
International Journal of Emerging Research in Engineering and Technology
Pearl Blue Research Group| Volume 6 Issue 3 PP 129-132, 2025

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V6I3P115

Original Article

Study of Quantum Hardware and Software Components for

Developers to Build Quantum Applications

Bharathram Nagaiah

Independent Researcher.

Received On: 11/07/2025 Revised On: 29/07/2025 Accepted On: 30/08/2025 Published On: 12/09/2025

Abstract - Quantum computing is a new theory that holds

untold potential to transform the way complicated problems

are solved, especially in cryptography, optimization, and

quantum chemistry. The paper provides an in-depth analysis of

both hardware and software elements that support quantum

computing, but concentrates on those that are of the most

interest to the developers. We start by discussing quantum

hardware, the mechanisms of operation of qubits, the

technologies in operation, and the resulting issues of

coherence and scalability. The discussion goes further to

software stacks, which include quantum programming

language, quantum-programming-language-related compilers,

quantum-simulators, and quantum-programming-related

cloud-programming platforms. Practical examples of quantum

applications in the world of quantum and case studies are

given to show the prevailing feasibility and shortcomings.

Lastly, we set out to define a systematic approach that

developers can use to get the best practices in place to start

and progress in quantum application development work. Its

purpose is to fill the gap between the theoretical possibilities

and efficient applied implementation, making developers feel a

gain of knowledge and an instrument that would allow them to

connect and interact with this game-changing technology.

Keywords - Quantum Computing, Qubits, Quantum Software,

Quantum Hardware, Quantum Development, Quantum

Programming.

1. Introduction
Quantum computing has evolved in the recent decade

from a scientific theory to an area of practical technological

advances. Whereas classical computers use bits to record either

a 0 or 1, quantum computers use qubits, which can take the

form of superpositions of other states, so that the system is in a

position to process so many combinations, in parallel, in such a

way that it retrieves the information being sought. These

distinctive features make quantum computers well-suited to

solve problems of some classes exponentially faster than

classical systems. [1]

This promise notwithstanding, quantum computing has not

yet come of age. A large number of the current quantum

technologies fall in the NISQ (Noisy Intermediate-Scale

Quantum) computer category. These devices are handicapped

by small qubit numbers, large inaccuracies, and short

coherence times. For interested developers who may want to

create apps to work within such a system, there are certain

obstacles that have to be tackled that are exclusive to classical

computing. Besides, there is a lack of quantum software

unification, and there are competing platforms and

programming languages.[2]

Developers must have basic knowledge of the hardware

and software quantum stack to work in such complexity. This

article gives an in-depth insight into these facets, giving a

developer-focused primer on what the state of quantum

technology is today. We do have a full range of topics,

including physical qubit implementations, software

development kits (SDKs), and application design processes to

create applications that work. [3]

2. Methodology
This paper adopts a multidimensional perspective to explore

the current landscape of quantum computing, evaluate the tools

available in the market, and offer practical recommendations

for developers aiming to build quantum applications. All the

steps were made to make sure that the research not only

approaches technical depths but is relevant to developers. The

following elements were used as the methodology:

 Full Literature Review: We initiated our research

with a wide scope of materials, including peer-

reviewed scientific journals, white papers, and

technical literature of large market industry actors,

IBM, Google, Microsoft, and D-Wave. These sources

gave an overview of how quantum hardware and

software were designed, used, and developed. It was

stressed to define innovations (since 2020), trends,

and current limitations in the sphere. [4]

 Platform Benchmarking: One of the tests, which

was done in a practical way, is on a number of

popular quantum development platforms. These were

IBM Qiskit, Google Cirq, Microsoft Q#, and Xanadu

PennyLane. All the platforms were tried based on user

experience, language availability, backend

incorporation, and simulation efficiency. The process

https://doi.org/10.63282/3050-922X.IJERET-V6I3P115

Bharathram Nagaiah / IJERET, 6(3), 129-132, 2025

130

of benchmarking also looked at the quality of

documentation, community, learning resources, and

ability to work with classical computer programming

environments like Python and NET. [5]

 The Case Study Analysis: Three important areas

were discussed in real-world applications of quantum,

including quantum chemistry, optimization/logistics,

and quantum machine learning. For each use case, we

examined how specific algorithms such as VQE,

QAOA, and Grover's Search were implemented,

which software tools supported their execution, and

how hardware constraints influenced their overall

performance. These case studies were used to bring

out practical aspects like noise tolerance, depth of the

circuit, and classical-quantum hybrid workflows. [6]

 Developer Interviews and Community Insights:

Our approach can also be explained by the necessity

to have a closer look at the developer experience by

communicating with the community as a whole. The

understanding was provided using codes in GitHub,

threads on Stack Overflow and Reddit, some blog

posts, and the AMA sessions with practitioners. This

response sheds light on frequent challenges during

development, like debugging procedures,

compatibility, and getting restricted access to

hardware. It also showed locally invented

mechanisms and bypasses to optimize the reliability

of code and the ability to scale models. [7]

 Framework Development: Based on our experience

acquired during the former stages, we have developed

a semi-structured development framework that can be

applied to software engineers who are getting into the

quantum space. This model presents a realistic step-

by-step guide to starting with the basics and the first

work on a development environment, designing and

testing quantum circuits, and finally running hybrid

applications. It also makes suggestions on tooling, the

best practices in error avoidance, as well as advice on

how one can take part in open-source quantum

projects. [8]

Fig 1: The Development Framework

3. Results
Quantum hardware development is primarily focused on

creating scalable, reliable, and coherent qubits. Key findings

include:

3.1. Qubit Technologies

 Superconducting Qubits: Employed by IBM and

Google, these use Josephson junctions and operate at

cryogenic temperatures. They are fast but prone to

noise.

 Trapped Ion Qubits: Used by IonQ and Honeywell,

they offer long coherence times and high gate fidelity

but have slower operations.

 Photonic Qubits: Implemented by Xanadu, they use

light particles and work well for quantum

communication, though less mature for computation.

Bharathram Nagaiah / IJERET, 6(3), 129-132, 2025

131

 Topological Qubits: Explored by Microsoft, these

aim for built-in error resistance but are still in

research stages.

3.2. Key Hardware Metrics

 Coherence Time: The period a qubit retains its

quantum state.

 Gate Fidelity: The precision of quantum operations,

with top systems achieving >99% for single-qubit and

>97% for two-qubit gates.

 Qubit Connectivity: Determines interaction ease

between qubits, influencing circuit efficiency.

3.3. Quantum Processors

IBM’s Eagle processor (127 qubits) and Google’s

Sycamore (53 qubits) are among the most advanced, operating

in ultra-low-temperature environments with complex control

electronics.

3.4. Quantum Software Components
3.4.1. Programming Languages and SDKs:

 Qiskit (IBM): Python-based, ideal for both simulation

and hardware access.

 Cirq (Google): NISQ-optimized, circuit-focused

design.

 Q# (Microsoft): High-level abstraction with Visual

Studio support.

 PennyLane (Xanadu): Hybrid model support with

machine learning integration.

3.4.2. Simulators:

Qiskit Aer, Cirq's qsim, and Microsoft Quantum Simulator

allow testing and debugging using state vector or noise models.

3.4.3. Compilers and Optimizers:

Qiskit Transpile, Google’s gate synthesis tools, minimize

gate count and adapt circuits to hardware constraints.

3.4.4. Visualization and Debugging:

Tools like Qiskit’s circuit drawers and output histograms

aid in interpreting quantum behavior.

3.4.5. Cloud-Based Platforms:

IBM Quantum Experience, Azure Quantum, and Amazon

Braket offer scalable access to quantum resources via APIs.

3.4.6. Use Case Examples:

 Quantum Chemistry: VQE and QPE enable

molecular simulations.

 Optimization: Grover’s Search and QAOA tackle

complex scheduling and routing.

 Machine Learning: Hybrid models apply quantum

circuits to neural networks and data classification

tasks.

4. Discussion
The development of quantum applications is a major

problem. The steep learning curve to quantum mechanics is

one of the most appalling. Superposition, entanglement, and

unitary transformations must be understood in the context of

quantum logic, unlike in classical programming, where the

flow of logic is deterministic. Quantum phenomena are

abstract, and this may serve as a barrier to entry. The second

concern is the instability and noise of existing quantum

hardware. There is a constraint in the NISQ devices; they have

short coherence times and gate operations that are prone to

errors. Such staging-out methods that developers have to use

are error mitigation and the creation of hybrid algorithms to

obtain credible results. Also, available software libraries tend

to be low-level, with explicit control and construction of

quantum gates and quantum circuit layouts without the

abstraction layers that developers of classical software are used

to.

Despite these challenges, developers can adopt several

practical approaches to navigate the current limitations.

Validating and debugging can begin identically with simulators

with no limitation by constrained equipment. The

concentration on hybrid quantum-classical algorithms has the

potential to make full use of the existing devices. Engaging

with the quantum community through online forums,

comprehensive documentation, and interactive workshops

serves as a valuable source of support and learning.

The ecosystem is slowly developing into more standard,

developer-friendly ecospheres. Efforts such as OpenQASM

and Microsoft Quantum Intermediate Representation (QIR)

attempt to develop transportable quantum code that can be

executed on several backends. Version control of circuits and

automated testing pipelines are among DevOps practices that

are starting to fit the quantum workflow. Quantum software

development is also being realized through artificial

intelligence. Quantum circuits are being optimized via machine

learning, errors are being detected, and even new algorithms

are being proposed via machine learning. This cross-path

between AI and quantum computing may become a critical

innovator in the not-too-distant future. [9-13]

5. Conclusion
Quantum computing is an edge in information processing

that changes the way information is processed and even

approaches exist to find solutions to difficult challenges. To

developers working in this field, besides knowledge of the

physics behind it, demands things such as knowledge of the

fast-evolving ecosystem of software tools and platforms.

Though at this point, there are still multiple technical problems

hounding the path to practical quantum applications, progress

is underway. The existing generation of quantum hardware is

modest, but adequate for experimentation and development of

proof-of-concept applications. Providers of simulators, SDKs,

Bharathram Nagaiah / IJERET, 6(3), 129-132, 2025

132

and cloud are also helping quantum programming to become

more accessible.

Using a systematic program of learning and growth, which

then begins with basic principles, makes use of simulators,

experimentation with hybrid algorithms, and communication

with the community, a developer can start developing real-

world and useful quantum programs today. The pioneers in the

field and those who will have experience and understanding of

the area will be in a great place to spearhead the next phase of

computational innovation as the field matures. All the

knowledge and tools are out there within reach; all that is left is

curiosity and determination to check them out.

References
[1] Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.

C., Barends, R., ... & Neven, H. (2019). Quantum

supremacy using a programmable superconducting

processor. Nature, 574(7779), 505–510.

https://doi.org/10.1038/s41586-019-1666-5

[2] Preskill, J. (2018). Quantum computing in the NISQ era

and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-

2018-08-06-79

[3] Castro, A., Javadi-Abhari, A., Lidar, D. A., & Chong, F.

T. (2021). ExaQute: A framework for programming

quantum computers with application-centric abstractions.

ACM Transactions on Quantum Computing, 2(2), 1–36.

https://doi.org/10.1145/3461836

[4] Mohseni, M., Read, P., Neven, H., Boixo, S., Denchev,

V. S., Babbush, R., ... & Martinis, J. M. (2020).

Commercialize quantum technologies in five years.

Nature, 543(7644), 171–174.

https://doi.org/10.1038/543171a

[5] Singh, S., & Dev, A. (2022). Comparative study of

leading quantum programming frameworks. International

Journal of Quantum Information, 20(2), 2250001.

https://doi.org/10.1142/S021974992250001X

[6] Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson,

P. D., Kieferová, M., ... & Aspuru-Guzik, A. (2019).

Quantum chemistry in the age of quantum computing.

Chemical Reviews, 119(19), 10856–10915.

https://doi.org/10.1021/acs.chemrev.8b00803

[7] Wossnig, L., Zhao, J., & Severini, S. (2021). Building

quantum applications: Interviews and insights from

developers in the community. arXiv preprint

arXiv:2106.14035. https://arxiv.org/abs/2106.14035

[8] Abraham, H., Akhalwaya, I. Y., Alexander, T.,

Barkoutsos, P., Bello, L., Bucher, D., ... & Gambetta, J.

(2019). Qiskit: An open-source framework for quantum

computing. Zenodo.

https://doi.org/10.5281/zenodo.2562110

[9] Wang, Y., Sung, K. J., Ding, Y., Tian, Y., & Zhang, S.

(2023). Teaching quantum computing: A practical guide

for educators and developers. ACM Transactions on

Computing Education, 23(1), 1–26.

https://doi.org/10.1145/3571124

[10] Preskill, J. (2018). Quantum computing in the NISQ era

and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-

2018-08-06-79

[11] LaRose, R. (2019). Overview and comparison of gate

level quantum software platforms. Quantum, 3, 130.

https://doi.org/10.22331/q-2019-03-25-130

[12] Häner, T., Soeken, M., & Svore, K. M. (2020). Software

architecture for quantum computing. Nature Reviews

Physics, 2(7), 360–362. https://doi.org/10.1038/s42254-

020-0181-0

[13] Verdon, G., Broughton, M., McCourt, T., Martinez, A. J.,

& Mohseni, M. (2019). Learning to learn with quantum

neural networks via classical neural networks. arXiv

preprint arXiv:1907.05415.

https://arxiv.org/abs/1907.05415

[14] Sehrawat, S. K., Dutta, P. K., Bhatia, A. B., & Whig, P.

(2024). Predicting Demand in Supply Chain Networks

With Quantum Machine Learning Approach. In A.

Hassan, P. Bhattacharya, P. Dutta, J. Verma, & N. Kundu

(Eds.), Quantum Computing and Supply Chain

Management: A New Era of Optimization (pp. 33-47).

IGI Global Scientific Publishing.

https://doi.org/10.4018/979-8-3693-4107-0.ch002

https://doi.org/10.1145/3461836
https://arxiv.org/abs/2106.14035
https://doi.org/10.5281/zenodo.2562110
https://arxiv.org/abs/1907.05415
https://doi.org/10.4018/979-8-3693-4107-0.ch002

