. These were
IBM Qiskit, Google Cirg, Microsoft Q#, and Xanadu
PennyLane. All the platforms were tried based on user
experience, language availability, backend
incorporation, and simulation efficiency. The process

https://doi.org/10.63282/3050-922X.IJERET-V6I3P115

of benchmarking also looked at the quality of
documentation, community, learning resources, and
ability to work with classical computer programming
environments like Python and NET. [5]

e The Case Study Analysis: Three important areas
were discussed in real-world applications of quantum,
including quantum chemistry, optimization/logistics,
and quantum machine learning. For each use case, we o
examined how specific algorithms such as VQE,
QAOA, and Grover's Search were implemented,
which software tools supported their execution, and
how hardware constraints influenced their overall
performance. These case studies were used to bring
out practical aspects like noise tolerance, depth of the
circuit, and classical-quantum hybrid workflows. [6]

o Developer Interviews and Community Insights:
Our approach can also be explained by the necessity
to have a closer look at the developer experience by
communicating with the community as a whole. The
understanding was provided using codes in GitHub,
threads on Stack Overflow and Reddit, some blog

posts, and the AMA sessions with practitioners. This
response sheds light on frequent challenges during
development, like debugging procedures,
compatibility, and getting restricted access to
hardware. It also showed locally invented
mechanisms and bypasses to optimize the reliability
of code and the ability to scale models. [7]
Framework Development: Based on our experience
acquired during the former stages, we have developed
a semi-structured development framework that can be
applied to software engineers who are getting into the
guantum space. This model presents a realistic step-
by-step guide to starting with the basics and the first
work on a development environment, designing and
testing quantum circuits, and finally running hybrid
applications. It also makes suggestions on tooling, the
best practices in error avoidance, as well as advice on
how one can take part in open-source quantum
projects. [8]

Framework Development

Familiarize with

.

fundamental concepts

d

Set up development
environment

l

Prototype quantum
circuits

l

‘ Error mitigation

Tool
Deploy selection
hybrid "
applications

practices

V.

Contribute to

open-source projects

Fig 1: The Development

3. Results

Quantum hardware development is primarily focused on

creating scalable, reliable, and coherent qubits. Key findings .
include:

3.1. Qubit Technologies .

e Superconducting Qubits: Employed by IBM and
Google, these use Josephson junctions and operate at

Framework

cryogenic temperatures. They are fast but prone to
noise.

Trapped lon Qubits: Used by lonQ and Honeywell,
they offer long coherence times and high gate fidelity
but have slower operations.

Photonic Qubits: Implemented by Xanadu, they use
light particles and work well for quantum
communication, though less mature for computation.

130

e Topological Qubits: Explored by Microsoft, these
aim for built-in error resistance but are still in
research stages.

3.2. Key Hardware Metrics

e Coherence Time: The period a qubit retains its
quantum state.

e Gate Fidelity: The precision of quantum operations,
with top systems achieving >99% for single-qubit and
>97% for two-qubit gates.

e Qubit Connectivity: Determines interaction ease
between qubits, influencing circuit efficiency.

3.3. Quantum Processors

IBM’s Eagle processor (127 qubits) and Google’s
Sycamore (53 qubits) are among the most advanced, operating
in ultra-low-temperature environments with complex control
electronics.

3.4. Quantum Software Components
3.4.1. Programming Languages and SDKs:
e Qiskit (IBM): Python-based, ideal for both simulation
and hardware access.
e Cirg (Google): NISQ-optimized,
design.
e Q# (Microsoft): High-level abstraction with Visual
Studio support.
e PennyLane (Xanadu): Hybrid model support with
machine learning integration.

circuit-focused

3.4.2. Simulators:
Qiskit Aer, Cirg's gsim, and Microsoft Quantum Simulator
allow testing and debugging using state vector or noise models.

3.4.3. Compilers and Optimizers:
Qiskit Transpile, Google’s gate synthesis tools, minimize
gate count and adapt circuits to hardware constraints.

3.4.4. Visualization and Debugging:
Tools like Qiskit’s circuit drawers and output histograms
aid in interpreting quantum behavior.

3.4.5. Cloud-Based Platforms:
IBM Quantum Experience, Azure Quantum, and Amazon
Braket offer scalable access to quantum resources via APIs.

3.4.6. Use Case Examples:

e Quantum Chemistry: VQE and QPE enable
molecular simulations.

e Optimization: Grover’s Search and QAOA tackle
complex scheduling and routing.

e Machine Learning: Hybrid models apply quantum
circuits to neural networks and data classification
tasks.

4. Discussion

The development of quantum applications is a major
problem. The steep learning curve to quantum mechanics is
one of the most appalling. Superposition, entanglement, and
unitary transformations must be understood in the context of
guantum logic, unlike in classical programming, where the
flow of logic is deterministic. Quantum phenomena are
abstract, and this may serve as a barrier to entry. The second
concern is the instability and noise of existing quantum
hardware. There is a constraint in the NISQ devices; they have
short coherence times and gate operations that are prone to
errors. Such staging-out methods that developers have to use
are error mitigation and the creation of hybrid algorithms to
obtain credible results. Also, available software libraries tend
to be low-level, with explicit control and construction of
guantum gates and quantum circuit layouts without the
abstraction layers that developers of classical software are used
to.

Despite these challenges, developers can adopt several
practical approaches to navigate the current limitations.
Validating and debugging can begin identically with simulators
with no limitation by constrained equipment. The
concentration on hybrid quantum-classical algorithms has the
potential to make full use of the existing devices. Engaging
with the quantum community through online forums,
comprehensive documentation, and interactive workshops
serves as a valuable source of support and learning.

The ecosystem is slowly developing into more standard,
developer-friendly ecospheres. Efforts such as OpenQASM
and Microsoft Quantum Intermediate Representation (QIR)
attempt to develop transportable quantum code that can be
executed on several backends. Version control of circuits and
automated testing pipelines are among DevOps practices that
are starting to fit the quantum workflow. Quantum software
development is also being realized through artificial
intelligence. Quantum circuits are being optimized via machine
learning, errors are being detected, and even new algorithms
are being proposed via machine learning. This cross-path
between Al and quantum computing may become a critical
innovator in the not-too-distant future. [9-13]

5. Conclusion

Quantum computing is an edge in information processing
that changes the way information is processed and even
approaches exist to find solutions to difficult challenges. To
developers working in this field, besides knowledge of the
physics behind it, demands things such as knowledge of the
fast-evolving ecosystem of software tools and platforms.
Though at this point, there are still multiple technical problems
hounding the path to practical quantum applications, progress
is underway. The existing generation of quantum hardware is
modest, but adequate for experimentation and development of
proof-of-concept applications. Providers of simulators, SDKs,

131

and cloud are also helping quantum programming to become
more accessible.

Using a systematic program of learning and growth, which
then begins with basic principles, makes use of simulators,
experimentation with hybrid algorithms, and communication
with the community, a developer can start developing real-
world and useful quantum programs today. The pioneers in the
field and those who will have experience and understanding of
the area will be in a great place to spearhead the next phase of
computational innovation as the field matures. All the
knowledge and tools are out there within reach; all that is left is
curiosity and determination to check them out.

References

[1]1 Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.
C., Barends, R., ... & Neven, H. (2019). Quantum
supremacy using a programmable superconducting
processor. Nature, 574(7779), 505-510.
https://doi.org/10.1038/s41586-019-1666-5

[21 Preskill, J. (2018). Quantum computing in the NISQ era
and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-
2018-08-06-79

[3] Castro, A., Javadi-Abhari, A., Lidar, D. A., & Chong, F.
T. (2021). ExaQute: A framework for programming
quantum computers with application-centric abstractions.
ACM Transactions on Quantum Computing, 2(2), 1-36.
https://doi.org/10.1145/3461836

[4] Mohseni, M., Read, P., Neven, H., Boixo, S., Denchev,
V. S., Babbush, R., ... & Martinis, J. M. (2020).
Commercialize quantum technologies in five years.
Nature, 543(7644), 171-174.
https://doi.org/10.1038/543171a

[5]1 Singh, S., & Dev, A. (2022). Comparative study of
leading quantum programming frameworks. International
Journal of Quantum Information, 20(2), 2250001.
https://doi.org/10.1142/S021974992250001 X

[6] Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson,
P. D., Kieferova, M., ... & Aspuru-Guzik, A. (2019).
Quantum chemistry in the age of quantum computing.

[7]

(8]

(9]

[10]

[11]

(12]

[13]

[14]

Chemical Reviews, 119(19), 10856-10915.
https://doi.org/10.1021/acs.chemrev.8b00803

Wossnig, L., Zhao, J., & Severini, S. (2021). Building
quantum applications: Interviews and insights from
developers in the community. arXiv preprint
arXiv:2106.14035. https://arxiv.org/abs/2106.14035
Abraham, H., Akhalwaya, I. Y., Alexander, T.
Barkoutsos, P., Bello, L., Bucher, D., ... & Gambetta, J.
(2019). Qiskit: An open-source framework for quantum
computing. Zenodo.
https://doi.org/10.5281/zenodo.2562110

Wang, Y., Sung, K. J., Ding, Y., Tian, Y., & Zhang, S.
(2023). Teaching quantum computing: A practical guide
for educators and developers. ACM Transactions on
Computing Education, 23(1), 1-26.
https://doi.org/10.1145/3571124

Preskill, J. (2018). Quantum computing in the NISQ era
and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-
2018-08-06-79

LaRose, R. (2019). Overview and comparison of gate
level quantum software platforms. Quantum, 3, 130.
https://doi.org/10.22331/g-2019-03-25-130

Haner, T., Soeken, M., & Svore, K. M. (2020). Software
architecture for quantum computing. Nature Reviews
Physics, 2(7), 360-362. https://doi.org/10.1038/s42254-
020-0181-0

Verdon, G., Broughton, M., McCourt, T., Martinez, A. J.,
& Mohseni, M. (2019). Learning to learn with quantum
neural networks via classical neural networks. arXiv
preprint arXiv:1907.05415.
https://arxiv.org/abs/1907.05415

Sehrawat, S. K., Dutta, P. K., Bhatia, A. B., & Whig, P.
(2024). Predicting Demand in Supply Chain Networks
With Quantum Machine Learning Approach. In A.
Hassan, P. Bhattacharya, P. Dutta, J. Verma, & N. Kundu
(Eds.), Quantum Computing and Supply Chain
Management: A New Era of Optimization (pp. 33-47).
1GI Global Scientific Publishing.
https://doi.org/10.4018/979-8-3693-4107-0.ch002

132

https://doi.org/10.1145/3461836
https://arxiv.org/abs/2106.14035
https://doi.org/10.5281/zenodo.2562110
https://arxiv.org/abs/1907.05415
https://doi.org/10.4018/979-8-3693-4107-0.ch002

