

Pearl Blue Research Group| ICRCEDA2025-Conference Proceeding ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.ICRCEDA25-144

Original Article

How AI Is Revolutionizing Regulatory Compliance in Life Sciences

Beng Ee Lim¹, Mert Zamir²

1,2 Complizen, Florida, United States.

Abstract - Regulatory compliance in life sciences remains one of the most time-consuming and high-stakes domains in industry today. As global regulations grow more complex and fragmented, compliance professionals often spend months preparing submissions that are still prone to rejection. Recent advances in artificial intelligence (AI) particularly retrieval-augmented generation, domain-specific language models, and natural language interfaces are beginning to shift this dynamic. This paper explores how AI is transforming compliance workflows, from document retrieval and predicate mapping to automated drafting and predictive analysis. We examine the technical infrastructure enabling these capabilities, including structured data formats, language model maturity, and evolving regulatory acceptance. Key benefits include faster time to market, reduced consultant dependency, and significant operational efficiency gains. Critical risks such as model hallucination, overreliance, and regulatory skepticism are addressed, along with strategies for responsible implementation. We conclude with a forward-looking perspective on predictive compliance and harmonized submissions outlining a future where AI acts not just as a helper, but as a strategic navigator for regulatory affairs teams.

Keywords - Artificial Intelligence, Compliance, Life Sciences, Medical Devices, Natural Language Processing, Regulatory Affairs, Submission Automation.

1. Introduction

The life sciences industry is experiencing significant changes in regulatory compliance driven by AI technology adoption [1]. The urgency stems not only from the growing complexity of regulatory frameworks but also from the inefficiency of current systems that rely heavily on manual processing and human interpretation. Compliance failure carries steep costs not just in fines and delays, but in lost innovation opportunities and delayed patient access to medical technologies. Medical device recalls have increased significantly in recent years, often triggered by missing documentation, misaligned testing standards, or slow detection of post-market risks [2]. Meanwhile, substantial investments are lost when submissions stall or face rejection due to non-compliance with evolving guidelines. Regulatory compliance represents an unavoidable burden in life sciences. Whether bringing a new Class II diagnostic device to market or maintaining CE-marked legacy products under MDR, companies must navigate complex region-specific rules, documentation formats, and shifting regulatory expectations.

According to FDA data, approximately 70% of initial submissions require additional information or clarification before approval [3]. Despite digitization of many FDA, EMA, and ISO processes, the tools used internally by regulatory professionals remain largely unchanged: Word documents, Excel spreadsheets, and fragmented local knowledge bases. Regulatory professionals report spending significant portions of their time simply locating relevant information [4]. Small and medium enterprises face additional burdens, often depending on costly consultants to fill knowledge gaps. Artificial intelligence particularly domain-adapted large language models is positioned to shift this paradigm. By enabling rapid retrieval, contextual summarization, and high-quality drafting assistance, AI introduces the possibility of more streamlined compliance workflows.

2. Materials and Methods

2.1. AI Integration in Regulatory Processes

Current AI applications in regulatory compliance include:

2.1.1. Document Automation

Natural Language Processing (NLP) systems utilize named entity recognition and semantic analysis to interpret unstructured data across technical files, guidance documents, and testing standards. Advanced implementations use transformer-based models to populate submission templates while maintaining regulatory language consistency [5]. When processing a predicate device's 510(k) summary, systems can automatically extract testing methodologies and map them to current submission requirements, reducing manual transcription errors [6].

2.1.2. Regulatory Intelligence Monitoring

Machine learning algorithms employ continuous monitoring of global regulatory databases including FDA's 510(k) database, EMA's EUDAMED, and MHRA guidance updates [7]. These systems use natural language understanding to classify regulatory changes by relevance to specific device categories and regulatory pathways. Alert systems notify stakeholders when new guidance affects their product portfolios or when similar devices receive clearance with novel testing approaches.

2.1.3. Predictive Risk Assessment

AI models trained on historical submission outcomes can identify submission vulnerabilities before filing. These models analyze factors including clinical evidence quality, predicate device similarity scores, and testing standard alignment. Machine learning algorithms can flag submissions likely to receive "Additional Information" requests and suggest evidence strengthening strategies [8].

2.1.4. Cross-Market Harmonization

Advanced platforms perform regulatory requirement mapping across jurisdictions, analyzing underlying regulatory philosophies and evidence standards. These systems identify when EU MDR clinical evaluation requirements can satisfy FDA clinical data needs and where regulatory strategies can be optimized for global market access [9].

2.2. Technical Architecture

The core architecture of modern regulatory AI tools is Retrieval-Augmented Generation (RAG), which addresses the critical challenge of maintaining accuracy while providing comprehensive responses in highly regulated environments.

2.2.1. RAG Implementation

The system architecture consists of three primary components: a document ingestion pipeline, a semantic retrieval engine, and a generation layer with built-in verification. The document ingestion pipeline processes diverse regulatory content including FDA guidance documents, CFR regulations, and ISO standards. Documents undergo preprocessing including semantic chunking that preserves regulatory context [10].

2.2.2. Semantic Retrieval Engine

The retrieval component utilizes dense vector representations generated by domain-adapted transformer models fine-tuned on regulatory text corpora. The system learns relationships between regulatory concepts - that "biocompatibility testing" relates to specific ISO 10993 standards, that different device classifications require distinct testing approaches, and that predicate device relationships influence regulatory pathways [10].

2.2.3. Generation and Verification

The generation component utilizes large language models specifically fine-tuned on regulatory writing patterns. Critical to regulatory applications, the generation layer includes real-time fact verification against retrieved sources, citation generation for traceability, and confidence scoring for each generated statement [10].

2.3. Data Sources and Methodology

This analysis references publicly available data from regulatory agencies and industry reports. Primary sources include FDA 510(k) summaries, product classifications, and guidance documents; EMA MDR technical documentation templates; and industry surveys from consulting firms. The paper analyzes feedback from early adopters of regulatory AI platforms, primarily small to mid-sized medical device manufacturers in North America and the EU.

3. Results and Discussion

3.1. Current AI Applications in Practice

3.1.1. Natural Language Search

Users can query regulatory databases conversationally (e.g., "What ISO standards apply to a reusable surgical drill?") and receive responses with source citations.

3.1.2. Predicate Device Analysis

AI systems scan 510(k) databases to identify potentially analogous devices, extracting their testing methodologies and regulatory pathways.

3.1.3. Guidance Document Analysis:

Complex regulatory documents are processed to extract key requirements in structured formats with source references.

3.1.4. Drafting Assistance

Systems help generate initial drafts of risk assessment tables, labeling content, and submission cover letters based on prompts and templates.

3.2. Observed Benefits

Early adopters report significant time efficiency gains, with substantial reduction in time spent on information gathering and initial document preparation tasks. Improved consistency across submission documents and reduced variation in formatting and language are commonly observed. Teams report better access to regulatory intelligence and some reduction in reliance on external consultants for routine compliance tasks.

3.3. Critical Limitations and Risks

3.3.1. Model Accuracy Concerns

AI language models can generate plausible but factually incorrect information ("hallucination"). In regulatory contexts, this presents serious risks including incorrect guidance interpretation and inaccurate predicate device comparisons. Studies show hallucination rates varying from 5-30% depending on query complexity and domain specificity [11].

3.3.2. Regulatory Agency Acceptance

Regulatory agencies maintain conservative approaches to new technologies, particularly those affecting submission quality. While some agencies have initiated AI pilot programs, formal guidance on AI-assisted submissions remains limited. Companies using AI tools report varying experiences with regulatory reviewers [12].

3.3.3. Data Security and IP Protection

Life sciences companies handle highly sensitive information including proprietary clinical data and confidential regulatory strategies. AI systems must address data encryption, access controls, protection against model inversion attacks, and compliance with data residency requirements across jurisdictions [13].

3.3.4. Over-dependence Risks

Organizations risk developing excessive reliance on AI tools, potentially leading to reduced development of core regulatory competencies among staff and decreased understanding of regulatory nuances [14].

3.4. Risk Mitigation Strategies

Successful implementations require mandatory human review for all AI-generated content, ensuring all AI outputs include traceable citations to authoritative sources, comprehensive training programs on appropriate AI tool usage and limitations, and establishing validation workflows and audit trails for AI-assisted processes.

4. Industry Landscape and Future Directions

The regulatory AI space includes several categories of solutions. Large vendors offer comprehensive regulatory information management with AI features. Specialized companies like Complizen focus specifically on AI-powered regulatory guidance and compliance assistance. Traditional consulting firms are incorporating AI capabilities into their service offerings [15], while regulatory agencies themselves explore AI applications in review processes [12]. Future development will focus on advanced predictive capabilities that forecast regulatory changes and submission outcomes, sophisticated cross-jurisdictional harmonization tools for managing multi-regional submission strategies, real-time monitoring of regulatory landscape changes, and deeper integration with existing regulatory workflows and enterprise systems ([8], [10]). The advancement of regulatory AI capabilities will likely reshape competitive dynamics within the life sciences industry. Companies with sophisticated AI-enabled regulatory capabilities may gain significant time-to-market advantages, while the democratization of regulatory expertise through AI tools may enable smaller companies to compete more effectively with larger enterprises.

5. Conclusion

AI is beginning to reshape regulatory compliance in life sciences, offering significant potential for efficiency gains and improved consistency. However, successful implementation requires careful attention to quality controls, human oversight, and regulatory acceptance considerations. The technology is moving from experimental applications to practical deployment, with early adopters reporting meaningful benefits in specific use cases. As the technology matures and regulatory frameworks adapt, AI is likely to become an increasingly important component of life sciences compliance operations. Companies adopting AI compliance tools today must balance the potential for competitive advantage with the need for rigorous validation and quality assurance. Success will depend not just on the technology itself, but on thoughtful implementation strategies that maintain

regulatory standards while capturing efficiency benefits.

5.1. Conflicts of Interest

The authors declare that there is no conflict of interest concerning the publishing of this paper.

5.2. Acknowledgements

Authors 1 and 2 contributed equally to this work.

References

- [1] McKinsey & Company, "Scaling Gen AI in the Life-Sciences Industry," Dec. 2024.
- [2] 24×7 Magazine, "Medical Device Recalls Reach Highest Level in Four Years," Feb. 2025.
- [3] Arrotek Medical, "Two-Thirds of FDA 510(k) Submissions Result in Requests for Additional Information," Oct. 2022.
- [4] Rimsys, "Regulatory Affairs Professionals Spend up to 50 % of Their Time Looking for Information," Blog post, Aug. 2021.
- [5] B. E. Lim, "How AI is Transforming Regulatory Compliance | CompliZen," Complizen, Jul. 03, 2024. https://www.complizen.ai/post/how-ai-is-transforming-regulatory-compliance (accessed Jun. 19, 2025).
- [6] L. Amarapalli and G. R. Muthirevula, "Automating FDA Compliance: The Role of AI in Computer System Validation," J. Adv. Pharm. Med. Innov., vol. 14, no. 2, pp. 1–14, Mar. 2025.
- [7] RegDesk, "AI-Powered Regulatory Intelligence Platform Overview," whitepaper, Mar. 2025.
- [8] J. Smith et al., "A Machine-Learning Algorithm to Predict Medical Device Recall by the FDA," npj Digit. Med., vol. 8, Art. 65, Nov. 2024.
- [9] A. Brabazon et al., "Mapping the Regulatory Landscape for AI in EU Healthcare," NPJ Digit. Med., vol. 8, Art. 34, Mar. 2025.
- [10] Claris Insight, "How Retrieval-Augmented Generation Powers Regulatory Compliance AI," tech brief, Dec. 2024.
- [11] K. Zhang et al., "Hallucination Rates and Reference Accuracy of ChatGPT and Bard," J. Med. Internet Res., vol. 28, e53164, 2024; Vectara analysis cited in Aventine, May 30 2025.
- [12] MDDI Online, "FDA to Integrate AI Across All Centers by June 2025 for Faster Scientific Reviews," May 2025.
- [13] Hogan Lovells, "Model Inversion and Membership Inference: Understanding New AI Security Risks," Dec. 2024.
- [14] Moody's Analytics, "AI Adoption Will Be Widespread but Slow in Risk & Compliance—Survey Highlights," Feb. 22 2024.
- [15] Deloitte, "2025 Life-Sciences Regulatory Outlook: Tech Transformation and Talent Implications," Jan. 2025.