L J ¢ International Journal of Emerging Research in Engineering and Technology

Pearl Blue Research Group| Volume 6 Issue 3 PP 136-145, 2025

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V6I3P117

Original Article

Al-Driven Log Summarization for

Security Operations

Centers: A Web-Based Approach Using Gemini API

Raju Katukam

Site Reliability Engineer, Jawaharlal Nehru Technological University Hyderabad.

Received On: 15/07/2025 Revised On: 03/08/2025
Abstract - In today's cybersecurity landscape, Security
Operations Centers (SOCs) face the growing challenge of
managing and interpreting vast volumes of unstructured log
data generated from diverse sources. Traditional rule-based
monitoring approaches are often inefficient and inadequate
in handling this scale, leading to delays in threat detection
and response. This work presents a scalable, Al-powered log
SUmmarization platform that integrates Google’s Gemini 1.5
Flash model within a full-stack web application to automate
the extraction of security-relevant insights from log files.
Built using React.js, Node.js, and MongoDB, the system
enables SOC analysts to upload log files in various formats
(log, .txt, .docx) and receive real-time, human-readable
summaries highlighting anomalies such as brute-force
attacks, suspicious IP activity, and data exfiltration attempts.
The backend handles secure file parsing, Al prompt
generation, summarization via Gemini API, and summary
storage with associated metadata. Experimental evaluations
demonstrate low-latency summarization across file types,
with average response times under four seconds, validating
the platform’s efficiency and practicality for real-world SOC
environments. This solution significantly reduces manual
analysis effort, enhances threat visibility, and introduces a
flexible, extensible framework for Al-enhanced cybersecurity
operations.

Keywords - Security Operations Center (SOC), Log
Summarization, Generative Al, Gemini API, Node.js,
React.js, Cybersecurity.

1. Introduction

Large volumes of log data are generated by software
systems as the program runs. These logs are often generated
to assist system administrators and developers in identifying
unusual output, runtime issues, and faults. Additionally,
intrusion detection may make use of these logs. A system
intrusion or assault may be detected and prevented by keeping
tabs on critical events in the log data and identifying unusual
behaviour or signatures[1]. It is not viable to manually
analyse the logs since most software systems generate an
excessive volume of log data[2][3][4]. Furthermore, dangers
are often not detectable from single log entries but rather from
a pattern of log entries dispersed across the file[5]. Therefore,
it is essential to automate the process of analysing the log
data. The majority of the focus in software cybersecurity is
on safeguarding systems from potential outside attacks. The
difficulty of detecting intrusions and internal threats causes

Accepted On: 05/09/2025 Published On: 18/09/2025
these areas to be neglected[6][7][8]. Failure to take action
against these dangers might result in significant financial
losses if ignored. For real-time cybersecurity event detection,
investigation, and mitigation, these logs are an essential
source of information[9][10]. Cybersecurity attacks are
becoming more frequent and complicated, therefore
protecting digital assets successfully requires strong
monitoring and quick reaction skills[11]. Therefore, SOCs are
being set up by a growing number of organisations to actively
identify and react to cybersecurity events[12][13].

SOCs play a pivotal role in continuously monitoring log
data to ensure the resilience and security of organizational
assets in cyber incidents[14][15][16]. However, as log data
continues to grow exponentially in size and diversity,
traditional manual and rule-based monitoring techniques are
increasingly insufficient, necessitating more intelligent
approaches to support efficient analysis and decision-
making[17][18]. This growing demand for efficiency has
drawn significant attention to the role of advanced
computational methods, particularly Artificial Intelligence
(Al), in augmenting SOC operations[19]. In particular,
advancements in Natural Language Processing (NLP) have
unlocked new possibilities for automating the interpretation
and summarization of unstructured log data. Al-driven
summarization techniques, powered by Large Language
Models (LLMs), can distill vast and complex log streams into
concise, human-readable narratives[20], thereby improving
situational awareness and accelerating incident response for
SOC analysts. Among the latest developments, generative
LLMs[21][22] such as Google’s Gemini API demonstrate
exceptional capabilities in understanding context, capturing
subtle patterns, and producing coherent summaries from raw
data. Harnessing these capabilities offers a promising
direction toward building systems that embed Al-powered
summarization directly into SOC workflows[23][24].

To enable practical and scalable deployment of such
intelligent capabilities, this paper proposes a web-based
approach that integrates [25]. Al log summarization within a
user-friendly,  real-time interface  accessible  from
anywhere[26]. The system is designed to receive logs from
various sources, process them using a summarization model,
and present the distilled outputs through an interactive
dashboard. This cloud-accessible solution ensures ease of
deployment, centralized control, and seamless collaboration
among security teams, regardless of geographic distribution.



A web-based platform that integrates the Gemini API for log
summarization emerges as a particularly effective approach to
operationalize these Al capabilities[27][28]. Web-based
architectures provide accessibility, scalability, and seamless
integration with existing SOC dashboards and tools, while the
Gemini APl ensures advanced language understanding
tailored to the nature of security logs[29][30][31]. By
combining these elements, it is possible to deliver actionable
insights from raw logs through an intuitive interface, enabling
SOC analysts to make informed decisions quickly and
effectively. This integrated approach forms the basis of the
present work, which focuses on designing and demonstrating
such a solution in a practical setting. Leveraging generative
models like Google’s Gemini API within a web-based
platform provides an innovative and scalable approach to
real-time log analysis. This not only reduces the cognitive
load on SOC analysts but also accelerates threat detection and
decision-making, ultimately strengthening organizational
cybersecurity posture.

1.1. Motivation and Contribution of Study

Security Operations Centers (SOCs) are today's primary
defense against cyber threats for digital infrastructures. In an
era of increasing size and complexity, the number of logs
produced every day by endpoints, servers, firewalls,
applications, etc. continues to swell. Manual review of these
logs takes time-and many times results in the late discovery
of a threat or missing a key piece of information.
Furthermore, most tools today rely on static rules-based or
keyword-based; neither are effective for recognizing attack
patterns or evolving threat landscapes. The emergence of
LLM models that can read and interpret unstructured data,
provides SOCs with a real opportunity to transform their
operations by using natural language summarization in
conjunction with log data. This study presents a novel Al-
driven log summarization platform specifically designed for
SOC environments. The key contributions are as follows:

e This work presents the development of a modular,
full-stack web-based platform tailored for Security
Operations Centers (SOCs), combining React.js for
the frontend, Node.js/Express.js for the backend, and
MongoDB for persistent storage. The architecture
supports secure log file upload, real-time Al
summarization, and efficient result visualization.

e The system is capable of processing .log, .txt, and
.docx files using file-type-specific parsers (Node’s fs
module and the Mammoth library). This multi-format
compatibility ensures wide applicability across varied
SOC log sources.

e The platform incorporates Gemini's advanced
language model via Google’s Generative Al SDK to
automatically generate concise, human-readable
summaries of unstructured log content, extracting
insights such as suspicious IPs, brute-force attacks,
and data exfiltration attempts.

e Custom prompt templates are designed to guide the
Gemini model toward detecting cybersecurity-relevant
patterns, improving the contextual precision of Al-
generated summaries without requiring predefined
rules or manual annotations.

e Through empirical evaluation, the  system
demonstrated an average response time of under four
seconds across various file types, validating its
practicality for real-time threat triage and analysis in
fast-paced SOC workflows.

e Security best practices such as JWT-based
authentication, automatic post-processing file deletion,
and metadata-enriched summary storage in MongoDB
are implemented to ensure data integrity, user
accountability, —and compliance  with  audit
requirements.

These contributions aim to empower SOC teams with a
scalable and intelligent solution that reduces analyst fatigue,
accelerates incident response, and modernizes log handling
through Al-driven automation.

1.2. Novelty of the Study

This study introduces a new paradigm through the
combination of Google’s Gemini 1.5 Flash large language
model and a secure, online Web application for logging
summarization that can be done in real-time at Security
Operations Centers (SOCs). Unlike traditional A/V log
workflows which exist in a rule-based ecosystem, the system
developed uses generative Al to convert raw, unstructured log
data (.log, .txt, .docx) to compressed, meaningful summaries
without human intervention or required parsing rules. The
application encompasses a React.js front end and Express.js
back end with MongoDB for storage, enabling a seamless
end-to-end workflow from upload to Al-based output. The
platform provides secure shared access to SOC personnel
using a secure JWT authentication system and also performs
automatic cleanup of processed documents to keep each
SOC’s operational footprint and data private and succinct.
The framework for combining large language model
competency with meaningful SOC-based operational use is
unique, allowing analysts to process logs more quickly with
reduced manual input while promoting improved incident
response.

1.3. Structure of the paper

This is how this paper is organised: Section Il examines
related research in log analysis and summarisation using Al.
Section |11 discusses the methodology for system design and
integration of the Gemini API within a web-based interface.
Section IV and V presents implementation analysis and
experimental results with performance evaluations on real-
world log datasets. Key results, limits, and future research
directions are finally discussed in Section VI.

2. Literature Review

This section reviews recent work on Al-driven log analysis
and summarization in Security Operations Centers (SOCs).
Existing studies focus on enhancing threat detection and
incident response using AI/ML, but few address real-time log
summarization. Some existing studies for this work related
discussed below:

Mohsin et al. (2025), article lays out a methodical plan
for how humans and Al might operate together in SOCs,

137



including features like trust calibration, human input during
decision-making, and Al autonomy. Human supervision,
trust calibration, and scalable autonomy with Al are largely
neglected in existing SOC systems, which primarily
concentrate on automation. Many people overlook the fact
that SOC activities involving human and Al cooperation
might vary greatly in complexity, criticality, and danger
because they presume static or binary autonomy settings. To
overcome these constraints, we suggest a new autonomy
tiered structure based on five Al autonomy levels, ranging
from totally autonomous to manual, that are correlated with
task-specific trust thresholds and Human-in-the-Loop (HITL)
responsibilities. This allows for the integration of adaptive
and explicable Al into key SOC operations, such as incident
response, threat detection, alert triage, monitoring, and
protection[32].

Ismail et al. (2025), the need to update Security
Operations Centres (SOCs) to better identify, respond to, and
mitigate cybersecurity attacks is growing in response to the
dynamic nature of these threats. Traditional no-code SOAR
solutions have considerable limitations, such as limited
flexibility, scalability issues, insufficient support for advanced
logic, and difficulties in managing large playbooks. Despite
their importance, security orchestration, automation, and
response (SOAR) platforms are not without their flaws. There
has to be a more complex solution since these limitations
prevent analysts' technical competence from being fully used,
limit flexibility, and impede successful automation. They
suggest an agentic-LLM-powered hyper-automation SOAR
platform to optimise automation processes by using Large
Language Models (LLMs). By replacing inflexible no-code
playbooks with Al-generated code, this method streamlines
operations while increasing flexibility and scalability[33].

Park et al. (2025), paper presents an ATIRS, a SLM-
based framework designed to automate the summarization of
Suricata network alert logs and generate response
recommendations for maritime environments. ATIRS enables
actionable countermeasures like IP blocking or account
lockout and transforms unstructured alarms into organised
summaries. It becomes better with time by responding to user
input and new threats via adaptive learning. Results from
shipboard data show a significant reduction in Mean Time to
Respond (MTTR), supporting efficient threat mitigation by
non-expert crew in resource-limited settings[34]. Afridi and
Abbas (2024), rapidly evolving cyber threat landscape, SOCs
must adopt innovative technologies to enhance their
efficiency and effectiveness. Al and ML are transforming
SOC operations by automating threat detection, response, and
mitigation processes. SOCsare able to analyse massive
volumes of security data in real-time, spot irregularities, and
anticipate cyber-attacks due to these cutting-edge technology.
Al-driven SOCs leverage machine learning algorithms to
continuously improve threat detection by identifying patterns
and behaviors indicative of malicious activities. This reduces
reliance on manual intervention, minimizes false positives,
and accelerates incident response times. Al-driven behavioral
analytics enable SOCs to detect zero-day attacks and insider
threats with greater accuracy [35].

Balaji et al. (2024), paper reviews advanced log anomaly
detection techniques that employ Al technologies, with a
specific focus on the Isolation Forest Algorithm. We delve
into the integration of Endpoint Detection and Response
(EDR) tools, pivoting techniques, process tree analysis, and
summarization methods to enhance the identification and
interpretation of suspicious activities. The paper discusses the
development and examination of process trees, aimi ng to
equip SOC analysts with practical insights and
recommendations. Additionally, we assess how Al-powered
log analysis can overcome existing challenges and improve
the detection of complex threats. Finally, we summarize our
key findings and propose future research avenues to address
ongoing challenges in log anomaly detection[36].
Balasubramanian et al. (2024), a GPT-3.5 Turbo-powered
conversational agent framework, CYGENT, is developed to
support system administrators in addressing cybersecurity
challenges across IT and loT environments. CYGENT
performs tasks such as log file summarization, event
detection, and user guidance. Fine-tuning of GPT-3 models
with custom data achieved a BERTSscore above 97%,
demonstrating ~ strong  summarization performance.
Comparative analysis with other Large Language Models,
including CodeT5-small, CodeT5-base, and CodeT5-base-
multi-sum, shows that the GPT-3 (Davinci) model
consistently outperforms others, while CodeT5-base-multi-
sum demonstrates potential as an effective offline alternative.
These findings highlight the effectiveness of generative Al in
enhancing cybersecurity operations and log analysis[37].

Mudgal et al. (2023), paper investigates the capabilities
of ChatGPT in processing complex log data from large-scale
software systems, a topic that has received limited attention.
While ChatGPT has shown promise in tasks like code
generation and summarization, its performance in log analysis
remains limited, showing inconsistencies and scalability
issues. The study identifies key shortcomings and outlines
potential directions to enhance the effectiveness of large
language models in log processing, aiming to support future
research in this area[38]. Recent work on Al-driven log
analysis in Security Operations Centers (SOCs) has focused
on enhancing threat detection, automation, and Human-Al
collaboration. Studies have introduced structured frameworks
for integrating Al autonomy with human oversight,
improving decision-making in core SOC functions. Hyper-
automation using large language models (LLMs) has been
explored to overcome limitations in traditional SOAR
platforms, offering flexible and scalable alternatives to no-
code solutions. Domain-specific models have shown success
in summarizing network alerts and recommending responses,
particularly in constrained environments like maritime
systems. Al and ML techniques are increasingly used for
anomaly detection, behavioral analytics, and threat prediction,
while conversational agents powered by models like GPT-3.5
have demonstrated strong summarization capabilities.

However, major research gaps persist, including the
limited focus on real-time log summarization, poor
generalizability across domains, lack of explainability for
non-expert users, scalability issues in LLMs, underutilization

138



of lightweight small language models (SLMs), and minimal
integration of adaptive learning based on user feedback
highlighting the need for more interpretable, efficient, and
domain-flexible Al systems for SOC log analysis. To address
these challenges, the proposed solution introduces a modular

User (SOC Analyst)

Al-powered log summarization system that leverages LLMs
to generate real-time, context-aware summaries. The system
incorporates secure data handling, adaptive learning, and a
user-friendly interface to support SOC analysts in efficiently
managing and interpreting large-scale log data.

React Frontend

Express Backend (Node.js Server)

JWT Middleware
-Auth Validation
-Access Control

Gemini API (LLM)
-Prompt+ Log content
-Returns summary

MongoDB
-Save summary, filename,
timestamp, user 1D

Display Summary Ul <

Multer Upload
-File Type Check

fs/mammoth Parser
-Extract raw text from
log/txt/.docx files

Summary Response
-Send to Frontend

Fig 1: System architecture of Al-driven SOC log summarization using Gemini API

3. Methodology

The aim of this work is to develop a scalable, Al-
powered log summarization platform for Security Operations
Centers (SOCs) that reduces manual analysis time and
enhances incident response. The system architecture, shown
in Figure 1, comprises a web-based interface built with
React.js, enabling analysts to securely upload log files and
receive Al-generated summaries. Uploaded files are
transmitted via secure HTTP requests to a Node.js/Express
backend, where file validation and text extraction are handled
using Multer middleware, the fs module, or Mammoth (for
.docx files). Extracted text is embedded into a custom prompt
and sent to Google's Gemini 1.5 Flash model via the
Generative Al SDK. The returned summary highlights key
insights such as suspicious IPs, malware signs, or brute-force
attempts. Summaries are rendered on the frontend and stored
in MongoDB with metadata, while the original files are
deleted for security. This modular design supports future
extensions and enables SOCs to integrate Al seamlessly into
their log analysis workflow.

Here is a more detailed explanation of the technologies used
in the application:

3.1. Frontend (Client-Side)

The client interface is developed using React.js,
supported by modern JavaScript and CSS for a responsive
and intuitive experience. It provides analysts with secure file
upload functionality, real-time Al summary visualization, and
token-based authentication using JWT.

e Reactjs: The reason for React's success is its
numerous notable features. It supports JSX, is
component orientated, and is easy to use, among
other things. Anocther component of React is the
virtual DOM, which is responsible for the enhanced
Ul performance[39].A component-based framework
used to manage dynamic Ul updates, file upload
events, and API responses . Hooks such as useState
and useEffect are used to manage user interactions
and render summaries returned by the backend.

e Security: JWT tokens are stored securely and
attached to HTTP headers to protect summary
requests.

3.2. Backend (Server-Side)

The backend is implemented using Node.js and
Express.js, acting as the middleware layer that manages file
processing, Al integration, user authentication, and database
interactions. It coordinates the full summarization workflow
from receiving log files to generating summaries using the
Gemini 1.5 Flash model.

e Node.js: The Node.js framework is based on the
Chrome V8 JavaScript engine, which is a high-
performance compiler and interpreter that runs
JavaScript programs at about the speed of light. Itis
well-suited  for  developing real-time  web
applications since this framework allows Node.Js to
effectively handle many concurrent connections
[40]. Provides a high-performance, asynchronous
runtime environment that efficiently handles

139



concurrent  file uploads, log parsing, and
communication with external APIs such as Gemini.

e Express.js: Node.js  (JavaScript ~ Runtime
Environment) is the foundation of Express.js, a web
app framework that is well-known for its flexibility
and simple design, making it one of the most popular
Node.js frameworks [41]. Acts as the routing layer,
exposing  endpoints  such as  /api/upload,
/api/summary, and /api/login. It handles file
validation, user session management, and Gemini
API integration.

e File Processing and Auto Cleanup: Uploaded files
are processed using Multer, which validates the file
type and stores them temporarily in the /uploads
directory. The backend then extracts content using
either Node.js's built-in fs module for .log and .txt
files, or the mammoth library for .docx files to
ensure clean and formatting-free text extraction.
After the Gemini API generates the Al summary, the
system performs an automatic cleanup using
fs.unlink() to delete the uploaded file from the
server.

e JSON Web Token (JWT): Lightweight is a word
that best describes JSON web tokens. Using these
tokens, there is minimum database interaction
required for client-server data exchange, user
authentication, and authorisation. When it comes to
protecting sensitive information from potential
attackers, JWT employs a humber of cryptographic
encryption methods [42]. The backend uses JWT for
stateless and secure authentication. For each request
that our service receives, if the user is authenticated,
there is a token in the HTTP headers. If it is present,
we will validate it before providing access to these
protected resource routes. This means only properly
authorized users will be able to upload files, get
summaries, and interact with the service.

3.3. Gemini API Integration

In this work, Google’s Generative Al (Gemini API) is
integrated into a full-stack web application designed for
Security Operations Centers (SOCs) to process uploaded log
files and generate concise, context-aware summaries. The
integration enhances the system’s ability to analyze
unstructured log data in real time through advanced natural
language understanding and prompt engineering. Gemini API
enables accurate detection of anomalies, threats, and unusual
activity patterns, providing actionable insights to analysts. At
the core of the system is the integration with Google’s
Gemini 1.5 Flash model via the official Generative Al SDK.

3.4. Database (MongoDB)

An open-source document database, MongoDB offers
autonomous  scalability, high availability, and great
performance. In MongoDB, a document containing field and
value pairs is considered a record. You may think of
MongoDB documents as JSON objects [43].The system uses
MongoDB as the backend database to store Al-generated
summaries, along with metadata such as filename, timestamp,
and user ID. Using Mongoose, schemas are enforced for

consistency, and summaries can be retrieved for audit or
future analysis. This storage layer enables secure logging,
summary history, and potential integration with other SOC
monitoring tools.

4. Implementation and Technical Setup

This section details the end-to-end configuration, tools,
and design choices implemented to develop the proposed Al-
driven log summarization platform for Security Operations
Centers (SOCs). The system is built using modern web
technologies and integrates Google’s Gemini 1.5 Flash model
to generate intelligent summaries of uploaded security log
files. The architecture follows a modular and secure design,
enabling SOC analysts to perform fast, reliable, and scalable
log summarization directly from a web interface.

4.1. System Overview

The system is built as a full-stack web application built
from a React.js front-end, Node.js/Express.js back-end and a
MongoDB database. It enables users to upload log files in
common formats (.log, .txt, .docx) and receive Al summaries
produced by the Gemini 1.5 Flash API. The application uses
JSON Web Tokens (JWT) for secure access to the profiles
and it has implemented automatic file parsing, summarization
and saving. The back-end uses the official SDK to interact
with Google's Generative Al service to properly parse and
summarize the unstructured log content into significant
actionable security insights.

4.2. Backend Implementation.

The Al-log summarization system's backend is built with
Express.js, which is the main orchestrator that connects the
React frontend, the file system, the Gemini API, and the
MongoDB. When a file is uploaded, the backend uses Multer
middleware to validate that the upload is a file and extracts
the raw text using the Mammoth library for .docx files, or the
Node.js fs module for .log/.txt files. The extracted raw text is
placed into a structured prompt that instructs the Gemini 1.5
Flash model to assess and extract threats or anomalies. The
API response returns the results from the model in a summary
ready for a human to read. The model summary is saved to
MongoDB along with metadata (filename, timestamp, user
ID). The backend uses fs to delete the status on the server file
system and returns the model summary to the frontend for
review by an analyst.

Listing pseudocode 1: Backend File Processing

/Function handleFileUpload(request): \

Validate file type (.log, .txt, .docx)
If .docx:
Extract content using mammoth parser
Else:
Read content using fs module
Generate prompt = "Summarize the following logs:\n\n" +
content
summary = call Gemini API(prompt)

k Stare summarv. filename. user ID. timestamn in MonaoDB j

This pseudocode 1 delivers a straightforward high-level
representation of the critical logic behind the backend

140



functionality. The modular flow ensures that each aspect of
the backend operation from validation to cleanup is carried
out quickly and securely. By forming this flow, it is possible
to drive rapid processes, provide secure access for sensitive
log data, and smooth integration with the Al summarization
web service. In addition, the flow allows for scalable and
extensible processing to allow later options for additional file
formats or to create rules based on customized processing.

4.3. Gemini API Integration
The Al based summarization approach is largely
consisted of the integration with Google’s Gemini 1.5 Flash
model. This model performs an automated and natural
language real time summarization of unstructured log data.
This is a key area of the system, as the Al model is capable of
synthesizing large log entries into many shorter summaries
focused on key security events. Once an unstructured log is
parse by the backend, a prompt for the domain is designed
and sent to the Gemini model via RESTful API call aided by
Google’s Generative AI SDK. The prompt template is crafted
to instruct Gemini to detect cybersecurity-relevant details
such as suspicious IP addresses, brute force attempts, access
anomalies, or malware signatures.
e Prompt Template Example: "Summarize the
following SOC log entries. Identify any security
risks, threats, or anomalies:\n\n[log_content]"

The following pseudocode 2 outlines the logic used by the
backend to interact with the Gemini APl and retrieve the
summarization output:
ﬂnction callGeminiAPI(prompt): \
Set endpoint =
"https://generativelanguage.googleapis.com/v1beta/models/gemin
i-1.5-flash:generateContent"
Set headers including Content-Type and API key from
environment variables

Format request body with a 'contents' array containing the
prompt text

Listing pseudocode 2: Gemini API Invocation Logic

Send POST request to Gemini endpoint with headers and body

If response is successful:
Extract summary from response object
Else:

Log error and return a default fallback message
KRetum sLimmarv

/

Once the POST request is submitted, the Gemini API
processes the prompt and returns a structured, human-
readable summary. Below Figure 2 is an example of the
JSON payload sent to the API:

The responses generated by Gemini are subsequently
parsed by the backend, and the resulting summary is then
saved to MongoDB along with metadata such as the filename,
user ID, and timestamp. Reasoning based intelligent
summarization circumvent the need for rule-based parsers,
works with various log formats, and provides scalable Al
assistance to SOC analysts without manual customizations or
pre-defined rules. By utilizing Gemini's ability in the SOC
workflow it could enhance threat triage, reduce analyst
burnout, and hasten the incident response by integrating Al-
based summarization.

4.4. Frontend Implementation

The front end of the Al-based log summarization
platform is built using 'React.js," which offers a dynamic and
responsive user interface for SOC analysts. The interface
mainly allows users to upload log files securely, place
summarization requests, and display the generated summaries
from the Al in a user-friendly and organized manner. The
front end uses Axios for HTTP communication with the
backend API and Tailwind CSS for responsive style and
supported for all devices. The main focus of the design was

Fig 2: Example JSON payload

on usability, so SOC personnel can easily initiate use of the
system without the need for technical training.

Listing pseudocode 3: File Upload and Summary Rendering

~

Function handleFileUpload(file):
Use FileReader to read content
Store text in React state

Function handleSummarize():
Send POST request with file content and JWT
Receive summary from backend

\ Display summary to user /

The frontend is developed in React.js and allows
authenticated users to upload .log, .txt or .docx files which are
read with the FileReader API. handleFileUpload(file), as
shown in Pseudocode 3, reads the content into React state;
then, handleSummarize() sends to the backend the content as
well as the JWT token, using Axios. The backend sends the
Al generated summary which the frontend displays in a
scrollable component. This streamlined interface supports

141



efficient interaction as well as will
enhancements, such as filtering, and tagging.

support  future

4.5. MongoDB and Security Setup

The system uses MongoDB to store Al-generated
summaries along with metadata like filename, timestamp, and
user ID. After summarization, the backend creates a
structured object and inserts it into the database using
Mongoose. JWT authentication secures all API routes,
ensuring only authorized users can access or submit data.
Environment variables are used to protect credentials and API

keys.

Listing pseudocode 4: MongoDB Storage Logic

Function saveSummaryToDB(summary, filename, useriD): \
Create object with fields:
- summary
- filename
- timestamp (current time)
- userID (from authenticated session)

Connect to MongoDB
Insert object into the 'summaries' collection

\ Close connection or await future access /

As shown in Pseudocode 4, the backend creates an object
containing the summary and related metadata and inserts it
into the MongoDB collection. This approach ensures secure,
user-specific storage of summarization results, enabling
auditability and future retrieval.

5. Results and Discussion

This section evaluates the functionality and performance
of the proposed Al-driven SOC dashboard, which leverages
Google’s Gemini 1.5 Flash model for log summarization. The
system was tested across multiple log formats and scenarios

4.0

relevant to real-world SOC operations. Metrics such as file
processing time, API latency, Al response quality, and user
experience were captured to determine effectiveness.
Additionally, sample summaries were analysed to
demonstrate the contextual awareness of the LLM when
analysing unstructured security log data.

5.1. Evaluation Setup

The system was deployed on a local development server
using a Dell laptop equipped with an Intel Core i5 processor,
8 GB RAM, and a 256 GB SSD. The Gemini APl was
accessed over a stable internet connection averaging 50
Mbps. Logs of various formats, including .log, .txt, and .docx,
were uploaded for testing. The backend was implemented in
Node.js and Express.js, while the frontend utilized React.js.
MongoDB was used for storing user sessions and summary
metadata.

5.2. Performance Metrics
To quantify system performance, multiple trials were
conducted for each file type. The following metrics were
recorded over 10 iterations:

e Upload to Summary Time: Time taken from file
upload to the display of Al-generated summary.

e Gemini APl Response Time: Time taken by the
Gemini API to return a summary after receiving the
prompt.

e MongoDB Write Latency: Time taken to store the
summary and metadata in the database.

Table 1: Performance Metrics by File Type
Metric Jdog | .txt | .docx
Upload to Summary Time (sec) | 2.1 | 1.8 | 3.4
Gemini API Response (avg) 12 |11] 20
MongoDB Write Latency (ms) | 38 | 34 40

Average Summarization Time by File Type using Gemini API

Avg Time (seconds)
= = i e w w
o w o w o w

<
n

<
o

log

3.4

xt .docx
File Type

Fig 3: Average summarization time by file type using Gemini API.

Table | and Figure 3 present performance evaluation
measures the system's response to a variety of log file
formats. The various metrics calculated include upload-to-

summary time, Gemini API response time, and MongoDB
write latency. Based on the evaluation results it was found
that .txt and .log files experienced a faster processing time

142



and an average summary time of 3 seconds or less, and .docx
files experienced an average summary time of 4 seconds,
which can be attributed to slightly more parsing overhead.
Figure 3 visually compares these average times, confirming
the system’s ability to deliver real-time summarization
performance across formats, making it efficient and suitable
for SOC environments.

5.3. Sample Output Summaries

These examples demonstrate how the Gemini API
interprets and summarizes diverse logs from .log, .txt, and
.docx files helping SOC analysts quickly detect anomalies
and security events.

5.3.1. Sample 1: SSH Brute Force Logs

SSH Brute Force Logs.txt

Raw Log:

Jul 09 00:21:33 Failed password for invalid user admin from
192.168.1.55 port 5548

Jul 09 00:21:34 Failed password for invalid user root from
192.168.1.55 port 5548

Gemini Summary Output:

Choose File  SSH Brute Force Logs.txt

@ Al-Generated Summary

On July 9th at ©@:21:33 and ©@:21:34, an IP
address (192.168.1.55) attempted to log in
using invalid usernames "admin" and "root"
respectively, via port 5548. This suggests a
potential brute-force attack or unauthorized

access attempt.

Fig 4: Al-Generated Summary brute-force attack

5.3.2. Sample 2: Network Scan Behavior

Input Log (.log):

[18:42:01] Incoming TCP SYN request from 192.168.5.22 to
port 21 .

[18:42:02] Incoming TCP SYN request from 192.168.5.22 to
port 22 .

[18:42:03] Incoming TCP SYN request from 192.168.5.22 to
port 23.

Gemini Summary Output:

Choose File  Network Scan Behavior.txt

@ Al-Generated Summary

The IP address 192.168.5.22 attempted to

initiate TCP SYN scans against ports 21 (FTP),
22 (SSH), and 23 (Telnet) within a one-minute
timeframe. This suggests a potential port

scanning or vulnerability assessment attempt.

Fig 5: Al-Generated Summary brute-force attack

5.3.3. Sample 2: Internal Data Exfiltration Attempt
Input Log (.txt):

[01:14:50] File upload: internal_docs.pdf by user123
[01:14:52] Destination IP: 203.0.113.10

[01:14:55] Protocol: FTP, Port: 21

Gemini Summary Output:

Choose File  Internal Data Exfiltration Attempt.docx

@ Al-Generated Summary

User123 uploaded the file " internal_docs.pdf’
via FTP (port 21) to an external IP address

(203.2.113.18) at @1:14:58.
further investigation as it suggests a

This requires

potential data leak.

Fig 6: Al-Generated Summary of Internal Data
Exfiltration Attempt

Figures 4 to 6 illustrate the effectiveness of the Al-driven
summarization system in identifying and interpreting
different cybersecurity events from raw log inputs. Figure 4
captures a classic SSH brute-force attack, where repeated
failed login attempts from the same IP indicate unauthorized
access attempts. Figure 5 highlights network scanning
behavior, with sequential SYN requests to multiple ports
suggesting reconnaissance activity from a potential attacker.
Figure 6 demonstrates the detection of an internal data
exfiltration attempt, where a sensitive file is uploaded via
FTP to an external IP address. These examples show how the
Gemini API successfully transforms unstructured logs into
concise, contextual summaries, enabling SOC analysts to
quickly recognize and prioritize security threats.

5.4. Observations and Discussion

Throughout implementation and evaluation there were a
key observation regarding the operational performance few,
functional utility, and usability of the system within a SOC.
First, the integration of the Gemini 1.5 Flash model
successfully provided contextually aware and accurate
summarizations of log files without requiring users to build
rules or patterns. Clearly, the model was able to identify
security events and trends which are crucial in security
investigations: bruteforce attempts; suspicious IP addresses;
and patterns of suspected data exfiltration; among various
distinct types of log-files (.log, .txt, and .docx). From a
performance testing perspective, there was minimal latency in
response timing for summarization and total time to process
logs was, on average, under 4 seconds per log. Time to
process the logs of the .docx document were slightly slower
than for the other log types but there was still no major issue
for operational usability. Given MongoDB write latency was
minimal and able to confirm the feasibility of real-time
storage and retrieval aspects of the application. Overall, the
system demonstrated high usability, strong Al-model
integration, and operational efficiency, validating its
suitability for modern SOC workflows and establishing a

143



foundation for further enhancements such as real-time stream
processing or multi-log correlation.

5.5. Justification and Advantages

The proposed Al-driven log summarization platform is
justified by the growing need for efficient and scalable
solutions in Security Operations Centers (SOCs), where
traditional manual or rule-based log analysis methods often
fall short due to the volume and complexity of security data.
By integrating Google’s Gemini 1.5 Flash model, the system
provides real-time, context-aware summaries of unstructured
log files without requiring predefined rules or templates. Its
full-stack web-based architecture offers secure, user-friendly
access via JWT authentication, allowing analysts to process
Jog, .txt, and .docx files quickly and remotely. The main
advantages include reduced analyst workload, faster incident
response, format flexibility, and seamless integration with
existing SOC tools. This intelligent and modular solution
modernizes log analysis and enhances the overall
responsiveness and effectiveness of SOC operations.

6. Conclusion and Future Scope

This paper introduced an Al-driven log summarization
platform designed specifically for Security Operations
Centers (SOCs), integrating Google’s Gemini 1.5 Flash
model within a secure, full-stack web architecture. The
system automates the conversion of unstructured log data into
concise, actionable summaries, enabling SOC analysts to
detect security anomalies such as brute-force attacks,
scanning behavior, and data exfiltration attempts. Built using
React.js for the frontend, Node.js/Express for the backend,
and MongoDB for persistent storage, the platform supports
multiple log file formats (.log, .txt, .docx), employs JWT-
based authentication, and ensures secure data handling
through automated file deletion. Performance evaluation
showed that the platform consistently delivered summaries
with end-to-end latency under four seconds, demonstrating its
suitability for real-time SOC environments and operational
scalability.

Despite its effectiveness, the platform has some
limitations. Currently, it operates in a batch-processing mode
and lacks real-time stream log ingestion, which restricts its
application in continuous monitoring environments. The
summarization accuracy is dependent on prompt design and
may be affected when handling highly domain-specific or
multilingual logs. Additionally, the absence of feedback loops
limits the system’s ability to learn from analyst corrections or
improve over time. In the future, enhancements will focus on
supporting live stream log ingestion, integration with SIEM
platforms for real-time threat detection, and expanding
summarization to include multiple languages. Further
developments will also include adding explainable Al (XAl)
components for transparency, feedback-driven refinement of
summaries, and advanced classification modules to
automatically tag and prioritize detected security threats.

References
[1] D. Vavpoti¢, S. Bala, J. Mendling, and T. Hovelja,
“Software Process Evaluation from User Perceptions

and Log Data,” J. Softw. Evol. Process, vol. 34, no. 4,
pp. 1-14, Apr. 2022, doi: 10.1002/smr.2438.

[2] A. Abhishek and P. Khare, “Cloud Security Challenges:
Implementing Best Practices for Secure SaaS
Application Development,” Int. J. Curr. Eng. Technol.,
vol. 11, no. 06, Nov. 2021, doi:
10.14741/ijcet/v.11.6.11.

[3] Vikas Prajapati, ‘“Role of Identity and Access
Management in Zero Trust Architecture for Cloud
Security: Challenges and Solutions,” Int. J. Adv. Res.
Sci. Commun. Technol., vol. 5, no. 3, pp. 6-18, Mar.
2025, doi: 10.48175/IJARSCT-23902.

[4] V. Thangaraju, “Security Considerations in Multi-Cloud
Environments with Seamless Integration: A Review of
Best Practices and Emerging Threats,” Trans. Eng.
Comput. Sci., vol. 12, no. 2, pp. 1-6, 2024.

[5] K. S. Jeon, S. J. Park, S. H. Chun, and J. B. Kim, “A
study on the big data log analysis for security,” Int. J.
Secur. its Appl., 2016, doi: 10.14257/ijsia.2016.10.1.02.

[6] M. Wurzenberger, F. Skopik, R. Fiedler, and W.
Kastner, “Discovering insider threats from log data with
high-performance bioinformatics tools,” in MIST 2016 -
Proceedings of the International Workshop on
Managing Insider Security Threats, co-located with CCS
2016, 2016. doi: 10.1145/2995959.2995973.

[71 V.S. Thokala, “Improving Data Security and Privacy in
Web Applications : A Study of Serverless Architecture,”
Int. Res. J., vol. 11, no. 12, pp. 74-82, 2024.

[8] S. P. Kalava, “Enhancing Software Development with
Al-Driven Code Reviews,” North Am. J. Eng. Res., vol.
5, no. 2, pp. 1-7, 2024,

[9] D. Tovaridk, S. Spagek, and J. Vykopal, “Traffic and
log data captured during a cyber defense exercise,” Data
Br., 2020, doi: 10.1016/j.dib.2020.105784.

[10] V. Prajapati, “Cloud-Based Database Management :
Architecture , Security , challenges and solutions,” J.
Glob. Res. Electron. Commun., vol. 1, no. 1, 2025.

[11] Suhag Pandya, “Innovative blockchain solutions for
enhanced security and verifiability of academic
credentials,” Int. J. Sci. Res. Arch., vol. 6, no. 1, pp.
347-357, Jun. 2022, doi: 10.30574/ijsra.2022.6.1.0225.

[12] S. A. Chamkar, Y. Maleh, and N. Gherabi, “Security
Operations Centers: Use Case Best Practices, Coverage,
and Gap Analysis Based on MITRE Adversarial Tactics,
Techniques, and Common  Knowledge,” J.
Cybersecurity Priv., vol. 4, no. 4, pp. 777-793, Sep.
2024, doi: 10.3390/jcp4040036.

[13] S. P. Godavari Modalavalasa, “Exploring Azure
Security Center: A Review of Challenges and
Opportunities in Cloud Security,” ESP J. Eng. Technol.
Adv., vol. 2, no. 2, pp. 176-182, 2022, doi:
10.56472/25832646/JETA-V212P120.

[14] M. Vielberth, F. Bohm, I. Fichtinger, and G. Pernul,
“Security Operations Center: A Systematic Study and

Open  Challenges,” IEEE Access, 2020, doi:
10.1109/ACCESS.2020.3045514.
[15] V. Panchal, “Mobile SoC Power Optimization :

Redefining Performance with Machine Learning
Techniques,” IJIRSET, vol. 13, no. 12, pp. 1-17, 2024,
doi: 10.15680/1JIRSET.2024.1312117.

144



[16] H. Mistry, K. Shukla, and N. Patel, “Transforming
Incident Responses, Automating Security Measures, and
Revolutionizing Defence Strategies through Al-Powered
Cybersecurity,” J. Emerg. Technol. Innov. Res., vol. 11,
no. 3, pp. h38-h45, 2024.

[17] R. de Céspedes and G. Dimitoglou, “Development of a
Virtualized Security Operations Center,” J. Comput. Sci.
Coll., 2021.

[18] V. S. Thokala, “A Comparative Study of Data Integrity
and Redundancy in Distributed Databases for Web
Applications,” Int. J. Res. Anal. Rev., vol. 8, no. 4, pp.
383-389, 2021.

[19] S. B. Shah, “Machine Learning for Cyber Threat
Detection and Prevention in Critical Infrastructure,”
Dep. Oper. Bus. Anal. Inf. Syst. (OBAIS, vol. 2, no. 2,
pp. 1-7, 2025, doi: 10.5281/zenodo.14955016.

[20] Y. Lu, “LogSage: Log Summarization Assistant with
Guided Enhancement,” in Proceedings of the 40th
ACM/SIGAPP Symposium on Applied Computing, New
York, NY, USA: Association for Computing Machinery,
2025, pp. 1979-1981.

[21] K. S. Saurabh Pahune, Zahid Akhtar, Venkatesh
Mandapati, “The Importance of Al Data Governance in
Large Language Models,” Preprints, 2025.

[221 M. C. Saurabh Pahune, “Several categories of large
language models (Ilms): A short survey,” arXiv, 2023,
doi: arXiv preprint arXiv:2307.10188.

[23] E. Ferragut and N. Braden, “System log summarization
via semi-Markov models of inter-arrival times,” in ACM
International Conference Proceeding Series, 2011. doi:
10.1145/2179298.2179346.

[241 V.  Thangaraju, “Enhancing Web  Application
Performance and Security Using Al-Driven Anomaly
Detection and Optimization Techniques,” Int. Res. J.
Innov. Eng. Technol., vol. 9, no. 3, p. 8, 2025.

[25] S. Locke, H. Li, T.-H. P. Chen, W. Shang, and W. Liu,
“LogAssist: Assisting Log Analysis Through Log
Summarization,” IEEE Trans. Softw. Eng., vol. 48, no.

9, pp. 3227-3241, 2022, doi:
10.1109/TSE.2021.3083715.
[26] S. Grizan and S. Gurun, “On-Device Log

Summarization Using Artificial Intelligence to Improve
Crash Analysis,” 2024.

[27] B. P. Woolf, “Implementation Of A Gemini-Driven
Adaptive Learning System For Personalized Online
Education,” vol. 13, no. 6, pp. 11-18, 2025.

[281 M. Menghnani, “Modern Full Stack Development
Practices for Scalable and Maintainable Cloud-Native
Applications,” Int. J. Innov. Sci. Res. Technol., vol. 10,
no. 2, pp. 1206-12186, 2025, doi:
10.5281/zen0do.14959407.

[29] R. Shrivastav, S. Shahane, T. S. Hydri, M. V Akre, and
Z. D. Amin, “Exploring potential of Gemini with Al
based content generator,” Int. J. Res. Comput. Inf.
Technol., vol. 2, no. 1, pp. 68-72, 2024, doi:
10.5281/zenodo.11207604.

[30] S. P. B. and G. Modalavalasa, “Advancements in Cloud
Computing for Scalable Web Development: Security
Challenges and Performance Optimization,” J. Comput.
Technol. Int. J., vol. 13, no. 12, pp. 01-07, 2024.

[31] S. Sesha and S. Neeli, “Data Protection in the Digital
Age: SOC Audit Protocols and Encryption in Database
Security,” ESP Int. J. Adv. Comput. Technol., vol. 2, no.
3, pp. 167-172, 2024, doi: 10.56472/25838628/IJACT-
V213P115.

[32] A. Mohsin, H. Janicke, A. lbrahim, I. Sarker, and S.

Camtepe, “A Unified Framework for Human Al
Collaboration in Security Operations Centers with
Trusted Autonomy,” 2025. doi:

10.48550/arXiv.2505.23397.

[33] Ismail et al., “Toward Robust Security Orchestration
and Automated Response in Security Operations Centers
with a Hyper-Automation Approach Using Agentic
Artificial Intelligence,” Information, vol. 16, no. 5,
2025, doi: 10.3390/info16050365.

[34] D. Park, B. Min, S. Lim, and B. Kim, “ATIRS: Towards
Adaptive Threat Analysis with Intelligent Log
Summarization and Response Recommendation,”
Electronics, vol. 14, no. 7, p. 1289, Mar. 2025, doi:
10.3390/electronics14071289.

[35] S. Afridi and A. Abbas, “Al and Machine Learning-
Driven SOC Operations: Transforming Cyber Security
Efficiency,” 2024. doi: 10.13140/RG.2.2.10444.53122.

[36] S. Balaji, D. Puspita, S. Sriram, and S. Ragul, “Al
Enhanced Anomaly Detection of System Logs in Cyber
Security,” in 2024 International Conference on System,
Computation, Automation and Networking (ICSCAN),
IEEE, Dec. 2024, pp. 1-6. doi:
10.1109/ICSCAN62807.2024.10894286.

[37] P. Balasubramanian, J. Seby, and P. Kostakos,
“CYGENT: A cybersecurity conversational agent with
log summarization powered by GPT-3,” in 2024 3rd
International Conference on Artificial Intelligence For
Internet of Things (AlloT), IEEE, May 2024, pp. 1-6.
doi: 10.1109/Al10T58432.2024.10574658.

[38] P. Mudgal and R. Wouhaybi, “An Assessment
of ChatGPT on Log Data,” in Communications in
Computer and Information Science, 2024. doi:
10.1007/978-981-99-7587-7_13.

[39] V. Komperla, P. Deenadhayalan, P. Ghuli, and R. Pattar,
“React: A detailed survey,” Indones. J. Electr. Eng.
Comput. Sci., 2022, doi: 10.11591/ijeecs.v26.i3.ppl710-
1717.

[40] M. Kumawat, V. Shrivastava, A. Pandey, and S. Kumar,
“International Journal of Research Publication and
Reviews Node . Js Review: A Comprehensive
Overview of the JavaScript Runtime Environment,” Int.
J. Res. Publ. Rev., vol. 5, no. 4, pp. 268-270, 2024.

[41] A. Mardan, “Starting with Express.js,” 2014, pp. 3-14.
doi: 10.1007/978-1-4842-0037-7_1.

[42] A. Sharma, V. Shrivastava, A. Pandey, and E. A
Sharma, “International Journal of Research Publication
and Reviews Providing Authentication using JSON Web
Tokens for Enhancing User Security,” vol. 5, no. 4, pp.
5309-5312, 2024.

[43] S. Naik, R. D. Dandagwhal, C. N. Wani, and S. K. Giri,
“A review on various aspects of auxetic materials,” AIP
Conf. Proc., vol. 2105, no. 05, pp. 90-92, 2019, doi:
10.1063/1.5100689.

145



