
International Journal of Emerging Research in Engineering and Technology 
Pearl Blue Research Group| Volume 6 Issue 3 PP 129-132, 2025 

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V6I3P115   

 

 

Original Article 

 

Study of Quantum Hardware and Software Components for 

Developers to Build Quantum Applications 
 
Bharathram Nagaiah 

Independent Researcher. 

 

Received On: 11/07/2025              Revised On: 29/07/2025               Accepted On: 30/08/2025                Published On: 12/09/2025 

 

Abstract - Quantum computing is a new theory that holds 

untold potential to transform the way complicated problems 

are solved, especially in cryptography, optimization, and 

quantum chemistry. The paper provides an in-depth analysis of 

both hardware and software elements that support quantum 

computing, but concentrates on those that are of the most 

interest to the developers. We start by discussing quantum 

hardware, the mechanisms of operation of qubits, the 

technologies in operation, and the resulting issues of 

coherence and scalability. The discussion goes further to 

software stacks, which include quantum programming 

language, quantum-programming-language-related compilers, 

quantum-simulators, and quantum-programming-related 

cloud-programming platforms. Practical examples of quantum 

applications in the world of quantum and case studies are 

given to show the prevailing feasibility and shortcomings. 

Lastly, we set out to define a systematic approach that 

developers can use to get the best practices in place to start 

and progress in quantum application development work. Its 

purpose is to fill the gap between the theoretical possibilities 

and efficient applied implementation, making developers feel a 

gain of knowledge and an instrument that would allow them to 

connect and interact with this game-changing technology. 

 

Keywords - Quantum Computing, Qubits, Quantum Software, 

Quantum Hardware, Quantum Development, Quantum 

Programming. 

 

1. Introduction 
Quantum computing has evolved in the recent decade 

from a scientific theory to an area of practical technological 

advances. Whereas classical computers use bits to record either 

a 0 or 1, quantum computers use qubits, which can take the 

form of superpositions of other states, so that the system is in a 

position to process so many combinations, in parallel, in such a 

way that it retrieves the information being sought. These 

distinctive features make quantum computers well-suited to 

solve problems of some classes exponentially faster than 

classical systems. [1] 

 

This promise notwithstanding, quantum computing has not 

yet come of age. A large number of the current quantum 

technologies fall in the NISQ (Noisy Intermediate-Scale 

Quantum) computer category. These devices are handicapped 

by small qubit numbers, large inaccuracies, and short 

coherence times. For interested developers who may want to 

create apps to work within such a system, there are certain 

obstacles that have to be tackled that are exclusive to classical 

computing. Besides, there is a lack of quantum software 

unification, and there are competing platforms and 

programming languages.[2] 

 

Developers must have basic knowledge of the hardware 

and software quantum stack to work in such complexity. This 

article gives an in-depth insight into these facets, giving a 

developer-focused primer on what the state of quantum 

technology is today. We do have a full range of topics, 

including physical qubit implementations, software 

development kits (SDKs), and application design processes to 

create applications that work. [3] 

 

2. Methodology 
This paper adopts a multidimensional perspective to explore 

the current landscape of quantum computing, evaluate the tools 

available in the market, and offer practical recommendations 

for developers aiming to build quantum applications. All the 

steps were made to make sure that the research not only 

approaches technical depths but is relevant to developers. The 

following elements were used as the methodology: 

 Full Literature Review: We initiated our research 

with a wide scope of materials, including peer-

reviewed scientific journals, white papers, and 

technical literature of large market industry actors, 

IBM, Google, Microsoft, and D-Wave. These sources 

gave an overview of how quantum hardware and 

software were designed, used, and developed. It was 

stressed to define innovations (since 2020), trends, 

and current limitations in the sphere. [4] 

 Platform Benchmarking:  One of the tests, which 

was done in a practical way, is on a number of 

popular quantum development platforms. These were 

IBM Qiskit, Google Cirq, Microsoft Q#, and Xanadu 

PennyLane. All the platforms were tried based on user 

experience, language availability, backend 

incorporation, and simulation efficiency. The process 
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of benchmarking also looked at the quality of 

documentation, community, learning resources, and 

ability to work with classical computer programming 

environments like Python and NET. [5] 

 The Case Study Analysis: Three important areas 

were discussed in real-world applications of quantum, 

including quantum chemistry, optimization/logistics, 

and quantum machine learning. For each use case, we 

examined how specific algorithms such as VQE, 

QAOA, and Grover's Search were implemented, 

which software tools supported their execution, and 

how hardware constraints influenced their overall 

performance. These case studies were used to bring 

out practical aspects like noise tolerance, depth of the 

circuit, and classical-quantum hybrid workflows. [6] 

 Developer Interviews and Community Insights: 

Our approach can also be explained by the necessity 

to have a closer look at the developer experience by 

communicating with the community as a whole. The 

understanding was provided using codes in GitHub, 

threads on Stack Overflow and Reddit, some blog 

posts, and the AMA sessions with practitioners. This 

response sheds light on frequent challenges during 

development, like debugging procedures, 

compatibility, and getting restricted access to 

hardware. It also showed locally invented 

mechanisms and bypasses to optimize the reliability 

of code and the ability to scale models. [7] 

 Framework Development: Based on our experience 

acquired during the former stages, we have developed 

a semi-structured development framework that can be 

applied to software engineers who are getting into the 

quantum space. This model presents a realistic step-

by-step guide to starting with the basics and the first 

work on a development environment, designing and 

testing quantum circuits, and finally running hybrid 

applications. It also makes suggestions on tooling, the 

best practices in error avoidance, as well as advice on 

how one can take part in open-source quantum 

projects. [8] 

 

 

 
Fig 1: The Development Framework 

 

3. Results 
Quantum hardware development is primarily focused on 

creating scalable, reliable, and coherent qubits. Key findings 

include: 

 

3.1. Qubit Technologies 

 Superconducting Qubits: Employed by IBM and 

Google, these use Josephson junctions and operate at 

cryogenic temperatures. They are fast but prone to 

noise. 

 Trapped Ion Qubits: Used by IonQ and Honeywell, 

they offer long coherence times and high gate fidelity 

but have slower operations. 

 Photonic Qubits: Implemented by Xanadu, they use 

light particles and work well for quantum 

communication, though less mature for computation. 
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 Topological Qubits: Explored by Microsoft, these 

aim for built-in error resistance but are still in 

research stages. 

 

3.2. Key Hardware Metrics 

 Coherence Time: The period a qubit retains its 

quantum state. 

 Gate Fidelity: The precision of quantum operations, 

with top systems achieving >99% for single-qubit and 

>97% for two-qubit gates. 

 Qubit Connectivity: Determines interaction ease 

between qubits, influencing circuit efficiency. 

 

3.3. Quantum Processors 

IBM’s Eagle processor (127 qubits) and Google’s 

Sycamore (53 qubits) are among the most advanced, operating 

in ultra-low-temperature environments with complex control 

electronics. 

 

3.4. Quantum Software Components 
3.4.1. Programming Languages and SDKs: 

 Qiskit (IBM): Python-based, ideal for both simulation 

and hardware access. 

 Cirq (Google): NISQ-optimized, circuit-focused 

design. 

 Q# (Microsoft): High-level abstraction with Visual 

Studio support. 

 PennyLane (Xanadu): Hybrid model support with 

machine learning integration. 

 

3.4.2. Simulators: 

Qiskit Aer, Cirq's qsim, and Microsoft Quantum Simulator 

allow testing and debugging using state vector or noise models. 

 

3.4.3. Compilers and Optimizers: 

Qiskit Transpile, Google’s gate synthesis tools, minimize 

gate count and adapt circuits to hardware constraints. 

 

3.4.4. Visualization and Debugging: 

Tools like Qiskit’s circuit drawers and output histograms 

aid in interpreting quantum behavior. 

 

3.4.5. Cloud-Based Platforms: 

IBM Quantum Experience, Azure Quantum, and Amazon 

Braket offer scalable access to quantum resources via APIs. 

 

3.4.6. Use Case Examples: 

 Quantum Chemistry: VQE and QPE enable 

molecular simulations. 

 Optimization: Grover’s Search and QAOA tackle 

complex scheduling and routing. 

 Machine Learning: Hybrid models apply quantum 

circuits to neural networks and data classification 

tasks. 

 

4. Discussion 
The development of quantum applications is a major 

problem. The steep learning curve to quantum mechanics is 

one of the most appalling. Superposition, entanglement, and 

unitary transformations must be understood in the context of 

quantum logic, unlike in classical programming, where the 

flow of logic is deterministic. Quantum phenomena are 

abstract, and this may serve as a barrier to entry. The second 

concern is the instability and noise of existing quantum 

hardware. There is a constraint in the NISQ devices; they have 

short coherence times and gate operations that are prone to 

errors. Such staging-out methods that developers have to use 

are error mitigation and the creation of hybrid algorithms to 

obtain credible results. Also, available software libraries tend 

to be low-level, with explicit control and construction of 

quantum gates and quantum circuit layouts without the 

abstraction layers that developers of classical software are used 

to. 

 

Despite these challenges, developers can adopt several 

practical approaches to navigate the current limitations. 

Validating and debugging can begin identically with simulators 

with no limitation by constrained equipment. The 

concentration on hybrid quantum-classical algorithms has the 

potential to make full use of the existing devices. Engaging 

with the quantum community through online forums, 

comprehensive documentation, and interactive workshops 

serves as a valuable source of support and learning. 

 

The ecosystem is slowly developing into more standard, 

developer-friendly ecospheres. Efforts such as OpenQASM 

and Microsoft Quantum Intermediate Representation (QIR) 

attempt to develop transportable quantum code that can be 

executed on several backends. Version control of circuits and 

automated testing pipelines are among DevOps practices that 

are starting to fit the quantum workflow. Quantum software 

development is also being realized through artificial 

intelligence. Quantum circuits are being optimized via machine 

learning, errors are being detected, and even new algorithms 

are being proposed via machine learning. This cross-path 

between AI and quantum computing may become a critical 

innovator in the not-too-distant future. [9-13] 

 

5. Conclusion 
Quantum computing is an edge in information processing 

that changes the way information is processed and even 

approaches exist to find solutions to difficult challenges. To 

developers working in this field, besides knowledge of the 

physics behind it, demands things such as knowledge of the 

fast-evolving ecosystem of software tools and platforms. 

Though at this point, there are still multiple technical problems 

hounding the path to practical quantum applications, progress 

is underway. The existing generation of quantum hardware is 

modest, but adequate for experimentation and development of 

proof-of-concept applications. Providers of simulators, SDKs, 
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and cloud are also helping quantum programming to become 

more accessible. 

 

Using a systematic program of learning and growth, which 

then begins with basic principles, makes use of simulators, 

experimentation with hybrid algorithms, and communication 

with the community, a developer can start developing real-

world and useful quantum programs today. The pioneers in the 

field and those who will have experience and understanding of 

the area will be in a great place to spearhead the next phase of 

computational innovation as the field matures. All the 

knowledge and tools are out there within reach; all that is left is 

curiosity and determination to check them out. 

 

References  
[1] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. 

C., Barends, R., ... & Neven, H. (2019). Quantum 

supremacy using a programmable superconducting 

processor. Nature, 574(7779), 505–510. 

https://doi.org/10.1038/s41586-019-1666-5 

[2] Preskill, J. (2018). Quantum computing in the NISQ era 

and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-

2018-08-06-79 

[3] Castro, A., Javadi-Abhari, A., Lidar, D. A., & Chong, F. 

T. (2021). ExaQute: A framework for programming 

quantum computers with application-centric abstractions. 

ACM Transactions on Quantum Computing, 2(2), 1–36. 

https://doi.org/10.1145/3461836 

[4] Mohseni, M., Read, P., Neven, H., Boixo, S., Denchev, 

V. S., Babbush, R., ... & Martinis, J. M. (2020). 

Commercialize quantum technologies in five years. 

Nature, 543(7644), 171–174. 

https://doi.org/10.1038/543171a 

[5] Singh, S., & Dev, A. (2022). Comparative study of 

leading quantum programming frameworks. International 

Journal of Quantum Information, 20(2), 2250001. 

https://doi.org/10.1142/S021974992250001X 

[6] Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson, 

P. D., Kieferová, M., ... & Aspuru-Guzik, A. (2019). 

Quantum chemistry in the age of quantum computing. 

Chemical Reviews, 119(19), 10856–10915. 

https://doi.org/10.1021/acs.chemrev.8b00803 

[7] Wossnig, L., Zhao, J., & Severini, S. (2021). Building 

quantum applications: Interviews and insights from 

developers in the community. arXiv preprint 

arXiv:2106.14035. https://arxiv.org/abs/2106.14035 

[8] Abraham, H., Akhalwaya, I. Y., Alexander, T., 

Barkoutsos, P., Bello, L., Bucher, D., ... & Gambetta, J. 

(2019). Qiskit: An open-source framework for quantum 

computing. Zenodo. 

https://doi.org/10.5281/zenodo.2562110 

[9] Wang, Y., Sung, K. J., Ding, Y., Tian, Y., & Zhang, S. 

(2023). Teaching quantum computing: A practical guide 

for educators and developers. ACM Transactions on 

Computing Education, 23(1), 1–26. 

https://doi.org/10.1145/3571124 

[10] Preskill, J. (2018). Quantum computing in the NISQ era 

and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-

2018-08-06-79 

[11] LaRose, R. (2019). Overview and comparison of gate 

level quantum software platforms. Quantum, 3, 130. 

https://doi.org/10.22331/q-2019-03-25-130 

[12] Häner, T., Soeken, M., & Svore, K. M. (2020). Software 

architecture for quantum computing. Nature Reviews 

Physics, 2(7), 360–362. https://doi.org/10.1038/s42254-

020-0181-0 

[13] Verdon, G., Broughton, M., McCourt, T., Martinez, A. J., 

& Mohseni, M. (2019). Learning to learn with quantum 

neural networks via classical neural networks. arXiv 

preprint arXiv:1907.05415. 

https://arxiv.org/abs/1907.05415 

[14] Sehrawat, S. K., Dutta, P. K., Bhatia, A. B., & Whig, P. 

(2024). Predicting Demand in Supply Chain Networks 

With Quantum Machine Learning Approach. In A. 

Hassan, P. Bhattacharya, P. Dutta, J. Verma, & N. Kundu 

(Eds.), Quantum Computing and Supply Chain 

Management: A New Era of Optimization (pp. 33-47). 

IGI Global Scientific Publishing. 

https://doi.org/10.4018/979-8-3693-4107-0.ch002

 

https://doi.org/10.1145/3461836
https://arxiv.org/abs/2106.14035
https://doi.org/10.5281/zenodo.2562110
https://arxiv.org/abs/1907.05415
https://doi.org/10.4018/979-8-3693-4107-0.ch002

