International Journal of Emerging Research in Engineering and Technology
‘ljb L JJ dgi' Pearl Blue Research Group| ICRCEDA2025-Conference Proceeding
i U os) o ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.ICRCEDA25-143

Original Article

Explainable and Context-Aware Financial Nudges via Event-
Driven Microservices

Anuraga Prasanna Mandaleeka
Member - IEEE, California, USA.

Abstract - As financial decision-making becomes increasingly automated and personalized, users demand not only timely and
relevant financial recommendations, but also transparency in how those suggestions are generated. This paper presents a
novel microservices-based framework that delivers context-aware financial nudges enhanced by explainable Al (XAl),
designed for real-time deployment in modern fintech applications. The proposed system leverages event-driven microservices
to continuously ingest and process multi-modal data streams including transaction history, geo location, time-of-day patterns,
and behavioral signals to deliver actionable insights such as spending warnings, savings opportunities, and goal reminders.
Each microservice is responsible for a modular task such as context classification, recommendation generation, or explanation
rendering. What distinguishes this work is the integration of explainability modules using interpretable Al techniques (e.g.,
SHAP, counterfactuals, rule-based trees) embedded within each service. This enables the system to answer, "Why am | getting
this nudge?" in natural language, thereby fostering user trust and behavioral compliance. The framework is evaluated on
synthetic and anonymized financial datasets to simulate diverse user behaviors. Results demonstrate the effectiveness of
contextual triggers (e.g., time, location, prior habits) in increasing user engagement, while explainability boosts users'
perceived relevance and trust in the system. The architecture adheres to principles of modularity, fault isolation, and data
minimization, making it suitable for deployment in privacy-sensitive financial environments. This research bridges the gap
between intelligent personalization and transparent automation in fintech, paving the way for ethical, user-centered financial
advisory systems.

Keywords - Context-Aware Nudges, Event-Driven Microservices Explainable Al, Financial Nudges, Kafka, SHAP, XAl.

1. Introduction and Motivation

In today’s fast-paced digital environment, users are constantly bombarded with notifications, messages, and alerts from
numerous apps and services. Compounding this challenge is the well-documented decline in human attention spans, which have
dropped from an average of 12 seconds in 2000 to just 8 seconds by 2015shorter than that of a goldfish. Within this context,
delivering timely and engaging personalized financial alerts becomes not only challenging but essential. Such alerts play a critical
role in helping users avoid overspending, identify risky financial behavior, and stay aligned with their budgeting goals. However,
generic notifications like “You’ve spent more than usual” or “Try saving more” often fail to resonate, lacking the specificity and
clarity needed to drive meaningful action. As a result, while financial apps increasingly employ Al for personalization, users may
ignore, dismiss, or even distrust these messages if they do not clearly understand their relevance or origin. There is a significant
gap in user trust and regulatory transparency, and explainability remains a challenge in high-stakes environments.

Recent advancements in Explainable Al (XAl) and microservices-based personalization offer an opportunity to reimagine
the kind of notifications financial apps provide to consumers. By leveraging real-time behavioral insights and providing tailored
alerts or “nudges” that explain their rationale, financial technology platforms can improve engagement, trust, and long-term
financial wellness. This paper outlines a modular architecture that uses event driven microservices, messaging systems, machine
learning models, and SHapley Additive exPlanations (SHAP)-driven explanation generation to deliver contextual, interpretable,
and actionable nudges. While popular fintech tools like Cleo and Revolut offer real-time spending notifications and basic
categorization, their systems often lack transparency into why a particular message was generated. This paper proposes
architecture that addresses this gap by combining real-time data ingestion, decision intelligence, and human-readable
explanation mechanisms in a scalable microservices framework.

PERSONALIZED FINANCIAL ALERTS

User
Preferences . Alerts
| _Explqmable A
Financial Alerts

System
Bank API

User

Fig 1: Personalized Financial Alerts Nudge System

2. Related Work

Recent years have seen increasing interest in using artificial intelligence to provide personalized financial guidance.
However, explainability and user trust remain major challenges, especially in high-stakes domains like personal finance.
Explainable Al (XAl) has gained traction to help users understand how and why Al systems make certain decisions. SHAP
(SHapley Additive exPlanations), introduced by Lundberg and Lee [1], offers a model-agnostic approach that explains
predictions by attributing contributions to individual input features. Its mathematical grounding makes it suitable for sensitive
applications like financial nudging, where transparency is essential. Explainability frameworks have also been adopted in
regulated contexts such as credit scoring and financial ratings, demonstrating real-world applicability of XAl in finance [2]. In
fact, a user study by Ben-David et al. [3] found that when users were provided with explanations (like SHAP outputs), they were
more likely to trust and follow automated financial advice.

Personalized nudgingtimely, relevant prompts to influence user behaviorhas been explored in fintech applications but is often
limited to simple rules or static triggers. While apps like Cleo and Revolut offer basic spending alerts and categorization, they
lack transparency around why specific notifications are triggered. This limits user trust and may reduce long-term engagement.
Some financial platforms like Cleo and Revolut offer personalized alerts, but their reasoning models are opaque and not publicly
documented. Cleo uses a chatbot interface to deliver budget reminders and spending tips, but its alerts often lack detailed
explanations tied to user behavior. Revolut offers real-time spend tracking and category-based budgeting; however, its
notifications typically focus on descriptive analytics rather than providing explanatory context about what triggered a specific alert.
Academic work on XAl in financial decision-making exists but rarely focuses on real-time, user-facing explanations within
modular architectures. The need for interpretability in financial decision-making has been widely acknowledged, particularly as
machine learning systems face scrutiny for opacity and lack of auditability in high-stakes environments. This is critical because
financial advice directly affects user decisions and well-being.

On the infrastructure side, microservices and event-driven architectures are commonly used in modern financial systems to
ensure scalability and modularity. Kafka is widely adopted for real-time event processing due to its strong delivery guarantees,
partitioning, and ability to replay [3]. However, few published systems combine these architectural benefits with explainable Al to
deliver contextual, human-readable financial nudges. In summary, while existing literature explores explainability,
personalization, and microservices individually, there is a gap in integrating all three into a real-time, transparent financial advisory
system. This paper addresses that gap by proposing a Kafka-based microservices pipeline that delivers explainable, context-
aware nudges to users based on behavioral and transactional signals.

3. System Architecture and Context-Aware Data Pipeline

Despite widespread adoption of Al-driven personalization in financial applications, many existing systems fall short in two
key areas: contextual relevance and explainability. Users often receive generic alerts such as “You’re spending more than usual” or
“Try saving more,” which fail to account for the user’s financial habits, time-sensitive context (e.g., rent week or holidays), or
location-based spending. These alerts are typically static, one-size-fits-all, and lack transparency about why they were triggered. As
financial decisions directly impact users' well-being, trust in automated suggestions becomes crucial. However, current systems
rarely communicate the logic behind their recommendations. Without clear, understandable reasoning, users may distrust or
ignore these messagesundermining both user engagement and financial outcomes. Moreover, most existing architectures are
monolithic or tightly coupled, making it difficult to scale, personalize, or add interpretability features.

The problem becomes more acute in real-time systems, where delivering timely and tailored nudges at scale requires a
modular, fault-tolerant architecture. At the same time, the financial domain demands rigorous attention to privacy, auditability,
and regulatory transparencyrequirements that are poorly supported in traditional black-box Al systems. This study addresses
these gaps by asking: How can we build a real-time, modular system that delivers explainable, context-aware financial nudges,
while preserving user trust, system scalability, and data privacy? The proposed system is composed of modular microservices that
interact asynchronously a messaging system. In this proposal, Apache Kafka is a suitable implementation, and the system

420

utilizes Kafka “topics” to interact via events. Each service fulfills a discrete responsibility and collectively enables real-time,
explainable nudging at scale.

3.1. Data Ingestor:
This stateless microservice reads transaction data from the Bank API Interface and produces structured events to the
“transactions” Kafka topic. It performs basic validation, schema enforcement, and user ID tagging for downstream correlation.

3.2. Context Processor:

This component subscribes to the “transactions” topic and enriches each record with historical user behavior, spending
category tags, budget goals, geolocation, and time-based context. It relies on internal APIs to retrieve user profile data and
budget metadata from a secure database. The enriched event is then published to the “context-events” topic.

3.3. Nudge Decision Engine:
This service consumes from the “context-events” topic. It evaluates if a nudge should be sent using either:
o Rule-based logic (e.g., “if grocery spending exceeds 80% of budget”)
e Atrained ML model that classifies events as 'nudge-worthy' or not. The model is trained on labeled behavioral data and
validated against financial outcomes. Events deemed relevant are passed to the XAl module along with prediction
metadata and model inputs. A corresponding message is published to the “nudge-decisions” topic.

3.4. XAl (Explainable Al) Module (SHAP Engine):

This module consumes decision outputs and applies SHAP to the ML model inputs to generate explanations. SHAP
(SHapley Additive exPlanations) is a unified framework for model interpretability that assigns a contribution value to each
input feature by analyzing the marginal impact of that feature across all possible combinations [1]. SHAP has also been
successfully applied in financial settings such as accounting audits, where transparency into model outputs is critical for trust
and compliance [4]. In financial nudging, SHAP can highlight which factors it evaluates such as a spike in dining-out expenses
or nearing a budget threshold had the most influence on the alert generation.

For example, if a user's grocery expenses increased 25% compared to their previous three-month average, and they are
approaching 90% of their budget limit, SHAP assigns proportional values to these features. This not only aids developers and
data scientists in understanding model behavior but also enables transparent and tailored communication with users. The system
then uses a templating engine to convert SHAP outputs into readable explanations such as: “This alert is based on your recent
grocery spending pattern and your budget goals.” Optional visualizations like SHAP force plots or summary bar charts can be
embedded into the alert for additional clarity. The system also logs the SHAP explanation for developers to analyze and optionally
includes simple visual cues like bar charts for the user. Final messages are published to the “nudge-explanations” topic.

3.5. Notification Service:

This component listens to “nudge-explanations” and pushes formatted alerts to the end user via in-app notifications, emails, or
integrated chatbots, depending on the preferred mode of alerting. It ensures delivery acknowledgments and retries failed sends.
In this proposal, each service is ideally independently deployable and designed for horizontal scalability. Stateless services persist
minimal metadata in internal databases, relying heavily on Kafka’s sequencing and service coordination. A service mesh manages
traffic, load balancing, retries, and encryption of service-to-service communication. Kafka Connectors may also be employed
for integration with databases or analytics pipelines. The system logs enable developers, product managers and auditors to view
the explanations that the system makes to improve or make modifications to the system. This is core to Explainable Al and will
help us determine why certain explanations are being triggered. To deliver effective financial nudges, the system must go beyond
simple transactional analysis and instead construct a rich, contextual understanding of each user’s financial behavior. This
context is derived by aggregating multiple input streams that, when combined, provide a nuanced and real-time snapshot of user
activity, preferences, and risk factors.

The foundation of this context model is built on three primary data sources. First, real-time and historical bank transaction
data is ingested through open banking APIs (e.g., Plaid), offering structured insight into merchant details, amounts,
timestamps, and categorized spending. These inputs allow the system to track trends, flag budget violations, and detect anomalies
across common categories like groceries, dining, or utilities. Second, user behavior signals, such as logins, previously ignored
nudges, and updates to savings goals, such as adding spending thresholds for buying a home, are collected to assess user
engagement and responsiveness. These behavioral events inform the system’s ability to fine-tune the tone, frequency, and
relevance of nudges over time. Third, regular events such as salary deposits, rent or mortgage due dates, and subscription renewals
are used to model expected financial flows. These patterns establish a temporal rhythm for each user, enabling the system to
anticipate cash flow constraints or peaks in spending behavior.

To complement these core inputs, the system incorporates a range of enriched contextual signals. For example, if a user opts to
share his location data with the app, geolocation data can enable and trigger location-based alerts. An example is flagging

421

increased discretionary spending when the user is near a high-end shopping area. Likewise, spending history across prior months
helps establish personalized baselines and identify deviations, such as seasonal spending surges or recurring overspending
trends. Temporal patterns, including pay cycles and bill due dates, allow for timely and anticipatory nudging. The system can also
integrate with personal or financial calendars enables proactive budgeting recommendations for holidays, travel, or known large
expenses. Finally, the system accounts for user-defined financial goalssuch as saving for a home or paying off debtby assessing
how real-time spending aligns with or deviates from these objectives. This enables more impactful messages like, “This purchase
may delay your goal of saving for a house.”

These diverse data streams are unified and processed by the Context Processor microservice, which generates a
consolidated, timestamped snapshot of each user’s financial state. This enriched context is then published to the context- events
Kafka topic, providing critical input to downstream services such as the Nudge Decision Engine and the XAl Module. Together,
these components ensure that real-time financial nudges are not only timely but also personally relevant and interpretable,
grounded in each user’s evolving financial landscape, and also providing the necessary context to guarantee user’s satisfaction
and engagement. The proposed system relies on Apache Kafka as the event-streaming backbone, facilitating scalable,
asynchronous communication between microservices. Each Kafka topic represents a distinct semantic layer in the data processing
pipeline, enabling modularity, resilience, and reusability. The topic design and processing stages align with best practices for
Kafka- driven microservices as outlined in [4]. The 'user-events' topic captures behavioral telemetry from user-facing interfaces
such as mobile apps or web portals.

Events include user interactions like app logins, ignored nudges, and goal modifications. These signals provide real-time
insight into engagement patterns and behavioral trends. The Context Processor consumes this stream to dynamically adapt
nudging logic and to personalize recommendations based on user responsiveness. The ‘transactions' topic is the main source of
financial activity data. It ingests normalized transaction records via integrations with third-party banking APIs (e.g., Plaid).
Each event typically includes the transaction amount, category, merchant metadata, and timestampall necessary to understand
individual users’ spending habits. This stream is consumed by the Context Processor for enrichment and is retained for
historical trend analysis and downstream auditability via logs. If users opt in to location sharing, the system publishes
geolocation metadata to the 'location-events' topic. This enables the detection of contextual triggers such as store visits, travel,
or geographically relevant expenses.

The Context Processor fuses this stream with transactions to support location-aware nudgingfor example, detecting
discretionary spending spikes while on vacation. Another example cited earlier is discretionary spending alerting when a user is
in close proximity to a retail store and if they are past their monthly spending thresholds. The ‘context-events' topic contains
event payloads enriched by the Context Processor. It represents a holistic snapshot of user financial behavior at a point in time,
integrating data from ‘transactions', 'user-events', 'location-events' (if enabled), and internal user profile databases. Enrichment
features may include budget consumption percentage, deviation from average category spend, upcoming bill reminders, and
inferred pay cycles. This stream feeds the Nudge Decision Engine and enables decision-making that is context aware.

The Nudge Decision Engine produces events to the 'nudge-decisions' topic, which encapsulates the outcome of rule-based
logic or machine learning classification. Each event includes a binary decision (e.g., ‘send’ or ‘suppress’) by way of a flag, along
with prediction confidence scores, triggering conditions, and relevant feature metadata. These records are consumed by the XAl
module for explanation generation and are also useful for model performance monitoring and A/B testing. The 'nudge-
explanations' stream contains fully formatted, human-readable messages generated by the XAl module. These explanations are
derived from SHAP value analysis and templated into user-facing messages. For instance, a typical payload might state: “Your
grocery spending this week is 25% above your monthly average.

Consider adjusting your weekly grocery budget.” The Notification Service consumes this topic to distribute alerts via
mobile push, email, or chatbot interfaces, per user preferences. This event-topic structure decouples service responsibilities,
supports horizontal scaling, and enables data replay for compliance, model retraining, and debugging. Each topic serves as a
well-defined contract between upstream and downstream consumers, reinforcing the reliability and modularity of the financial
nudging system.Kafka’s features of ordering and ability to replay are crucial. Partitioning by user ID ensures ordered
processing. At- least-once delivery is employed for idempotent consumers and processors. Exactly-once delivery is required for
sensitive decisioning processors. The system ensures that services can recover from faults and reprocess events without
inconsistencies. As demonstrated in [4], Kafka offers strong guarantees for event ordering and service decoupling, which are
essential in real-time financial pipelines.

422

Data Ingestor

Bank API —* {reads, evaluates
patterns)
Kafka Topic
transactions”

Context Processor
(reads, evaluates
patterns)

Kafka Topic

“conmtext-ovents ™

N

Nudge Decision Engine
{chooses nudge)

Kafka Topic
“nudge-decsions”

-

XAl Module
(adds reasoning,
formats message)

‘ Kafka Topic

“nudge-explarations
S

Notification Service
(sends to user)

Fig 2: System Overview of Modular Microservices and Interactions with Kafka Topics

4. Explainable Al for Financial Nudging

The XAl module uses SHAP (SHapley Additive exPlanations) to provide transparency in machine learning decisions,
particularly those related to personalized financial nudging. SHAP values help explain how each featuresuch as grocery spending,
budget limits, or time-based patternscontributed to a model’s output. For example, a user might receive an alert that states: “This
alert is based on your increased grocery expenses this week and the fact that you're nearing your monthly grocery budget.” This
message is generated dynamically from SHAP values in conjunction with data from the user’s transaction history and personal
profile. The module may optionally include visual aids such as bar charts or force plots to enhance user comprehension. SHAP is
a model-agnostic method grounded in cooperative game theory, to explain machine learning predictions. SHAP assigns a value
to each input feature, indicating how much it contributedpositively or negativelyto a particular output decision. This makes it
well-suited to generating transparent, individualized explanations for financial nudges triggered by the Nudge Decision Engine.
Recent research emphasizes the need for temporal explainability in financial applications [5], supporting our use of sequential
transaction history as part of the SHAP-based justification process.

In this context, each feature is treated as a “player” in a prediction “game,” and the outcomei.e., the system’s decision to trigger
a nudgeis broken down to reveal each feature’s role. Within the system’s architecture, model inputs and prediction outcomes
for nudge-worthy events are passed to the SHAP engine, which uses appropriate explainers such as TreeExplainer or
KernelExplainer, depending on the underlying model type. These SHAP values not only support developer-facing
interpretability and auditability but also allow downstream components to generate user-facing explanations that build trust and
behavioral compliance. Recent research underscores the need for temporal explainability in financial domains [5], which
motivates our use of time-sequenced transaction histories as part of the SHAP-based reasoning process. SHAP performs feature
attribution by quantifying how much each input contributed to a model’s prediction for a given user event. In the context of
financial nudging, this includes features such as current spending within a specific category like groceries, the percentage of the
user’s monthly budget already utilized, the velocity of spending based on recent daily trends, the presence of recurring
transactions (e.g., subscriptions or bills), and the calendar date, such as proximity to payday. These contributions help the system
generate nuanced, user-specific explanations that clarify the reasoning behind each nudge.

4.1. Example Attribution Output:
Below is an example of the how the SHAP framework might assign values to a certain type of event:
Table 1: Example Attribution Output

Feature SHAP Valug
Grocery Spend (past week)| +0.35
Budget Threshold (90% hit) +0.28
Salary Deposit (recent) -0.12
Previous Alert (ignored) -0.05

423

The system converts these values into a human-readable message:

“This alert was generated based on your increased grocery spending this week and the fact that you are nearing your set
budget.” Visualizations like SHAP bar plots or force plots can be included in emails or app dashboards to provide deeper insight
into the model's rationale. SHAP offers several advantages within this system. It provides local interpretability by explaining
individual predictions for specific user events, rather than offering only generalized model behavior. This is crucial for
personalized financial nudges where users expect explanations tailored to their specific actions. Additionally, SHAP stands out as
the only method with formal guarantees of fairness, consistency, and local accuracy, making it a reliable choice for financial
systems where trust and transparency are critical. Beyond user-facing benefits, SHAP also supports internal model debugging by
revealing potential sources of bias, feature leakage, or unintended correlations during the model development phase. However,
the computational cost of SHAP can be significant, especially in real-time applications.

While SHAP is powerful, it can be computationally intensive. The system implements several performance optimizations:
caching commonly encountered SHAP explanations, using SHAP variants and asynchronous explanation generation.
Employing fast SHAP variants like TreeExplainer for decision tree models and generating explanations asynchronously via
Kafka to prevent any delay in user interactions. These optimizations ensure the architecture remains responsive and scalable,
capable of serving thousands of users simultaneously without introducing latency bottlenecks. It is worth mentioning the the
drawback of using caching may lead to organizations exceeding their budgets to maintain extensive caching mechanisms. By
incorporating SHAP in the decision pipeline, the system not only delivers more actionable and context-aware nudges, but also
helps organizations build transparency and trust with users. Users are more likely to respond positively and take meaningful action to
financial advice when they understand its rationale, and regulators are more likely to accept systems that maintain explainability
logs and reasoning traceability.

Let’s look at a short example of how a user connects their bank account and the information that the system ingests as
transactions:

e Aspike in grocery spending is detected by the Context Processor.

The Nudge Engine evaluates this against past behavior and budget goals.

A decision to nudge is made.

SHAP explains this decision based on features: high spending and nearing budget.

A notification is generated: "You're close to your grocery budget. Consider limiting expenses this week."

s N

Context Processor
A spike in grocery
spending is detected by

the Context Processor

1
Nudge Engine

Evaluates this against past
behavior and budget goals

1

Decision to Nudge
A decision to nudge is made

l
SHAP Explainer

SHAP explains this decision
based on features: high
spending and nearing budget

)

Notification

"You're close to your grocery
budget. Consider limiting
expenses this week.”

Fig 3: Example of How the System Ingests Data

SHAP has been employed in various financial Al systems, including explainable trading models [6] and responsible
transaction classifiers [7]. However, few existing architectures integrate SHAP into a real-time nudging pipeline with event- driven
microservices, as proposed in this work.

5. Security and Privacy Considerations for the System

The proposed system handles sensitive user financial and behavioral data, requiring robust safeguards to ensure security, data
privacy, and regulatory compliance. Security is enforced at multiple layers of the architecture, from API authentication to inter-
service communication and data governance. All third-party integrations with banking APIs use OAuth 2.0 for secure,
delegated access, with access tokens scoped to the minimum permissions necessary to reduce risk. Internally, role- based access

424

control (RBAC) governs permissions between stateless microservices. The system adheres to privacy-by-design principles by
processing and storing only the features necessary for contextual modeling and decision-making, while personally identifiable
information (PII) is redacted or pseudonym zed wherever feasible. User consent is explicitly obtained for all data collection
financial, geo location, and behavioral with preferences managed through a centralized consent management service that allows
real-time updates or revocation. Kafka’s event history and employing secure logging provides a transparent mechanism for auditing
and rollback. External API calls are rate-limited and monitored for anomalies, and APl gateways enforce throttling, IP
whitelisting, and token expiration to prevent abuse. All data is encrypted both in transit via TLS and at rest, with scoped tokens
and rate limits further securing API access. These layered protections ensure the system remains compliant, resilient, and
trustworthy in handling financial data.

6. Conclusion and Future Work

This paper presented a modular, real-time nudging system that combines event-driven microservices, machine learning, and
explainable Al (XAl) to deliver actionable, context-aware financial advice. By leveraging Kafka for scalable event streaming
and SHAP for interpretable decision-making, the system addresses core shortcomings in existing financial notification systems,
which often fail to engage users due to their generic nature and lack of transparency. The value of the system lies in several
dimensions. From a technical standpoint, the microservices-based architecture ensures modularity, scalability, statelessness, and
fault tolerance, making it deployable in modern cloud-native fintech environments. Kafka’s event replay and partitioning
capabilities allow for robust, stateless processing, auditing, and traceability features critical for financial applications subject to
regulatory oversight.

They reinforce the system’s asynchronous, real-time processing model, enabling services to scale independently while
maintaining consistency and fault tolerance. The architecture also enables rapid iteration, A/B testing, and continuous integration
of new data sources without disrupting existing workflows and secure logging for providing understanding why certain
decisions were made by XAl. Security is enforced at multiple levels of the system through OAuth 2.0 authentication, encrypted
communication (TLS), role-based access control (RBAC), and user-consent-driven data policies to ensure safe and compliant
handling of sensitive financial information. From an end-user experience perspective, the system builds trust by providing clear,
personalized, and timely nudges that are backed by explicit explanations. Rather than presenting opaque alerts, the system
leverages SHAP to generate user- facing rationale, for example, “Your grocery expenses are 25% higher than your monthly
average”, which enhances perceived fairness, personalization, transparency, and relevance.

This level of interpretability is especially crucial in financial decision- making, where users are sensitive to advice that affects
their well-being. From an industry and regulatory perspective, the system aligns with emerging requirements for responsible
Al, including explainability, fairness, data privacy, and user consent. As financial institutions face increasing pressure to provide
auditable, ethical Al systems, this architecture provides a practical blueprint for integrating explainability at every stage from
decision to delivery while honoring user privacy and data minimization principles. Future work will explore multiple
enhancements. First, behavioral A/B testing will be conducted to measure the real- world effectiveness of nudges and
explanations in driving positive financial behavior.

Metrics such as user behavior, budget adherence, and user trust scores determined via adoption and engagement will help
validate the system’s impact. Second, the architecture will be extended to cover additional domains such as debt management,
emergency savings, and financial goal planning, requiring new models and rule sets. Third, incorporation of reinforcement
learning or adaptive feedback loops will allow the system to dynamically tailor nudges over time based on user outcomes and
preferences. Overall, this work contributes an applied, urgent and interpretable framework for embedding ethical decision
intelligence into real-time fintech applications. By combining personalization with explainability, it moves one step closer to
closing the trust gap between consumers and automated financial systems.

References

[1] S. M. Lundberg and S.-1. Lee, "A Unified Approach to Interpreting Model Predictions,” in Conference on Neural Information
Processing Systems, Long Beach, California, 2017.

[2] S. Kimand J. Woo, "Explainable Al framework for the financial rating models: Explaining framework that focuses on the
feature influences on the changing classes or rating in various customer models used by the financial institutions.,” in
International Conference on Computing and Pattern Recognition, Shanghai, China, 2021.

[3] J. Kreps, N. Narkhede and J. Rao, "Kafka: a Distributed Messaging System for Log Processing," 2011.

[4] V. K. Carl, P. Weber and O. Hinz, "Applications of Explainable Artificial Intelligence in Financea systematic review of
Finance, Information Systems, and Computer Science literature," Management Review Quarterly, vol. Volume 74, no. June
2024, p. 867—907, 28 February 2023.

[5] P.-D. Arsenault, S. Wang and J.-M. PATENAUDE, "A Survey of Explainable Artificial Intelligence (XAl) in Financial Time
Series Forecasting," ACM, p. 35, 2018.

425

[6] C. Maree, J. E. Modal and C. W. Omlin, "Towards Responsible Al for Financial Transactions.," in IEEE Symposium Series on
Computational Intelligence, Canberra, Australia, 2020.

[71 D. B. David, Y. S. Resheff and T. Tron, "Explainable Al and Adoption of Financial Algorithmic Advisors: an Experimental
Study," in Artificial Intelligence, Ethics, and Society, 2021.

[8] K. Venkatachalapathi, "Event-Driven Architecture: Harnessing Kafka and Spring Boot for Scalable, Real-Time Applications,”
International Journal of Scientific Research in Computer Science, Engineering and Information Technology, vol. 10, no. 6, pp. 474-86,
2024.

[91 V. L. Bandara, "Medium," [Online]. Available: https://vitiya99.medium.com/event-driven-microservices-with-spring-boot-and-
kafka-73506c96fd43.

[10] S. Kumar, V. Mendhikar and V. Ravi, "Explainable Reinforcement Learning on Financial Stock Trading using SHAP," 2022.

426

