
International Journal of Emerging Research in Engineering and Technology
Pearl Blue Research Group| Volume 6 Issue 3 PP 136-145, 2025

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V6I3P117

Original Article

AI-Driven Log Summarization for Security Operations

Centers: A Web-Based Approach Using Gemini API

Raju Katukam
Site Reliability Engineer, Jawaharlal Nehru Technological University Hyderabad.

Received On: 15/07/2025 Revised On: 03/08/2025 Accepted On: 05/09/2025 Published On: 18/09/2025

Abstract - In today's cybersecurity landscape, Security

Operations Centers (SOCs) face the growing challenge of

managing and interpreting vast volumes of unstructured log

data generated from diverse sources. Traditional rule-based
monitoring approaches are often inefficient and inadequate

in handling this scale, leading to delays in threat detection

and response. This work presents a scalable, AI-powered log

summarization platform that integrates Google’s Gemini 1.5

Flash model within a full-stack web application to automate

the extraction of security-relevant insights from log files.

Built using React.js, Node.js, and MongoDB, the system

enables SOC analysts to upload log files in various formats

(.log, .txt, .docx) and receive real-time, human-readable

summaries highlighting anomalies such as brute-force

attacks, suspicious IP activity, and data exfiltration attempts.
The backend handles secure file parsing, AI prompt

generation, summarization via Gemini API, and summary

storage with associated metadata. Experimental evaluations

demonstrate low-latency summarization across file types,

with average response times under four seconds, validating

the platform’s efficiency and practicality for real-world SOC

environments. This solution significantly reduces manual

analysis effort, enhances threat visibility, and introduces a

flexible, extensible framework for AI-enhanced cybersecurity

operations.

Keywords - Security Operations Center (SOC), Log

Summarization, Generative AI, Gemini API, Node.js,

React.js, Cybersecurity.

1. Introduction
Large volumes of log data are generated by software

systems as the program runs. These logs are often generated
to assist system administrators and developers in identifying

unusual output, runtime issues, and faults. Additionally,

intrusion detection may make use of these logs. A system

intrusion or assault may be detected and prevented by keeping

tabs on critical events in the log data and identifying unusual

behaviour or signatures[1]. It is not viable to manually

analyse the logs since most software systems generate an

excessive volume of log data[2][3][4]. Furthermore, dangers

are often not detectable from single log entries but rather from

a pattern of log entries dispersed across the file[5]. Therefore,

it is essential to automate the process of analysing the log

data. The majority of the focus in software cybersecurity is
on safeguarding systems from potential outside attacks. The

difficulty of detecting intrusions and internal threats causes

these areas to be neglected[6][7][8]. Failure to take action

against these dangers might result in significant financial

losses if ignored. For real-time cybersecurity event detection,

investigation, and mitigation, these logs are an essential
source of information[9][10]. Cybersecurity attacks are

becoming more frequent and complicated, therefore

protecting digital assets successfully requires strong

monitoring and quick reaction skills[11]. Therefore, SOCs are

being set up by a growing number of organisations to actively

identify and react to cybersecurity events[12][13].

SOCs play a pivotal role in continuously monitoring log

data to ensure the resilience and security of organizational

assets in cyber incidents[14][15][16]. However, as log data

continues to grow exponentially in size and diversity,
traditional manual and rule-based monitoring techniques are

increasingly insufficient, necessitating more intelligent

approaches to support efficient analysis and decision-

making[17][18]. This growing demand for efficiency has

drawn significant attention to the role of advanced

computational methods, particularly Artificial Intelligence

(AI), in augmenting SOC operations[19]. In particular,

advancements in Natural Language Processing (NLP) have

unlocked new possibilities for automating the interpretation

and summarization of unstructured log data. AI-driven

summarization techniques, powered by Large Language
Models (LLMs), can distill vast and complex log streams into

concise, human-readable narratives[20], thereby improving

situational awareness and accelerating incident response for

SOC analysts. Among the latest developments, generative

LLMs[21][22] such as Google’s Gemini API demonstrate

exceptional capabilities in understanding context, capturing

subtle patterns, and producing coherent summaries from raw

data. Harnessing these capabilities offers a promising

direction toward building systems that embed AI-powered

summarization directly into SOC workflows[23][24].

To enable practical and scalable deployment of such
intelligent capabilities, this paper proposes a web-based

approach that integrates [25]. AI log summarization within a

user-friendly, real-time interface accessible from

anywhere[26]. The system is designed to receive logs from

various sources, process them using a summarization model,

and present the distilled outputs through an interactive

dashboard. This cloud-accessible solution ensures ease of

deployment, centralized control, and seamless collaboration

among security teams, regardless of geographic distribution.

Raju Katukam / IJERET, 6(3), 136-145, 2025

137

A web-based platform that integrates the Gemini API for log

summarization emerges as a particularly effective approach to

operationalize these AI capabilities[27][28]. Web-based

architectures provide accessibility, scalability, and seamless

integration with existing SOC dashboards and tools, while the

Gemini API ensures advanced language understanding
tailored to the nature of security logs[29][30][31]. By

combining these elements, it is possible to deliver actionable

insights from raw logs through an intuitive interface, enabling

SOC analysts to make informed decisions quickly and

effectively. This integrated approach forms the basis of the

present work, which focuses on designing and demonstrating

such a solution in a practical setting. Leveraging generative

models like Google’s Gemini API within a web-based

platform provides an innovative and scalable approach to

real-time log analysis. This not only reduces the cognitive

load on SOC analysts but also accelerates threat detection and

decision-making, ultimately strengthening organizational
cybersecurity posture.

1.1. Motivation and Contribution of Study

Security Operations Centers (SOCs) are today's primary

defense against cyber threats for digital infrastructures. In an

era of increasing size and complexity, the number of logs

produced every day by endpoints, servers, firewalls,

applications, etc. continues to swell. Manual review of these

logs takes time-and many times results in the late discovery

of a threat or missing a key piece of information.

Furthermore, most tools today rely on static rules-based or
keyword-based; neither are effective for recognizing attack

patterns or evolving threat landscapes. The emergence of

LLM models that can read and interpret unstructured data,

provides SOCs with a real opportunity to transform their

operations by using natural language summarization in

conjunction with log data. This study presents a novel AI-

driven log summarization platform specifically designed for

SOC environments. The key contributions are as follows:

 This work presents the development of a modular,

full-stack web-based platform tailored for Security

Operations Centers (SOCs), combining React.js for
the frontend, Node.js/Express.js for the backend, and

MongoDB for persistent storage. The architecture

supports secure log file upload, real-time AI

summarization, and efficient result visualization.

 The system is capable of processing .log, .txt, and

.docx files using file-type-specific parsers (Node’s fs

module and the Mammoth library). This multi-format

compatibility ensures wide applicability across varied

SOC log sources.

 The platform incorporates Gemini's advanced

language model via Google’s Generative AI SDK to

automatically generate concise, human-readable
summaries of unstructured log content, extracting

insights such as suspicious IPs, brute-force attacks,

and data exfiltration attempts.

 Custom prompt templates are designed to guide the

Gemini model toward detecting cybersecurity-relevant

patterns, improving the contextual precision of AI-

generated summaries without requiring predefined

rules or manual annotations.

 Through empirical evaluation, the system

demonstrated an average response time of under four

seconds across various file types, validating its

practicality for real-time threat triage and analysis in

fast-paced SOC workflows.

 Security best practices such as JWT-based
authentication, automatic post-processing file deletion,

and metadata-enriched summary storage in MongoDB

are implemented to ensure data integrity, user

accountability, and compliance with audit

requirements.

These contributions aim to empower SOC teams with a

scalable and intelligent solution that reduces analyst fatigue,

accelerates incident response, and modernizes log handling

through AI-driven automation.

1.2. Novelty of the Study

This study introduces a new paradigm through the

combination of Google’s Gemini 1.5 Flash large language

model and a secure, online Web application for logging

summarization that can be done in real-time at Security

Operations Centers (SOCs). Unlike traditional A/V log

workflows which exist in a rule-based ecosystem, the system

developed uses generative AI to convert raw, unstructured log

data (.log, .txt, .docx) to compressed, meaningful summaries

without human intervention or required parsing rules. The

application encompasses a React.js front end and Express.js

back end with MongoDB for storage, enabling a seamless
end-to-end workflow from upload to AI-based output. The

platform provides secure shared access to SOC personnel

using a secure JWT authentication system and also performs

automatic cleanup of processed documents to keep each

SOC’s operational footprint and data private and succinct.

The framework for combining large language model

competency with meaningful SOC-based operational use is

unique, allowing analysts to process logs more quickly with

reduced manual input while promoting improved incident

response.

1.3. Structure of the paper

This is how this paper is organised: Section II examines

related research in log analysis and summarisation using AI.

Section III discusses the methodology for system design and

integration of the Gemini API within a web-based interface.

Section IV and V presents implementation analysis and

experimental results with performance evaluations on real-

world log datasets. Key results, limits, and future research

directions are finally discussed in Section VI.

2. Literature Review
This section reviews recent work on AI-driven log analysis

and summarization in Security Operations Centers (SOCs).

Existing studies focus on enhancing threat detection and

incident response using AI/ML, but few address real-time log

summarization. Some existing studies for this work related

discussed below:

Mohsin et al. (2025), article lays out a methodical plan

for how humans and AI might operate together in SOCs,

Raju Katukam / IJERET, 6(3), 136-145, 2025

138

including features like trust calibration, human input during

decision-making, and AI autonomy. Human supervision,

trust calibration, and scalable autonomy with AI are largely

neglected in existing SOC systems, which primarily

concentrate on automation. Many people overlook the fact

that SOC activities involving human and AI cooperation
might vary greatly in complexity, criticality, and danger

because they presume static or binary autonomy settings. To

overcome these constraints, we suggest a new autonomy

tiered structure based on five AI autonomy levels, ranging

from totally autonomous to manual, that are correlated with

task-specific trust thresholds and Human-in-the-Loop (HITL)

responsibilities. This allows for the integration of adaptive

and explicable AI into key SOC operations, such as incident

response, threat detection, alert triage, monitoring, and

protection[32].

Ismail et al. (2025), the need to update Security
Operations Centres (SOCs) to better identify, respond to, and

mitigate cybersecurity attacks is growing in response to the

dynamic nature of these threats. Traditional no-code SOAR

solutions have considerable limitations, such as limited

flexibility, scalability issues, insufficient support for advanced

logic, and difficulties in managing large playbooks. Despite

their importance, security orchestration, automation, and

response (SOAR) platforms are not without their flaws. There

has to be a more complex solution since these limitations

prevent analysts' technical competence from being fully used,

limit flexibility, and impede successful automation. They
suggest an agentic-LLM-powered hyper-automation SOAR

platform to optimise automation processes by using Large

Language Models (LLMs). By replacing inflexible no-code

playbooks with AI-generated code, this method streamlines

operations while increasing flexibility and scalability[33].

Park et al. (2025), paper presents an ATIRS, a SLM-

based framework designed to automate the summarization of

Suricata network alert logs and generate response

recommendations for maritime environments. ATIRS enables

actionable countermeasures like IP blocking or account

lockout and transforms unstructured alarms into organised
summaries. It becomes better with time by responding to user

input and new threats via adaptive learning. Results from

shipboard data show a significant reduction in Mean Time to

Respond (MTTR), supporting efficient threat mitigation by

non-expert crew in resource-limited settings[34]. Afridi and

Abbas (2024), rapidly evolving cyber threat landscape, SOCs

must adopt innovative technologies to enhance their

efficiency and effectiveness. AI and ML are transforming

SOC operations by automating threat detection, response, and

mitigation processes. SOCs are able to analyse massive

volumes of security data in real-time, spot irregularities, and
anticipate cyber-attacks due to these cutting-edge technology.

AI-driven SOCs leverage machine learning algorithms to

continuously improve threat detection by identifying patterns

and behaviors indicative of malicious activities. This reduces

reliance on manual intervention, minimizes false positives,

and accelerates incident response times. AI-driven behavioral

analytics enable SOCs to detect zero-day attacks and insider

threats with greater accuracy [35].

Balaji et al. (2024), paper reviews advanced log anomaly

detection techniques that employ AI technologies, with a

specific focus on the Isolation Forest Algorithm. We delve

into the integration of Endpoint Detection and Response

(EDR) tools, pivoting techniques, process tree analysis, and

summarization methods to enhance the identification and
interpretation of suspicious activities. The paper discusses the

development and examination of process trees, aimi ng to

equip SOC analysts with practical insights and

recommendations. Additionally, we assess how AI-powered

log analysis can overcome existing challenges and improve

the detection of complex threats. Finally, we summarize our

key findings and propose future research avenues to address

ongoing challenges in log anomaly detection[36].

Balasubramanian et al. (2024), a GPT-3.5 Turbo-powered

conversational agent framework, CYGENT, is developed to

support system administrators in addressing cybersecurity

challenges across IT and IoT environments. CYGENT
performs tasks such as log file summarization, event

detection, and user guidance. Fine-tuning of GPT-3 models

with custom data achieved a BERTscore above 97%,

demonstrating strong summarization performance.

Comparative analysis with other Large Language Models,

including CodeT5-small, CodeT5-base, and CodeT5-base-

multi-sum, shows that the GPT-3 (Davinci) model

consistently outperforms others, while CodeT5-base-multi-

sum demonstrates potential as an effective offline alternative.

These findings highlight the effectiveness of generative AI in

enhancing cybersecurity operations and log analysis[37].

Mudgal et al. (2023), paper investigates the capabilities

of ChatGPT in processing complex log data from large-scale

software systems, a topic that has received limited attention.

While ChatGPT has shown promise in tasks like code

generation and summarization, its performance in log analysis

remains limited, showing inconsistencies and scalability

issues. The study identifies key shortcomings and outlines

potential directions to enhance the effectiveness of large

language models in log processing, aiming to support future

research in this area[38]. Recent work on AI-driven log

analysis in Security Operations Centers (SOCs) has focused
on enhancing threat detection, automation, and Human-AI

collaboration. Studies have introduced structured frameworks

for integrating AI autonomy with human oversight,

improving decision-making in core SOC functions. Hyper-

automation using large language models (LLMs) has been

explored to overcome limitations in traditional SOAR

platforms, offering flexible and scalable alternatives to no-

code solutions. Domain-specific models have shown success

in summarizing network alerts and recommending responses,

particularly in constrained environments like maritime

systems. AI and ML techniques are increasingly used for
anomaly detection, behavioral analytics, and threat prediction,

while conversational agents powered by models like GPT-3.5

have demonstrated strong summarization capabilities.

However, major research gaps persist, including the

limited focus on real-time log summarization, poor

generalizability across domains, lack of explainability for

non-expert users, scalability issues in LLMs, underutilization

Raju Katukam / IJERET, 6(3), 136-145, 2025

139

of lightweight small language models (SLMs), and minimal

integration of adaptive learning based on user feedback

highlighting the need for more interpretable, efficient, and

domain-flexible AI systems for SOC log analysis. To address

these challenges, the proposed solution introduces a modular

AI-powered log summarization system that leverages LLMs

to generate real-time, context-aware summaries. The system

incorporates secure data handling, adaptive learning, and a

user-friendly interface to support SOC analysts in efficiently

managing and interpreting large-scale log data.

Fig 1: System architecture of AI-driven SOC log summarization using Gemini API

3. Methodology
The aim of this work is to develop a scalable, AI-

powered log summarization platform for Security Operations

Centers (SOCs) that reduces manual analysis time and

enhances incident response. The system architecture, shown

in Figure 1, comprises a web-based interface built with

React.js, enabling analysts to securely upload log files and

receive AI-generated summaries. Uploaded files are

transmitted via secure HTTP requests to a Node.js/Express

backend, where file validation and text extraction are handled

using Multer middleware, the fs module, or Mammoth (for
.docx files). Extracted text is embedded into a custom prompt

and sent to Google's Gemini 1.5 Flash model via the

Generative AI SDK. The returned summary highlights key

insights such as suspicious IPs, malware signs, or brute-force

attempts. Summaries are rendered on the frontend and stored

in MongoDB with metadata, while the original files are

deleted for security. This modular design supports future

extensions and enables SOCs to integrate AI seamlessly into

their log analysis workflow.

Here is a more detailed explanation of the technologies used
in the application:

3.1. Frontend (Client-Side)

The client interface is developed using React.js,

supported by modern JavaScript and CSS for a responsive

and intuitive experience. It provides analysts with secure file

upload functionality, real-time AI summary visualization, and

token-based authentication using JWT.

 React.js: The reason for React's success is its

numerous notable features. It supports JSX, is

component orientated, and is easy to use, among

other things. Another component of React is the
virtual DOM, which is responsible for the enhanced

UI performance[39].A component-based framework

used to manage dynamic UI updates, file upload

events, and API responses . Hooks such as useState

and useEffect are used to manage user interactions

and render summaries returned by the backend.

 Security: JWT tokens are stored securely and

attached to HTTP headers to protect summary

requests.

3.2. Backend (Server-Side)
The backend is implemented using Node.js and

Express.js, acting as the middleware layer that manages file

processing, AI integration, user authentication, and database

interactions. It coordinates the full summarization workflow

from receiving log files to generating summaries using the

Gemini 1.5 Flash model.

 Node.js: The Node.js framework is based on the

Chrome V8 JavaScript engine, which is a high-

performance compiler and interpreter that runs

JavaScript programs at about the speed of light. It is

well-suited for developing real-time web

applications since this framework allows Node.Js to
effectively handle many concurrent connections

[40]. Provides a high-performance, asynchronous

runtime environment that efficiently handles

User (SOC Analyst) React Frontend

Express Backend (Node.js Server)

JWT Middleware

-Auth Validation

-Access Control

Multer Upload

-File Type Check

fs/mammoth Parser

-Extract raw text from

.log/txt/.docx files

Gemini API (LLM)

-Prompt+ Log content

-Returns summary

MongoDB

-Save summary, filename,

timestamp, user ID

Summary Response

-Send to Frontend

Display Summary UI

Raju Katukam / IJERET, 6(3), 136-145, 2025

140

concurrent file uploads, log parsing, and

communication with external APIs such as Gemini.

 Express.js: Node.js (JavaScript Runtime

Environment) is the foundation of Express.js, a web

app framework that is well-known for its flexibility

and simple design, making it one of the most popular
Node.js frameworks [41]. Acts as the routing layer,

exposing endpoints such as /api/upload,

/api/summary, and /api/login. It handles file

validation, user session management, and Gemini

API integration.

 File Processing and Auto Cleanup: Uploaded files

are processed using Multer, which validates the file

type and stores them temporarily in the /uploads

directory. The backend then extracts content using

either Node.js's built-in fs module for .log and .txt

files, or the mammoth library for .docx files to
ensure clean and formatting-free text extraction.

After the Gemini API generates the AI summary, the

system performs an automatic cleanup using

fs.unlink() to delete the uploaded file from the

server.

 JSON Web Token (JWT): Lightweight is a word

that best describes JSON web tokens. Using these

tokens, there is minimum database interaction

required for client-server data exchange, user

authentication, and authorisation. When it comes to

protecting sensitive information from potential

attackers, JWT employs a number of cryptographic
encryption methods [42]. The backend uses JWT for

stateless and secure authentication. For each request

that our service receives, if the user is authenticated,

there is a token in the HTTP headers. If it is present,

we will validate it before providing access to these

protected resource routes. This means only properly

authorized users will be able to upload files, get

summaries, and interact with the service.

3.3. Gemini API Integration

In this work, Google’s Generative AI (Gemini API) is
integrated into a full-stack web application designed for

Security Operations Centers (SOCs) to process uploaded log

files and generate concise, context-aware summaries. The

integration enhances the system’s ability to analyze

unstructured log data in real time through advanced natural

language understanding and prompt engineering. Gemini API

enables accurate detection of anomalies, threats, and unusual

activity patterns, providing actionable insights to analysts. At

the core of the system is the integration with Google’s

Gemini 1.5 Flash model via the official Generative AI SDK.

3.4. Database (MongoDB)
An open-source document database, MongoDB offers

autonomous scalability, high availability, and great

performance. In MongoDB, a document containing field and

value pairs is considered a record. You may think of

MongoDB documents as JSON objects [43].The system uses

MongoDB as the backend database to store AI-generated

summaries, along with metadata such as filename, timestamp,

and user ID. Using Mongoose, schemas are enforced for

consistency, and summaries can be retrieved for audit or

future analysis. This storage layer enables secure logging,

summary history, and potential integration with other SOC

monitoring tools.

4. Implementation and Technical Setup
This section details the end-to-end configuration, tools,

and design choices implemented to develop the proposed AI-

driven log summarization platform for Security Operations

Centers (SOCs). The system is built using modern web

technologies and integrates Google’s Gemini 1.5 Flash model

to generate intelligent summaries of uploaded security log

files. The architecture follows a modular and secure design,
enabling SOC analysts to perform fast, reliable, and scalable

log summarization directly from a web interface.

4.1. System Overview

The system is built as a full-stack web application built

from a React.js front-end, Node.js/Express.js back-end and a

MongoDB database. It enables users to upload log files in

common formats (.log, .txt, .docx) and receive AI summaries

produced by the Gemini 1.5 Flash API. The application uses

JSON Web Tokens (JWT) for secure access to the profiles

and it has implemented automatic file parsing, summarization
and saving. The back-end uses the official SDK to interact

with Google's Generative AI service to properly parse and

summarize the unstructured log content into significant

actionable security insights.

4.2. Backend Implementation.

The AI-log summarization system's backend is built with

Express.js, which is the main orchestrator that connects the

React frontend, the file system, the Gemini API, and the

MongoDB. When a file is uploaded, the backend uses Multer

middleware to validate that the upload is a file and extracts

the raw text using the Mammoth library for .docx files, or the
Node.js fs module for .log/.txt files. The extracted raw text is

placed into a structured prompt that instructs the Gemini 1.5

Flash model to assess and extract threats or anomalies. The

API response returns the results from the model in a summary

ready for a human to read. The model summary is saved to

MongoDB along with metadata (filename, timestamp, user

ID). The backend uses fs to delete the status on the server file

system and returns the model summary to the frontend for

review by an analyst.

Listing pseudocode 1: Backend File Processing

This pseudocode 1 delivers a straightforward high-level

representation of the critical logic behind the backend

Function handleFileUpload(request):

 Validate file type (.log, .txt, .docx)

 If .docx:

 Extract content using mammoth parser

 Else:

 Read content using fs module

 Generate prompt = "Summarize the following logs:\n\n" +

content

 summary = call Gemini API(prompt)

 Store summary, filename, user ID, timestamp in MongoDB

Raju Katukam / IJERET, 6(3), 136-145, 2025

141

functionality. The modular flow ensures that each aspect of

the backend operation from validation to cleanup is carried

out quickly and securely. By forming this flow, it is possible

to drive rapid processes, provide secure access for sensitive

log data, and smooth integration with the AI summarization

web service. In addition, the flow allows for scalable and
extensible processing to allow later options for additional file

formats or to create rules based on customized processing.

4.3. Gemini API Integration

The AI based summarization approach is largely

consisted of the integration with Google’s Gemini 1.5 Flash

model. This model performs an automated and natural

language real time summarization of unstructured log data.

This is a key area of the system, as the AI model is capable of

synthesizing large log entries into many shorter summaries

focused on key security events. Once an unstructured log is

parse by the backend, a prompt for the domain is designed
and sent to the Gemini model via RESTful API call aided by

Google’s Generative AI SDK. The prompt template is crafted

to instruct Gemini to detect cybersecurity-relevant details

such as suspicious IP addresses, brute force attempts, access

anomalies, or malware signatures.

 Prompt Template Example: "Summarize the

following SOC log entries. Identify any security

risks, threats, or anomalies:\n\n[log_content]"

The following pseudocode 2 outlines the logic used by the

backend to interact with the Gemini API and retrieve the

summarization output:

Listing pseudocode 2: Gemini API Invocation Logic

Once the POST request is submitted, the Gemini API

processes the prompt and returns a structured, human-

readable summary. Below Figure 2 is an example of the

JSON payload sent to the API:

Fig 2: Example JSON payload

The responses generated by Gemini are subsequently

parsed by the backend, and the resulting summary is then

saved to MongoDB along with metadata such as the filename,

user ID, and timestamp. Reasoning based intelligent

summarization circumvent the need for rule-based parsers,
works with various log formats, and provides scalable AI

assistance to SOC analysts without manual customizations or

pre-defined rules. By utilizing Gemini's ability in the SOC

workflow it could enhance threat triage, reduce analyst

burnout, and hasten the incident response by integrating AI-

based summarization.

4.4. Frontend Implementation

The front end of the AI-based log summarization

platform is built using 'React.js,' which offers a dynamic and

responsive user interface for SOC analysts. The interface

mainly allows users to upload log files securely, place
summarization requests, and display the generated summaries

from the AI in a user-friendly and organized manner. The

front end uses Axios for HTTP communication with the

backend API and Tailwind CSS for responsive style and

supported for all devices. The main focus of the design was

on usability, so SOC personnel can easily initiate use of the

system without the need for technical training.

Listing pseudocode 3: File Upload and Summary Rendering

The frontend is developed in React.js and allows
authenticated users to upload .log, .txt or .docx files which are

read with the FileReader API. handleFileUpload(file), as

shown in Pseudocode 3, reads the content into React state;

then, handleSummarize() sends to the backend the content as

well as the JWT token, using Axios. The backend sends the

AI generated summary which the frontend displays in a

scrollable component. This streamlined interface supports

Function callGeminiAPI(prompt):

 Set endpoint =

"https://generativelanguage.googleapis.com/v1beta/models/gemin

i-1.5-flash:generateContent"

 Set headers including Content-Type and API key from

environment variables

 Format request body with a 'contents' array containing the

prompt text

 Send POST request to Gemini endpoint with headers and body

 If response is successful:

 Extract summary from response object

 Else:

 Log error and return a default fallback message

 Return summary

Function handleFileUpload(file):

 Use FileReader to read content

 Store text in React state

Function handleSummarize():

 Send POST request with file content and JWT

 Receive summary from backend

 Display summary to user

Raju Katukam / IJERET, 6(3), 136-145, 2025

142

efficient interaction as well as will support future

enhancements, such as filtering, and tagging.

4.5. MongoDB and Security Setup

The system uses MongoDB to store AI-generated

summaries along with metadata like filename, timestamp, and
user ID. After summarization, the backend creates a

structured object and inserts it into the database using

Mongoose. JWT authentication secures all API routes,

ensuring only authorized users can access or submit data.

Environment variables are used to protect credentials and API

keys.

Listing pseudocode 4: MongoDB Storage Logic

As shown in Pseudocode 4, the backend creates an object

containing the summary and related metadata and inserts it
into the MongoDB collection. This approach ensures secure,

user-specific storage of summarization results, enabling

auditability and future retrieval.

5. Results and Discussion
This section evaluates the functionality and performance

of the proposed AI-driven SOC dashboard, which leverages
Google’s Gemini 1.5 Flash model for log summarization. The

system was tested across multiple log formats and scenarios

relevant to real-world SOC operations. Metrics such as file

processing time, API latency, AI response quality, and user

experience were captured to determine effectiveness.

Additionally, sample summaries were analysed to

demonstrate the contextual awareness of the LLM when

analysing unstructured security log data.

5.1. Evaluation Setup

The system was deployed on a local development server

using a Dell laptop equipped with an Intel Core i5 processor,

8 GB RAM, and a 256 GB SSD. The Gemini API was

accessed over a stable internet connection averaging 50

Mbps. Logs of various formats, including .log, .txt, and .docx,

were uploaded for testing. The backend was implemented in

Node.js and Express.js, while the frontend utilized React.js.

MongoDB was used for storing user sessions and summary

metadata.

5.2. Performance Metrics

To quantify system performance, multiple trials were

conducted for each file type. The following metrics were

recorded over 10 iterations:

 Upload to Summary Time: Time taken from file

upload to the display of AI-generated summary.

 Gemini API Response Time: Time taken by the

Gemini API to return a summary after receiving the

prompt.

 MongoDB Write Latency: Time taken to store the

summary and metadata in the database.

Table 1: Performance Metrics by File Type

Metric .log .txt .docx

Upload to Summary Time (sec) 2.1 1.8 3.4

Gemini API Response (avg) 1.2 1.1 2.0

MongoDB Write Latency (ms) 38 34 40

Fig 3: Average summarization time by file type using Gemini API.

Table I and Figure 3 present performance evaluation

measures the system's response to a variety of log file

formats. The various metrics calculated include upload-to-

summary time, Gemini API response time, and MongoDB

write latency. Based on the evaluation results it was found

that .txt and .log files experienced a faster processing time

Function saveSummaryToDB(summary, filename, userID):

 Create object with fields:

 - summary

 - filename

 - timestamp (current time)

 - userID (from authenticated session)

 Connect to MongoDB

 Insert object into the 'summaries' collection

 Close connection or await future access

Raju Katukam / IJERET, 6(3), 136-145, 2025

143

and an average summary time of 3 seconds or less, and .docx

files experienced an average summary time of 4 seconds,

which can be attributed to slightly more parsing overhead.

Figure 3 visually compares these average times, confirming

the system’s ability to deliver real-time summarization

performance across formats, making it efficient and suitable
for SOC environments.

5.3. Sample Output Summaries

These examples demonstrate how the Gemini API

interprets and summarizes diverse logs from .log, .txt, and

.docx files helping SOC analysts quickly detect anomalies

and security events.

5.3.1. Sample 1: SSH Brute Force Logs

SSH Brute Force Logs.txt

Raw Log:

Jul 09 00:21:33 Failed password for invalid user admin from
192.168.1.55 port 5548

Jul 09 00:21:34 Failed password for invalid user root from

192.168.1.55 port 5548

Gemini Summary Output:

Fig 4: AI-Generated Summary brute-force attack

5.3.2. Sample 2: Network Scan Behavior

Input Log (.log):

[18:42:01] Incoming TCP SYN request from 192.168.5.22 to

port 21 .

[18:42:02] Incoming TCP SYN request from 192.168.5.22 to

port 22 .

[18:42:03] Incoming TCP SYN request from 192.168.5.22 to

port 23.

Gemini Summary Output:

Fig 5: AI-Generated Summary brute-force attack

5.3.3. Sample 2: Internal Data Exfiltration Attempt

Input Log (.txt):

[01:14:50] File upload: internal_docs.pdf by user123

[01:14:52] Destination IP: 203.0.113.10

[01:14:55] Protocol: FTP, Port: 21

Gemini Summary Output:

Fig 6: AI-Generated Summary of Internal Data

Exfiltration Attempt

Figures 4 to 6 illustrate the effectiveness of the AI-driven

summarization system in identifying and interpreting

different cybersecurity events from raw log inputs. Figure 4

captures a classic SSH brute-force attack, where repeated

failed login attempts from the same IP indicate unauthorized
access attempts. Figure 5 highlights network scanning

behavior, with sequential SYN requests to multiple ports

suggesting reconnaissance activity from a potential attacker.

Figure 6 demonstrates the detection of an internal data

exfiltration attempt, where a sensitive file is uploaded via

FTP to an external IP address. These examples show how the

Gemini API successfully transforms unstructured logs into

concise, contextual summaries, enabling SOC analysts to

quickly recognize and prioritize security threats.

5.4. Observations and Discussion
Throughout implementation and evaluation there were a

key observation regarding the operational performance few,

functional utility, and usability of the system within a SOC.

First, the integration of the Gemini 1.5 Flash model

successfully provided contextually aware and accurate

summarizations of log files without requiring users to build

rules or patterns. Clearly, the model was able to identify

security events and trends which are crucial in security

investigations: bruteforce attempts; suspicious IP addresses;

and patterns of suspected data exfiltration; among various

distinct types of log-files (.log, .txt, and .docx). From a

performance testing perspective, there was minimal latency in
response timing for summarization and total time to process

logs was, on average, under 4 seconds per log. Time to

process the logs of the .docx document were slightly slower

than for the other log types but there was still no major issue

for operational usability. Given MongoDB write latency was

minimal and able to confirm the feasibility of real-time

storage and retrieval aspects of the application. Overall, the

system demonstrated high usability, strong AI-model

integration, and operational efficiency, validating its

suitability for modern SOC workflows and establishing a

Raju Katukam / IJERET, 6(3), 136-145, 2025

144

foundation for further enhancements such as real-time stream

processing or multi-log correlation.

5.5. Justification and Advantages

The proposed AI-driven log summarization platform is

justified by the growing need for efficient and scalable
solutions in Security Operations Centers (SOCs), where

traditional manual or rule-based log analysis methods often

fall short due to the volume and complexity of security data.

By integrating Google’s Gemini 1.5 Flash model, the system

provides real-time, context-aware summaries of unstructured

log files without requiring predefined rules or templates. Its

full-stack web-based architecture offers secure, user-friendly

access via JWT authentication, allowing analysts to process

.log, .txt, and .docx files quickly and remotely. The main

advantages include reduced analyst workload, faster incident

response, format flexibility, and seamless integration with

existing SOC tools. This intelligent and modular solution
modernizes log analysis and enhances the overall

responsiveness and effectiveness of SOC operations.

6. Conclusion and Future Scope
This paper introduced an AI-driven log summarization

platform designed specifically for Security Operations
Centers (SOCs), integrating Google’s Gemini 1.5 Flash

model within a secure, full-stack web architecture. The

system automates the conversion of unstructured log data into

concise, actionable summaries, enabling SOC analysts to

detect security anomalies such as brute-force attacks,

scanning behavior, and data exfiltration attempts. Built using

React.js for the frontend, Node.js/Express for the backend,

and MongoDB for persistent storage, the platform supports

multiple log file formats (.log, .txt, .docx), employs JWT-

based authentication, and ensures secure data handling

through automated file deletion. Performance evaluation

showed that the platform consistently delivered summaries
with end-to-end latency under four seconds, demonstrating its

suitability for real-time SOC environments and operational

scalability.

Despite its effectiveness, the platform has some

limitations. Currently, it operates in a batch-processing mode

and lacks real-time stream log ingestion, which restricts its

application in continuous monitoring environments. The

summarization accuracy is dependent on prompt design and

may be affected when handling highly domain-specific or

multilingual logs. Additionally, the absence of feedback loops
limits the system’s ability to learn from analyst corrections or

improve over time. In the future, enhancements will focus on

supporting live stream log ingestion, integration with SIEM

platforms for real-time threat detection, and expanding

summarization to include multiple languages. Further

developments will also include adding explainable AI (XAI)

components for transparency, feedback-driven refinement of

summaries, and advanced classification modules to

automatically tag and prioritize detected security threats.

References
[1] D. Vavpotič, S. Bala, J. Mendling, and T. Hovelja,

“Software Process Evaluation from User Perceptions

and Log Data,” J. Softw. Evol. Process, vol. 34, no. 4,

pp. 1–14, Apr. 2022, doi: 10.1002/smr.2438.

[2] A. Abhishek and P. Khare, “Cloud Security Challenges:

Implementing Best Practices for Secure SaaS

Application Development,” Int. J. Curr. Eng. Technol.,

vol. 11, no. 06, Nov. 2021, doi:
10.14741/ijcet/v.11.6.11.

[3] Vikas Prajapati, “Role of Identity and Access

Management in Zero Trust Architecture for Cloud

Security: Challenges and Solutions,” Int. J. Adv. Res.

Sci. Commun. Technol., vol. 5, no. 3, pp. 6–18, Mar.

2025, doi: 10.48175/IJARSCT-23902.

[4] V. Thangaraju, “Security Considerations in Multi-Cloud

Environments with Seamless Integration: A Review of

Best Practices and Emerging Threats,” Trans. Eng.

Comput. Sci., vol. 12, no. 2, pp. 1–6, 2024.

[5] K. S. Jeon, S. J. Park, S. H. Chun, and J. B. Kim, “A

study on the big data log analysis for security,” Int. J.
Secur. its Appl., 2016, doi: 10.14257/ijsia.2016.10.1.02.

[6] M. Wurzenberger, F. Skopik, R. Fiedler, and W.

Kastner, “Discovering insider threats from log data with

high-performance bioinformatics tools,” in MIST 2016 -

Proceedings of the International Workshop on

Managing Insider Security Threats, co-located with CCS

2016, 2016. doi: 10.1145/2995959.2995973.

[7] V. S. Thokala, “Improving Data Security and Privacy in

Web Applications : A Study of Serverless Architecture,”

Int. Res. J., vol. 11, no. 12, pp. 74–82, 2024.

[8] S. P. Kalava, “Enhancing Software Development with
AI-Driven Code Reviews,” North Am. J. Eng. Res., vol.

5, no. 2, pp. 1–7, 2024.

[9] D. Tovarňák, S. Špaček, and J. Vykopal, “Traffic and

log data captured during a cyber defense exercise,” Data

Br., 2020, doi: 10.1016/j.dib.2020.105784.

[10] V. Prajapati, “Cloud-Based Database Management :

Architecture , Security , challenges and solutions,” J.

Glob. Res. Electron. Commun., vol. 1, no. 1, 2025.

[11] Suhag Pandya, “Innovative blockchain solutions for

enhanced security and verifiability of academic

credentials,” Int. J. Sci. Res. Arch., vol. 6, no. 1, pp.

347–357, Jun. 2022, doi: 10.30574/ijsra.2022.6.1.0225.
[12] S. A. Chamkar, Y. Maleh, and N. Gherabi, “Security

Operations Centers: Use Case Best Practices, Coverage,

and Gap Analysis Based on MITRE Adversarial Tactics,

Techniques, and Common Knowledge,” J.

Cybersecurity Priv., vol. 4, no. 4, pp. 777–793, Sep.

2024, doi: 10.3390/jcp4040036.

[13] S. P. Godavari Modalavalasa, “Exploring Azure

Security Center: A Review of Challenges and

Opportunities in Cloud Security,” ESP J. Eng. Technol.

Adv., vol. 2, no. 2, pp. 176–182, 2022, doi:

10.56472/25832646/JETA-V2I2P120.
[14] M. Vielberth, F. Bohm, I. Fichtinger, and G. Pernul,

“Security Operations Center: A Systematic Study and

Open Challenges,” IEEE Access, 2020, doi:

10.1109/ACCESS.2020.3045514.

[15] V. Panchal, “Mobile SoC Power Optimization :

Redefining Performance with Machine Learning

Techniques,” IJIRSET, vol. 13, no. 12, pp. 1–17, 2024,

doi: 10.15680/IJIRSET.2024.1312117.

Raju Katukam / IJERET, 6(3), 136-145, 2025

145

[16] H. Mistry, K. Shukla, and N. Patel, “Transforming

Incident Responses, Automating Security Measures, and

Revolutionizing Defence Strategies through AI-Powered

Cybersecurity,” J. Emerg. Technol. Innov. Res., vol. 11,

no. 3, pp. h38–h45, 2024.

[17] R. de Céspedes and G. Dimitoglou, “Development of a
Virtualized Security Operations Center,” J. Comput. Sci.

Coll., 2021.

[18] V. S. Thokala, “A Comparative Study of Data Integrity

and Redundancy in Distributed Databases for Web

Applications,” Int. J. Res. Anal. Rev., vol. 8, no. 4, pp.

383–389, 2021.

[19] S. B. Shah, “Machine Learning for Cyber Threat

Detection and Prevention in Critical Infrastructure,”

Dep. Oper. Bus. Anal. Inf. Syst. (OBAIS, vol. 2, no. 2,

pp. 1–7, 2025, doi: 10.5281/zenodo.14955016.

[20] Y. Lu, “LogSage: Log Summarization Assistant with

Guided Enhancement,” in Proceedings of the 40th
ACM/SIGAPP Symposium on Applied Computing, New

York, NY, USA: Association for Computing Machinery,

2025, pp. 1979–1981.

[21] K. S. Saurabh Pahune, Zahid Akhtar, Venkatesh

Mandapati, “The Importance of AI Data Governance in

Large Language Models,” Preprints, 2025.

[22] M. C. Saurabh Pahune, “Several categories of large

language models (llms): A short survey,” arXiv, 2023,

doi: arXiv preprint arXiv:2307.10188.

[23] E. Ferragut and N. Braden, “System log summarization

via semi-Markov models of inter-arrival times,” in ACM
International Conference Proceeding Series, 2011. doi:

10.1145/2179298.2179346.

[24] V. Thangaraju, “Enhancing Web Application

Performance and Security Using AI-Driven Anomaly

Detection and Optimization Techniques,” Int. Res. J.

Innov. Eng. Technol., vol. 9, no. 3, p. 8, 2025.

[25] S. Locke, H. Li, T.-H. P. Chen, W. Shang, and W. Liu,

“LogAssist: Assisting Log Analysis Through Log

Summarization,” IEEE Trans. Softw. Eng., vol. 48, no.

9, pp. 3227–3241, 2022, doi:

10.1109/TSE.2021.3083715.

[26] S. Grizan and S. Gurun, “On-Device Log
Summarization Using Artificial Intelligence to Improve

Crash Analysis,” 2024.

[27] B. P. Woolf, “Implementation Of A Gemini-Driven

Adaptive Learning System For Personalized Online

Education,” vol. 13, no. 6, pp. 11–18, 2025.

[28] M. Menghnani, “Modern Full Stack Development

Practices for Scalable and Maintainable Cloud-Native

Applications,” Int. J. Innov. Sci. Res. Technol., vol. 10,

no. 2, pp. 1206–1216, 2025, doi:

10.5281/zenodo.14959407.

[29] R. Shrivastav, S. Shahane, T. S. Hydri, M. V Akre, and
Z. D. Amin, “Exploring potential of Gemini with AI

based content generator,” Int. J. Res. Comput. Inf.

Technol., vol. 2, no. 1, pp. 68–72, 2024, doi:

10.5281/zenodo.11207604.

[30] S. P. B. and G. Modalavalasa, “Advancements in Cloud

Computing for Scalable Web Development: Security

Challenges and Performance Optimization,” J. Comput.

Technol. Int. J., vol. 13, no. 12, pp. 01–07, 2024.

[31] S. Sesha and S. Neeli, “Data Protection in the Digital

Age : SOC Audit Protocols and Encryption in Database

Security,” ESP Int. J. Adv. Comput. Technol., vol. 2, no.

3, pp. 167–172, 2024, doi: 10.56472/25838628/IJACT-

V2I3P115.

[32] A. Mohsin, H. Janicke, A. Ibrahim, I. Sarker, and S.
Camtepe, “A Unified Framework for Human AI

Collaboration in Security Operations Centers with

Trusted Autonomy,” 2025. doi:

10.48550/arXiv.2505.23397.

[33] Ismail et al., “Toward Robust Security Orchestration

and Automated Response in Security Operations Centers

with a Hyper-Automation Approach Using Agentic

Artificial Intelligence,” Information, vol. 16, no. 5,

2025, doi: 10.3390/info16050365.

[34] D. Park, B. Min, S. Lim, and B. Kim, “ATIRS: Towards

Adaptive Threat Analysis with Intelligent Log

Summarization and Response Recommendation,”
Electronics, vol. 14, no. 7, p. 1289, Mar. 2025, doi:

10.3390/electronics14071289.

[35] S. Afridi and A. Abbas, “AI and Machine Learning-

Driven SOC Operations: Transforming Cyber Security

Efficiency,” 2024. doi: 10.13140/RG.2.2.10444.53122.

[36] S. Balaji, D. Puspita, S. Sriram, and S. Ragul, “AI

Enhanced Anomaly Detection of System Logs in Cyber

Security,” in 2024 International Conference on System,

Computation, Automation and Networking (ICSCAN),

IEEE, Dec. 2024, pp. 1–6. doi:

10.1109/ICSCAN62807.2024.10894286.
[37] P. Balasubramanian, J. Seby, and P. Kostakos,

“CYGENT: A cybersecurity conversational agent with

log summarization powered by GPT-3,” in 2024 3rd

International Conference on Artificial Intelligence For

Internet of Things (AIIoT), IEEE, May 2024, pp. 1–6.

doi: 10.1109/AIIoT58432.2024.10574658.

[38] P. Mudgal and R. Wouhaybi, “An Assessment

of ChatGPT on Log Data,” in Communications in

Computer and Information Science, 2024. doi:

10.1007/978-981-99-7587-7_13.

[39] V. Komperla, P. Deenadhayalan, P. Ghuli, and R. Pattar,

“React: A detailed survey,” Indones. J. Electr. Eng.
Comput. Sci., 2022, doi: 10.11591/ijeecs.v26.i3.pp1710-

1717.

[40] M. Kumawat, V. Shrivastava, A. Pandey, and S. Kumar,

“International Journal of Research Publication and

Reviews Node . Js Review : A Comprehensive

Overview of the JavaScript Runtime Environment,” Int.

J. Res. Publ. Rev., vol. 5, no. 4, pp. 268–270, 2024.

[41] A. Mardan, “Starting with Express.js,” 2014, pp. 3–14.

doi: 10.1007/978-1-4842-0037-7_1.

[42] A. Sharma, V. Shrivastava, A. Pandey, and E. A.

Sharma, “International Journal of Research Publication
and Reviews Providing Authentication using JSON Web

Tokens for Enhancing User Security,” vol. 5, no. 4, pp.

5309–5312, 2024.

[43] S. Naik, R. D. Dandagwhal, C. N. Wani, and S. K. Giri,

“A review on various aspects of auxetic materials,” AIP

Conf. Proc., vol. 2105, no. 05, pp. 90–92, 2019, doi:

10.1063/1.5100689.

