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Abstract - In today's cybersecurity landscape, Security 

Operations Centers (SOCs) face the growing challenge of 

managing and interpreting vast volumes of unstructured log 

data generated from diverse sources. Traditional rule-based 
monitoring approaches are often inefficient and inadequate 

in handling this scale, leading to delays in threat detection 

and response. This work presents a scalable, AI-powered log 

summarization platform that integrates Google’s Gemini 1.5 

Flash model within a full-stack web application to automate 

the extraction of security-relevant insights from log files. 

Built using React.js, Node.js, and MongoDB, the system 

enables SOC analysts to upload log files in various formats 

(.log, .txt, .docx) and receive real-time, human-readable 

summaries highlighting anomalies such as brute-force 

attacks, suspicious IP activity, and data exfiltration attempts. 
The backend handles secure file parsing, AI prompt 

generation, summarization via Gemini API, and summary 

storage with associated metadata. Experimental evaluations 

demonstrate low-latency summarization across file types, 

with average response times under four seconds, validating 

the platform’s efficiency and practicality for real-world SOC 

environments. This solution significantly reduces manual 

analysis effort, enhances threat visibility, and introduces a 

flexible, extensible framework for AI-enhanced cybersecurity 

operations. 

 
Keywords - Security Operations Center (SOC), Log 

Summarization, Generative AI, Gemini API, Node.js, 
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1. Introduction 
Large volumes of log data are generated by software 

systems as the program runs.  These logs are often generated 
to assist system administrators and developers in identifying 

unusual output, runtime issues, and faults. Additionally, 

intrusion detection may make use of these logs.  A system 

intrusion or assault may be detected and prevented by keeping 

tabs on critical events in the log data and identifying unusual 

behaviour or signatures[1]. It is not viable to manually 

analyse the logs since most software systems generate an 

excessive volume of log data[2][3][4]. Furthermore, dangers 

are often not detectable from single log entries but rather from 

a pattern of log entries dispersed across the file[5]. Therefore, 

it is essential to automate the process of analysing the log 

data.  The majority of the focus in software cybersecurity is 
on safeguarding systems from potential outside attacks.  The 

difficulty of detecting intrusions and internal threats causes 

these areas to be neglected[6][7][8]. Failure to take action 

against these dangers might result in significant financial 

losses if ignored.  For real-time cybersecurity event detection, 

investigation, and mitigation, these logs are an essential 
source of information[9][10]. Cybersecurity attacks are 

becoming more frequent and complicated, therefore 

protecting digital assets successfully requires strong 

monitoring and quick reaction skills[11]. Therefore, SOCs are 

being set up by a growing number of organisations to actively 

identify and react to cybersecurity events[12][13]. 

 

SOCs play a pivotal role in continuously monitoring log 

data to ensure the resilience and security of organizational 

assets in cyber incidents[14][15][16]. However, as log data 

continues to grow exponentially in size and diversity, 
traditional manual and rule-based monitoring techniques are 

increasingly insufficient, necessitating more intelligent 

approaches to support efficient analysis and decision-

making[17][18]. This growing demand for efficiency has 

drawn significant attention to the role of advanced 

computational methods, particularly Artificial Intelligence 

(AI), in augmenting SOC operations[19]. In particular, 

advancements in Natural Language Processing (NLP) have 

unlocked new possibilities for automating the interpretation 

and summarization of unstructured log data. AI-driven 

summarization techniques, powered by Large Language 
Models (LLMs), can distill vast and complex log streams into 

concise, human-readable narratives[20], thereby improving 

situational awareness and accelerating incident response for 

SOC analysts. Among the latest developments, generative 

LLMs[21][22] such as Google’s Gemini API demonstrate 

exceptional capabilities in understanding context, capturing 

subtle patterns, and producing coherent summaries from raw 

data. Harnessing these capabilities offers a promising 

direction toward building systems that embed AI-powered 

summarization directly into SOC workflows[23][24]. 

 

To enable practical and scalable deployment of such 
intelligent capabilities, this paper proposes a web-based 

approach that integrates [25]. AI log summarization within a 

user-friendly, real-time interface accessible from 

anywhere[26]. The system is designed to receive logs from 

various sources, process them using a summarization model, 

and present the distilled outputs through an interactive 

dashboard. This cloud-accessible solution ensures ease of 

deployment, centralized control, and seamless collaboration 

among security teams, regardless of geographic distribution. 
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A web-based platform that integrates the Gemini API for log 

summarization emerges as a particularly effective approach to 

operationalize these AI capabilities[27][28]. Web-based 

architectures provide accessibility, scalability, and seamless 

integration with existing SOC dashboards and tools, while the 

Gemini API ensures advanced language understanding 
tailored to the nature of security logs[29][30][31]. By 

combining these elements, it is possible to deliver actionable 

insights from raw logs through an intuitive interface, enabling 

SOC analysts to make informed decisions quickly and 

effectively. This integrated approach forms the basis of the 

present work, which focuses on designing and demonstrating 

such a solution in a practical setting. Leveraging generative 

models like Google’s Gemini API within a web-based 

platform provides an innovative and scalable approach to 

real-time log analysis. This not only reduces the cognitive 

load on SOC analysts but also accelerates threat detection and 

decision-making, ultimately strengthening organizational 
cybersecurity posture. 

 

1.1. Motivation and Contribution of Study 

Security Operations Centers (SOCs) are today's primary 

defense against cyber threats for digital infrastructures. In an 

era of increasing size and complexity, the number of logs 

produced every day by endpoints, servers, firewalls, 

applications, etc. continues to swell. Manual review of these 

logs takes time-and many times results in the late discovery 

of a threat or missing a key piece of information. 

Furthermore, most tools today rely on static rules-based or 
keyword-based; neither are effective for recognizing attack 

patterns or evolving threat landscapes. The emergence of 

LLM models that can read and interpret unstructured data, 

provides SOCs with a real opportunity to transform their 

operations by using natural language summarization in 

conjunction with log data. This study presents a novel AI-

driven log summarization platform specifically designed for 

SOC environments. The key contributions are as follows: 

 This work presents the development of a modular, 

full-stack web-based platform tailored for Security 

Operations Centers (SOCs), combining React.js for 
the frontend, Node.js/Express.js for the backend, and 

MongoDB for persistent storage. The architecture 

supports secure log file upload, real-time AI 

summarization, and efficient result visualization. 

 The system is capable of processing .log, .txt, and 

.docx files using file-type-specific parsers (Node’s fs 

module and the Mammoth library). This multi-format 

compatibility ensures wide applicability across varied 

SOC log sources. 

 The platform incorporates Gemini's advanced 

language model via Google’s Generative AI SDK to 

automatically generate concise, human-readable 
summaries of unstructured log content, extracting 

insights such as suspicious IPs, brute-force attacks, 

and data exfiltration attempts. 

 Custom prompt templates are designed to guide the 

Gemini model toward detecting cybersecurity-relevant 

patterns, improving the contextual precision of AI-

generated summaries without requiring predefined 

rules or manual annotations. 

 Through empirical evaluation, the system 

demonstrated an average response time of under four 

seconds across various file types, validating its 

practicality for real-time threat triage and analysis in 

fast-paced SOC workflows. 

 Security best practices such as JWT-based 
authentication, automatic post-processing file deletion, 

and metadata-enriched summary storage in MongoDB 

are implemented to ensure data integrity, user 

accountability, and compliance with audit 

requirements. 

 

These contributions aim to empower SOC teams with a 

scalable and intelligent solution that reduces analyst fatigue, 

accelerates incident response, and modernizes log handling 

through AI-driven automation. 

 

1.2. Novelty of the Study 

This study introduces a new paradigm through the 

combination of Google’s Gemini 1.5 Flash large language 

model and a secure, online Web application for logging 

summarization that can be done in real-time at Security 

Operations Centers (SOCs). Unlike traditional A/V log 

workflows which exist in a rule-based ecosystem, the system 

developed uses generative AI to convert raw, unstructured log 

data (.log, .txt, .docx) to compressed, meaningful summaries 

without human intervention or required parsing rules. The 

application encompasses a React.js front end and Express.js 

back end with MongoDB for storage, enabling a seamless 
end-to-end workflow from upload to AI-based output. The 

platform provides secure shared access to SOC personnel 

using a secure JWT authentication system and also performs 

automatic cleanup of processed documents to keep each 

SOC’s operational footprint and data private and succinct. 

The framework for combining large language model 

competency with meaningful SOC-based operational use is 

unique, allowing analysts to process logs more quickly with 

reduced manual input while promoting improved incident 

response. 

 

1.3. Structure of the paper 

This is how this paper is organised:  Section II examines 

related research in log analysis and summarisation using AI. 

Section III discusses the  methodology for system design and 

integration of the Gemini API within a web-based interface. 

Section IV and V presents implementation analysis and 

experimental results with performance evaluations on real-

world log datasets. Key results, limits, and future research 

directions are finally discussed in Section VI. 

 

2. Literature Review 
This section reviews recent work on AI-driven log analysis 

and summarization in Security Operations Centers (SOCs). 

Existing studies focus on enhancing threat detection and 

incident response using AI/ML, but few address real-time log 

summarization. Some existing studies for this work related 

discussed below:  

 
Mohsin et al. (2025), article lays out a methodical plan 

for how humans and AI might operate together in SOCs, 
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including features like trust calibration, human input during 

decision-making, and AI autonomy.  Human supervision, 

trust calibration, and scalable autonomy with AI are largely 

neglected in existing SOC systems, which primarily 

concentrate on automation. Many people overlook the fact 

that SOC activities involving human and AI cooperation 
might vary greatly in complexity, criticality, and danger 

because they presume static or binary autonomy settings. To 

overcome these constraints, we suggest a new autonomy 

tiered structure based on five AI autonomy levels, ranging 

from totally autonomous to manual, that are correlated with 

task-specific trust thresholds and Human-in-the-Loop (HITL) 

responsibilities.  This allows for the integration of adaptive 

and explicable AI into key SOC operations, such as incident 

response, threat detection, alert triage, monitoring, and 

protection[32]. 

 

Ismail et al. (2025), the need to update Security 
Operations Centres (SOCs) to better identify, respond to, and 

mitigate cybersecurity attacks is growing in response to the 

dynamic nature of these threats.  Traditional no-code SOAR 

solutions have considerable limitations, such as limited 

flexibility, scalability issues, insufficient support for advanced 

logic, and difficulties in managing large playbooks. Despite 

their importance, security orchestration, automation, and 

response (SOAR) platforms are not without their flaws. There 

has to be a more complex solution since these limitations 

prevent analysts' technical competence from being fully used, 

limit flexibility, and impede successful automation.  They 
suggest an agentic-LLM-powered hyper-automation SOAR 

platform to optimise automation processes by using Large 

Language Models (LLMs).  By replacing inflexible no-code 

playbooks with AI-generated code, this method streamlines 

operations while increasing flexibility and scalability[33]. 

 

Park et al. (2025), paper presents an ATIRS, a SLM-

based framework designed to automate the summarization of 

Suricata network alert logs and generate response 

recommendations for maritime environments. ATIRS enables 

actionable countermeasures like IP blocking or account 

lockout and transforms unstructured alarms into organised 
summaries.  It becomes better with time by responding to user 

input and new threats via adaptive learning. Results from 

shipboard data show a significant reduction in Mean Time to 

Respond (MTTR), supporting efficient threat mitigation by 

non-expert crew in resource-limited settings[34]. Afridi and 

Abbas (2024), rapidly evolving cyber threat landscape, SOCs 

must adopt innovative technologies to enhance their 

efficiency and effectiveness. AI and ML are transforming 

SOC operations by automating threat detection, response, and 

mitigation processes. SOCs are able to analyse massive 

volumes of security data in real-time, spot irregularities, and 
anticipate cyber-attacks due to these cutting-edge technology. 

AI-driven SOCs leverage machine learning algorithms to 

continuously improve threat detection by identifying patterns 

and behaviors indicative of malicious activities. This reduces 

reliance on manual intervention, minimizes false positives, 

and accelerates incident response times.  AI-driven behavioral 

analytics enable SOCs to detect zero-day attacks and insider 

threats with greater accuracy [35].  

Balaji et al. (2024), paper reviews advanced log anomaly 

detection techniques that employ AI technologies, with a 

specific focus on the Isolation Forest Algorithm. We delve 

into the integration of Endpoint Detection and Response 

(EDR) tools, pivoting techniques, process tree analysis, and 

summarization methods to enhance the identification and 
interpretation of suspicious activities. The paper discusses the 

development and examination of process trees, aimi ng to 

equip SOC analysts with practical insights and 

recommendations. Additionally, we assess how AI-powered 

log analysis can overcome existing challenges and improve 

the detection of complex threats. Finally, we summarize our 

key findings and propose future research avenues to address 

ongoing challenges in log anomaly detection[36]. 

Balasubramanian et al. (2024), a GPT-3.5 Turbo-powered 

conversational agent framework, CYGENT, is developed to 

support system administrators in addressing cybersecurity 

challenges across IT and IoT environments. CYGENT 
performs tasks such as log file summarization, event 

detection, and user guidance. Fine-tuning of GPT-3 models 

with custom data achieved a BERTscore above 97%, 

demonstrating strong summarization performance. 

Comparative analysis with other Large Language Models, 

including CodeT5-small, CodeT5-base, and CodeT5-base-

multi-sum, shows that the GPT-3 (Davinci) model 

consistently outperforms others, while CodeT5-base-multi-

sum demonstrates potential as an effective offline alternative. 

These findings highlight the effectiveness of generative AI in 

enhancing cybersecurity operations and log analysis[37]. 
 

Mudgal et al. (2023), paper investigates the capabilities 

of ChatGPT in processing complex log data from large-scale 

software systems, a topic that has received limited attention. 

While ChatGPT has shown promise in tasks like code 

generation and summarization, its performance in log analysis 

remains limited, showing inconsistencies and scalability 

issues. The study identifies key shortcomings and outlines 

potential directions to enhance the effectiveness of large 

language models in log processing, aiming to support future 

research in this area[38]. Recent work on AI-driven log 

analysis in Security Operations Centers (SOCs) has focused 
on enhancing threat detection, automation, and Human-AI 

collaboration. Studies have introduced structured frameworks 

for integrating AI autonomy with human oversight, 

improving decision-making in core SOC functions. Hyper-

automation using large language models (LLMs) has been 

explored to overcome limitations in traditional SOAR 

platforms, offering flexible and scalable alternatives to no-

code solutions. Domain-specific models have shown success 

in summarizing network alerts and recommending responses, 

particularly in constrained environments like maritime 

systems. AI and ML techniques are increasingly used for 
anomaly detection, behavioral analytics, and threat prediction, 

while conversational agents powered by models like GPT-3.5 

have demonstrated strong summarization capabilities.  

 

However, major research gaps persist, including the 

limited focus on real-time log summarization, poor 

generalizability across domains, lack of explainability for 

non-expert users, scalability issues in LLMs, underutilization 
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of lightweight small language models (SLMs), and minimal 

integration of adaptive learning based on user feedback 

highlighting the need for more interpretable, efficient, and 

domain-flexible AI systems for SOC log analysis. To address 

these challenges, the proposed solution introduces a modular 

AI-powered log summarization system that leverages LLMs 

to generate real-time, context-aware summaries. The system 

incorporates secure data handling, adaptive learning, and a 

user-friendly interface to support SOC analysts in efficiently 

managing and interpreting large-scale log data. 

 

 
Fig 1: System architecture of AI-driven SOC log summarization using Gemini API 

 

3. Methodology 
The aim of this work is to develop a scalable, AI-

powered log summarization platform for Security Operations 

Centers (SOCs) that reduces manual analysis time and 

enhances incident response. The system architecture, shown 

in Figure 1, comprises a web-based interface built with 

React.js, enabling analysts to securely upload log files and 

receive AI-generated summaries. Uploaded files are 

transmitted via secure HTTP requests to a Node.js/Express 

backend, where file validation and text extraction are handled 

using Multer middleware, the fs module, or Mammoth (for 
.docx files). Extracted text is embedded into a custom prompt 

and sent to Google's Gemini 1.5 Flash model via the 

Generative AI SDK. The returned summary highlights key 

insights such as suspicious IPs, malware signs, or brute-force 

attempts. Summaries are rendered on the frontend and stored 

in MongoDB with metadata, while the original files are 

deleted for security. This modular design supports future 

extensions and enables SOCs to integrate AI seamlessly into 

their log analysis workflow. 

 

Here is a more detailed explanation of the technologies used 
in the application: 

 

3.1. Frontend (Client-Side) 

The client interface is developed using React.js, 

supported by modern JavaScript and CSS for a responsive 

and intuitive experience. It provides analysts with secure file 

upload functionality, real-time AI summary visualization, and 

token-based authentication using JWT. 

 React.js: The reason for React's success is its 

numerous notable features.  It supports JSX, is 

component orientated, and is easy to use, among 

other things.  Another component of React is the 
virtual DOM, which is responsible for the enhanced 

UI performance[39].A component-based framework 

used to manage dynamic UI updates, file upload 

events, and API responses . Hooks such as useState 

and useEffect are used to manage user interactions 

and render summaries returned by the backend. 

 Security: JWT tokens are stored securely and 

attached to HTTP headers to protect summary 

requests. 

 

3.2. Backend (Server-Side) 
The backend is implemented using Node.js and 

Express.js, acting as the middleware layer that manages file 

processing, AI integration, user authentication, and database 

interactions. It coordinates the full summarization workflow 

from receiving log files to generating summaries using the 

Gemini 1.5 Flash model. 

 Node.js: The Node.js framework is based on the 

Chrome V8 JavaScript engine, which is a high-

performance compiler and interpreter that runs 

JavaScript programs at about the speed of light.  It is 

well-suited for developing real-time web 

applications since this framework allows Node.Js to 
effectively handle many concurrent connections 

[40]. Provides a high-performance, asynchronous 

runtime environment that efficiently handles 

User (SOC Analyst) React Frontend 

Express Backend (Node.js Server) 

 

JWT Middleware 

-Auth Validation 

-Access Control 

Multer Upload 

-File Type Check 

fs/mammoth Parser 

-Extract raw text from 

.log/txt/.docx files 

 

Gemini API (LLM) 

-Prompt+ Log content 

-Returns summary  

MongoDB 

-Save summary, filename, 

timestamp, user ID 

Summary Response 

-Send to Frontend 

Display Summary UI 
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concurrent file uploads, log parsing, and 

communication with external APIs such as Gemini. 

 Express.js: Node.js (JavaScript Runtime 

Environment) is the foundation of Express.js, a web 

app framework that is well-known for its flexibility 

and simple design, making it one of the most popular 
Node.js frameworks [41]. Acts as the routing layer, 

exposing endpoints such as /api/upload, 

/api/summary, and /api/login. It handles file 

validation, user session management, and Gemini 

API integration. 

 File Processing and Auto Cleanup: Uploaded files 

are processed using Multer, which validates the file 

type and stores them temporarily in the /uploads 

directory. The backend then extracts content using 

either Node.js's built-in fs module for .log and .txt 

files, or the mammoth library for .docx files to 
ensure clean and formatting-free text extraction. 

After the Gemini API generates the AI summary, the 

system performs an automatic cleanup using 

fs.unlink() to delete the uploaded file from the 

server. 

 JSON Web Token (JWT): Lightweight is a word 

that best describes JSON web tokens.  Using these 

tokens, there is minimum database interaction 

required for client-server data exchange, user 

authentication, and authorisation.  When it comes to 

protecting sensitive information from potential 

attackers, JWT employs a number of cryptographic 
encryption methods [42]. The backend uses JWT for 

stateless and secure authentication. For each request 

that our service receives, if the user is authenticated, 

there is a token in the HTTP headers. If it is present, 

we will validate it before providing access to these 

protected resource routes. This means only properly 

authorized users will be able to upload files, get 

summaries, and interact with the service. 

 

3.3. Gemini API Integration 

In this work, Google’s Generative AI (Gemini API) is 
integrated into a full-stack web application designed for 

Security Operations Centers (SOCs) to process uploaded log 

files and generate concise, context-aware summaries. The 

integration enhances the system’s ability to analyze 

unstructured log data in real time through advanced natural 

language understanding and prompt engineering. Gemini API 

enables accurate detection of anomalies, threats, and unusual 

activity patterns, providing actionable insights to analysts. At 

the core of the system is the integration with Google’s 

Gemini 1.5 Flash model via the official Generative AI SDK.  

 

3.4. Database (MongoDB) 
An open-source document database, MongoDB offers 

autonomous scalability, high availability, and great 

performance.  In MongoDB, a document containing field and 

value pairs is considered a record.  You may think of 

MongoDB documents as JSON objects [43].The system uses 

MongoDB as the backend database to store AI-generated 

summaries, along with metadata such as filename, timestamp, 

and user ID. Using Mongoose, schemas are enforced for 

consistency, and summaries can be retrieved for audit or 

future analysis. This storage layer enables secure logging, 

summary history, and potential integration with other SOC 

monitoring tools. 

 

4. Implementation and Technical Setup 
This section details the end-to-end configuration, tools, 

and design choices implemented to develop the proposed AI-

driven log summarization platform for Security Operations 

Centers (SOCs). The system is built using modern web 

technologies and integrates Google’s Gemini 1.5 Flash model 

to generate intelligent summaries of uploaded security log 

files. The architecture follows a modular and secure design, 
enabling SOC analysts to perform fast, reliable, and scalable 

log summarization directly from a web interface. 

 

4.1. System Overview 

The system is built as a full-stack web application built 

from a React.js front-end, Node.js/Express.js back-end and a 

MongoDB database. It enables users to upload log files in 

common formats (.log, .txt, .docx) and receive AI summaries 

produced by the Gemini 1.5 Flash API. The application uses 

JSON Web Tokens (JWT) for secure access to the profiles 

and it has implemented automatic file parsing, summarization 
and saving. The back-end uses the official SDK to interact 

with Google's Generative AI service to properly parse and 

summarize the unstructured log content into significant 

actionable security insights. 

 

4.2. Backend Implementation. 

The AI-log summarization system's backend is built with 

Express.js, which is the main orchestrator that connects the 

React frontend, the file system, the Gemini API, and the 

MongoDB. When a file is uploaded, the backend uses Multer 

middleware to validate that the upload is a file and extracts 

the raw text using the Mammoth library for .docx files, or the 
Node.js fs module for .log/.txt files. The extracted raw text is 

placed into a structured prompt that instructs the Gemini 1.5 

Flash model to assess and extract threats or anomalies. The 

API response returns the results from the model in a summary 

ready for a human to read. The model summary is saved to 

MongoDB along with metadata (filename, timestamp, user 

ID). The backend uses fs to delete the status on the server file 

system and returns the model summary to the frontend for 

review by an analyst. 

 

Listing pseudocode 1: Backend File Processing 

 
 

This pseudocode 1 delivers a straightforward high-level 

representation of the critical logic behind the backend 

Function handleFileUpload(request): 

    Validate file type (.log, .txt, .docx) 

    If .docx: 

        Extract content using mammoth parser 

    Else: 

        Read content using fs module 

    Generate prompt = "Summarize the following logs:\n\n" + 

content 

    summary = call Gemini API(prompt) 

    Store summary, filename, user ID, timestamp in MongoDB 
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functionality. The modular flow ensures that each aspect of 

the backend operation from validation to cleanup is carried 

out quickly and securely. By forming this flow, it is possible 

to drive rapid processes, provide secure access for sensitive 

log data, and smooth integration with the AI summarization 

web service. In addition, the flow allows for scalable and 
extensible processing to allow later options for additional file 

formats or to create rules based on customized processing. 

 

4.3. Gemini API Integration 

The AI based summarization approach is largely 

consisted of the integration with Google’s Gemini 1.5 Flash 

model. This model performs an automated and natural 

language real time summarization of unstructured log data. 

This is a key area of the system, as the AI model is capable of 

synthesizing large log entries into many shorter summaries 

focused on key security events. Once an unstructured log is 

parse by the backend, a prompt for the domain is designed 
and sent to the Gemini model via RESTful API call aided by 

Google’s Generative AI SDK. The prompt template is crafted 

to instruct Gemini to detect cybersecurity-relevant details 

such as suspicious IP addresses, brute force attempts, access 

anomalies, or malware signatures. 

 Prompt Template Example: "Summarize the 

following SOC log entries. Identify any security 

risks, threats, or anomalies:\n\n[log_content]"  

 

The following pseudocode 2 outlines the logic used by the 

backend to interact with the Gemini API and retrieve the 

summarization output: 

 

Listing pseudocode 2: Gemini API Invocation Logic 

 
 

Once the POST request is submitted, the Gemini API 

processes the prompt and returns a structured, human-

readable summary. Below Figure 2 is an example of the 

JSON payload sent to the API: 

 

 
Fig 2: Example JSON payload 

 

The responses generated by Gemini are subsequently 

parsed by the backend, and the resulting summary is then 

saved to MongoDB along with metadata such as the filename, 

user ID, and timestamp. Reasoning based intelligent 

summarization circumvent the need for rule-based parsers, 
works with various log formats, and provides scalable AI 

assistance to SOC analysts without manual customizations or 

pre-defined rules. By utilizing Gemini's ability in the SOC 

workflow it could enhance threat triage, reduce analyst 

burnout, and hasten the incident response by integrating AI-

based summarization. 

 

4.4. Frontend Implementation 

The front end of the AI-based log summarization 

platform is built using 'React.js,' which offers a dynamic and 

responsive user interface for SOC analysts. The interface 

mainly allows users to upload log files securely, place 
summarization requests, and display the generated summaries 

from the AI in a user-friendly and organized manner. The 

front end uses Axios for HTTP communication with the 

backend API and Tailwind CSS for responsive style and 

supported for all devices. The main focus of the design was  

 

on usability, so SOC personnel can easily initiate use of the 

system without the need for technical training. 

 

Listing pseudocode 3: File Upload and Summary Rendering 

 
 

The frontend is developed in React.js and allows 
authenticated users to upload .log, .txt or .docx files which are 

read with the FileReader API. handleFileUpload(file), as 

shown in Pseudocode 3, reads the content into React state; 

then, handleSummarize() sends to the backend the content as 

well as the JWT token, using Axios. The backend sends the 

AI generated summary which the frontend displays in a 

scrollable component. This streamlined interface supports 

Function callGeminiAPI(prompt): 

    Set endpoint = 

"https://generativelanguage.googleapis.com/v1beta/models/gemin

i-1.5-flash:generateContent" 

    Set headers including Content-Type and API key from 

environment variables 

    Format request body with a 'contents' array containing the 

prompt text 

 

    Send POST request to Gemini endpoint with headers and body 

 

    If response is successful: 

        Extract summary from response object 

    Else: 

        Log error and return a default fallback message 

    Return summary 

Function handleFileUpload(file): 

    Use FileReader to read content 

    Store text in React state 

 

Function handleSummarize(): 

    Send POST request with file content and JWT 

    Receive summary from backend 

    Display summary to user 
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efficient interaction as well as will support future 

enhancements, such as filtering, and tagging. 

 

4.5. MongoDB and Security Setup 

The system uses MongoDB to store AI-generated 

summaries along with metadata like filename, timestamp, and 
user ID. After summarization, the backend creates a 

structured object and inserts it into the database using 

Mongoose. JWT authentication secures all API routes, 

ensuring only authorized users can access or submit data. 

Environment variables are used to protect credentials and API 

keys. 

 

Listing pseudocode 4: MongoDB Storage Logic 

 
 

As shown in Pseudocode 4, the backend creates an object 

containing the summary and related metadata and inserts it 
into the MongoDB collection. This approach ensures secure, 

user-specific storage of summarization results, enabling 

auditability and future retrieval. 

 

5. Results and Discussion 
This section evaluates the functionality and performance 

of the proposed AI-driven SOC dashboard, which leverages 
Google’s Gemini 1.5 Flash model for log summarization. The 

system was tested across multiple log formats and scenarios 

relevant to real-world SOC operations. Metrics such as file 

processing time, API latency, AI response quality, and user 

experience were captured to determine effectiveness. 

Additionally, sample summaries were analysed to 

demonstrate the contextual awareness of the LLM when 

analysing unstructured security log data. 
 

5.1. Evaluation Setup 

The system was deployed on a local development server 

using a Dell laptop equipped with an Intel Core i5 processor, 

8 GB RAM, and a 256 GB SSD. The Gemini API was 

accessed over a stable internet connection averaging 50 

Mbps. Logs of various formats, including .log, .txt, and .docx, 

were uploaded for testing. The backend was implemented in 

Node.js and Express.js, while the frontend utilized React.js. 

MongoDB was used for storing user sessions and summary 

metadata. 

 

5.2. Performance Metrics 

To quantify system performance, multiple trials were 

conducted for each file type. The following metrics were 

recorded over 10 iterations: 

 Upload to Summary Time: Time taken from file 

upload to the display of AI-generated summary. 

 Gemini API Response Time: Time taken by the 

Gemini API to return a summary after receiving the 

prompt. 

 MongoDB Write Latency: Time taken to store the 

summary and metadata in the database. 
 

Table 1: Performance Metrics by File Type 

Metric .log .txt .docx 

Upload to Summary Time (sec) 2.1 1.8 3.4 

Gemini API Response (avg) 1.2 1.1 2.0 

MongoDB Write Latency (ms) 38 34 40 

 

 

 
Fig 3: Average summarization time by file type using Gemini API. 

 

Table I and Figure 3 present performance evaluation 

measures the system's response to a variety of log file 

formats. The various metrics calculated include upload-to-

summary time, Gemini API response time, and MongoDB 

write latency. Based on the evaluation results it was found 

that .txt and .log files experienced a faster processing time 

Function saveSummaryToDB(summary, filename, userID): 

    Create object with fields: 

        - summary 

        - filename 

        - timestamp (current time) 

        - userID (from authenticated session) 

 

    Connect to MongoDB 

    Insert object into the 'summaries' collection 

    Close connection or await future access 
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and an average summary time of 3 seconds or less, and .docx 

files experienced an average summary time of 4 seconds, 

which can be attributed to slightly more parsing overhead. 

Figure 3 visually compares these average times, confirming 

the system’s ability to deliver real-time summarization 

performance across formats, making it efficient and suitable 
for SOC environments. 

 

5.3. Sample Output Summaries 

These examples demonstrate how the Gemini API 

interprets and summarizes diverse logs from .log, .txt, and 

.docx files helping SOC analysts quickly detect anomalies 

and security events. 

 

5.3.1. Sample 1: SSH Brute Force Logs 

SSH Brute Force Logs.txt 

Raw Log: 

Jul 09 00:21:33 Failed password for invalid user admin from 
192.168.1.55 port 5548 

Jul 09 00:21:34 Failed password for invalid user root from 

192.168.1.55 port 5548 

 

Gemini Summary Output: 

 
Fig 4: AI-Generated Summary brute-force attack 

 

5.3.2. Sample 2: Network Scan Behavior 

Input Log (.log): 

[18:42:01] Incoming TCP SYN request from 192.168.5.22 to 

port 21 . 

[18:42:02] Incoming TCP SYN request from 192.168.5.22 to 

port 22  . 

[18:42:03] Incoming TCP SYN request from 192.168.5.22 to 

port 23. 

 

Gemini Summary Output: 

 
Fig 5: AI-Generated Summary brute-force attack 

 

5.3.3. Sample 2: Internal Data Exfiltration Attempt 

Input Log (.txt): 

[01:14:50] File upload: internal_docs.pdf by user123   

[01:14:52] Destination IP: 203.0.113.10   

[01:14:55] Protocol: FTP, Port: 21 

 

Gemini Summary Output: 

 
Fig 6: AI-Generated Summary of Internal Data 

Exfiltration Attempt 

 

Figures 4 to 6 illustrate the effectiveness of the AI-driven 

summarization system in identifying and interpreting 

different cybersecurity events from raw log inputs. Figure 4 

captures a classic SSH  brute-force attack, where repeated 

failed login attempts from the same IP indicate unauthorized 
access attempts. Figure 5 highlights network scanning 

behavior, with sequential SYN requests to multiple ports 

suggesting reconnaissance activity from a potential attacker. 

Figure 6 demonstrates the detection of an internal data 

exfiltration attempt, where a sensitive file is uploaded via 

FTP to an external IP address. These examples show how the 

Gemini API successfully transforms unstructured logs into 

concise, contextual summaries, enabling SOC analysts to 

quickly recognize and prioritize security threats. 

 

5.4. Observations and Discussion 
Throughout implementation and evaluation there were a 

key observation regarding the operational performance few, 

functional utility, and usability of the system within a SOC. 

First, the integration of the Gemini 1.5 Flash model 

successfully provided contextually aware and accurate 

summarizations of log files without requiring users to build 

rules or patterns. Clearly, the model was able to identify 

security events and trends which are crucial in security 

investigations: bruteforce attempts; suspicious IP addresses; 

and patterns of suspected data exfiltration; among various 

distinct types of log-files (.log, .txt, and .docx). From a 

performance testing perspective, there was minimal latency in 
response timing for summarization and total time to process 

logs was, on average, under 4 seconds per log. Time to 

process the logs of the .docx document were slightly slower 

than for the other log types but there was still no major issue 

for operational usability. Given MongoDB write latency was 

minimal and able to confirm the feasibility of real-time 

storage and retrieval aspects of the application. Overall, the 

system demonstrated high usability, strong AI-model 

integration, and operational efficiency, validating its 

suitability for modern SOC workflows and establishing a 
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foundation for further enhancements such as real-time stream 

processing or multi-log correlation. 

 

5.5. Justification and Advantages 

The proposed AI-driven log summarization platform is 

justified by the growing need for efficient and scalable 
solutions in Security Operations Centers (SOCs), where 

traditional manual or rule-based log analysis methods often 

fall short due to the volume and complexity of security data. 

By integrating Google’s Gemini 1.5 Flash model, the system 

provides real-time, context-aware summaries of unstructured 

log files without requiring predefined rules or templates. Its 

full-stack web-based architecture offers secure, user-friendly 

access via JWT authentication, allowing analysts to process 

.log, .txt, and .docx files quickly and remotely. The main 

advantages include reduced analyst workload, faster incident 

response, format flexibility, and seamless integration with 

existing SOC tools. This intelligent and modular solution 
modernizes log analysis and enhances the overall 

responsiveness and effectiveness of SOC operations. 

 

6. Conclusion and Future Scope 
This paper introduced an AI-driven log summarization 

platform designed specifically for Security Operations 
Centers (SOCs), integrating Google’s Gemini 1.5 Flash 

model within a secure, full-stack web architecture. The 

system automates the conversion of unstructured log data into 

concise, actionable summaries, enabling SOC analysts to 

detect security anomalies such as brute-force attacks, 

scanning behavior, and data exfiltration attempts. Built using 

React.js for the frontend, Node.js/Express for the backend, 

and MongoDB for persistent storage, the platform supports 

multiple log file formats (.log, .txt, .docx), employs JWT-

based authentication, and ensures secure data handling 

through automated file deletion. Performance evaluation 

showed that the platform consistently delivered summaries 
with end-to-end latency under four seconds, demonstrating its 

suitability for real-time SOC environments and operational 

scalability.  

 

Despite its effectiveness, the platform has some 

limitations. Currently, it operates in a batch-processing mode 

and lacks real-time stream log ingestion, which restricts its 

application in continuous monitoring environments. The 

summarization accuracy is dependent on prompt design and 

may be affected when handling highly domain-specific or 

multilingual logs. Additionally, the absence of feedback loops 
limits the system’s ability to learn from analyst corrections or 

improve over time. In the future, enhancements will focus on 

supporting live stream log ingestion, integration with SIEM 

platforms for real-time threat detection, and expanding 

summarization to include multiple languages. Further 

developments will also include adding explainable AI (XAI) 

components for transparency, feedback-driven refinement of 

summaries, and advanced classification modules to 

automatically tag and prioritize detected security threats. 
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