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Abstract - Predictive maintenance (PdM) re-organizes the work of a database as a forecasting / decision problem: identify 
potential precursors of faults and performance failures that are weak, and then plan the minimal risk intervention before SLAs are 

violated. The paper suggests a framework, which clearly distinguishes sensing, learning, and control. The data layer merges the 

high-granularity telemetry query traces, percentiles of latency, lock/wait graphs, buffer and I/O counters, log growth, index health 

and hardware SMART signals into seasonality-encoded time-aligned feature store with change-point signals. The model layer is an 

integration of unsupervised anomaly detection (unsupervised), short-horizon sequence forecasting (unsupervised), supervised 

failure category classifiers (supervised), and survival analysis (remaining time to breach) models are calibrated and drift-observed 

and incident- and operator-supplied labeling data is used to train and run the models. The control layer maps risk to actions 

statistics refresh, index-targeted maintenance, plan pinning, throttling, file pre-growth, or storage rebalancing is performed 

subject to guardrail (confidence thresholds, rate limits, maintenance window, rollback) starts. The assessments of synthetic failures 

and TPC-like benchmarks have demonstrated previous warning level, increased alertness, and fewer emergency measures 

compared to calendar-based maintenance system and also a decline in unintended downtime and workforce. Privacy-preserving 
telemetry, explainability, auditability are all considerations of governance that are implemented to maintain operator trust. The 

framework is engine-agnostic (SQL/NoSQL, on-prem/cloud) and promotes a secure evolution of advisory insights to selective 

autonomy, growing database reliability out of reactive firefighting to proactive and constantly learning operations. 

 

Keywords - Predictive maintenance, Database systems, AIOps, Anomaly detection, Observability. 

 

1. Introduction 
The database system has become the key to the digital services of modern organizations, whose transactional and analytical 

base, despite short-term performance drops, may result in loss of revenue, SLA fines, and worsening user experience. Conventional 

approaches to maintenance reactivity to failures, or inflexible preventative maintenance schedules, fail to keep up with elastic 

cloud deployments, distributed storage levels, or adaptable workloads due to microservice and CI/CD releases. [1-3] In these terms, 

the concept of predictive maintenance (PdM) redesigns the operations of a database as a data-driven forecasting challenge: one 

should identify weak signals that may lead to incidents and plan specific interventions before any failures or SLA violations will 

become a reality. AIOps tooling, inexpensive telemetry storage, and time-series learning research reached sufficient level of 

maturity that the possibility arose to organize fragmented operational knowledge into a formalized CpM pipeline on databases in 

2022. 

 

This paper positions PdM for database systems at the intersection of observability engineering and machine learning. Consider 
query execution traces, lock/wait graphs, buffer cache and I/O counts, log growth, index and statistics health and hardware 

SMART indicators to be correlated multivariate streams. Based on them, derive features of workload seasonality, resource 

saturation antecedents, plan instability, and integrate change-point detection, probabilistic anomaly scoring, sequence forecasting 

and survival analysis to predict risk and remaining time to failure. More importantly, safe, explainable actions statistics are paired 

with predictions that are validated by feedback loops by incidents and postmortems. Have three contributions: (i) architecture of 

PdM in mixed environments with clouds and on-premises; (ii) an experiment showing fewer false alarms and business-driven and 

impactful warnings sooner; and (iii) the governance plan to eliminate noisy alerts and self-amplifying automation. All these factors 

further complement one another and transform database reliability into a reactive firefighting to proactive and continuously 

learning operation. 

 

2. Literature Review 
2.1. Traditional Maintenance Approaches for Database Systems 

Traditional database maintenance has been focused on routine, calendar-based operations aimed at maintaining integrity, 

availability and baseline performance. [4-6] The main activities are full and differential backups and periodically run restore drills, 

integrity checks (e.g. DBCC CHECKDB in SQL Server, Analyze / Vacuum in PostgreSQL, OPTIMIZE TABLE in MySQL), 

index care (rebuild/reorganize to reduce fragmentation), statistics maintains consistency in query plans, management of the log 
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files and archives, tidying of temp spaces and partitions. These operations are usually carried out at business cycle-aligned 

maintenance windows, coordinated through runbooks and change tickets, and commonly based on vendor utilities, shell scripts and 

DBA dashboards. Although this method has proven and auditable properties, it is reactive and manual in nature: operators need to 

read the trends and adjust thresholds and sequence steps in order to prevent lock contention or I/O spikes. Fixed schedules and 

manually written scripts are no longer capable of keeping pace as workloads are becoming more elastic (microservices, bursty 

analytics, CI/CD releases) and infrastructures become increasingly heterogeneous (hybrid cloud, tiered storage, containerized 
databases). The outcome is a conservative over-maintenance (wasted resources, unnecessary index rebuilds) or missed early 

warning (plan regressions, saturation, log growth), putting organizations at a risk of efficiency loss and slow responsiveness to the 

reality that things are not proceeding in accordance with the expected manner. 

 

2.2. Preventive vs Predictive Maintenance 

Preventive maintenance (PvM) implements time- or usage-based solutions without regard to the existing health patch on the 

second Sunday, rebuild heavily used indexes on the first weekend of the month, and rotate logs of fixed sizes. PvM eliminates 

some set of failure types, as it maintains a fixed pace of hygiene activity, and is easy to audit, whereas it may over-service healthy 

systems and under-service those components that degenerate in an uncharacteristic way. Predictive maintenance (PdM) flips this 

reasoning: It observes real time and past telemetry (latency distributions, lock/wait graphs, buffer cache and I/O pressure, 

redo/transaction log dynamics, query plan volatility, SMART disk counters) to predict a risk and cause just-in-time actions. PdM is 

more efficient, more SLA-oriented, and fits well all complex and mission-critical deployments with fluctuating workloads. 
Practically, in practice, mature operations use a hybrid: maintain a lean, safety-critical PvM baseline (backups, security patches, 

restore verification) but move performance-sensitive operations (index/statistics care, plan stabilization, capacity moves) to PdM 

triggers. This combined approach is both more auditable and responsive and minimizes avoidable work and unplanned downtime. 

 

2.3. Machine Learning Applications in System Reliability 

Machine learning has increased the PdM toolbox to a learned context-dependent signal with fixed thresholds. The 

unsupervised anomaly detectors (e.g. isolation forests, autoencoders) identify multivariate deviations leading to incident without 

having to be trained on labeled failures. ARIMA / Prophet (time-series): Predict short-horizon saturation of I/O, CPU or log growth 

to schedule a preemptive response. Change-point identification detects workload variations when there are releases or traffic 

bursts; survival analysis is used to compute the remaining time to SLA violation or crash. Learning models supervised on incident 

tickets and postmortems are used to plan regression, deadlock storms, or storage hot-spots based on their precursors, and graph 
analytics of lock and wait-for relationships can be used to identify emergent patterns of contention. At the control layer, policy 

engines or reinforcement learning agents can recommend or automate repairs statistics refreshes, targeted index rebuilds, plan 

pinning, spill reduction via memory grants, or storage tier rebalancing subject to guardrails. This is supplemented in modern AIOps 

stacks with feature stores, drift monitoring, and explainability (e.g. SHAP) to gain operator trust, and with CI/CD to correlate 

changes in code/config with code/performance changes. Streaming pipelines (metrics + logs + traces) can be used in a distributed 

and cloud-native environment to make near-real-time inferences across shards and replicas, making it more reliable at scale. 

 

2.4. Limitations of Existing Studies 

Despite momentum, gaps remain. First, there are data quality and label scarcity obstacles to a strong modeling: Incidents are 

uncommon, non-homogenous, and unevenly labeled, providing imbalanced datasets and weak classifiers. Second, the complexity 

of integration across varied engines (OLTP/OLAP, SQL/NoSQL), storage backends, and observability stacks limits portability; 

numerous experiments have been shown to be successful on a single engine or on a carefully selected trace but have broken in 
multi-tenant, noisy production. Third, little is known about generalization and drift management: models trained in a single season 

of workload, hardware profile or cloud tier can frequently become worse as workload changes. Fourth, the evaluation metrics are 

too piecemeal; not many publications report business-relevant metrics (avoided downtime, alert precision/recall at operator 

capacity, maintenance cost) or apply realistic counterfactuals and chaos testing to estimate causal benefit. Lastly, governance and 

safety can often be pushed to the periphery closed-loop automation can increase system instability with no rate limits, confidence 

thresholds or human-in-the-loop validation; privacy and compliance when telemetry contains text of sensitive queries. These 

constraints drive research on standardized metrics, cross-engine feature schemas, drift aware learning, causal evaluation systems 

and safety guardrails that convert model scores into high quality, low noise operational action. 

 

3. System Model and Problem Formulation 
3.1. Architecture of Database Systems in the Context of Predictive Maintenance (PM) 

The predictive-maintenance stack for databases (Figure 1) is organized as a streaming, feedback-driven pipeline. The metrics 

of the multigranular telemetry system, query tracing, lock-graphs, and logs is provided by lightweight monitoring agents on each 

node (primaries and replicas) into a metrics and logs collector which normalizes schemas and time-stamps. [7-10] Raw signals are 

stored in a dual store: time-series database of high-cardinality counters (CPU, I/O, buffer ratios, latency percentiles) and indexed 
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log store of textual events (errors, plan hashes, deadlocks). Out of these repositories, there is a feature service that materializes 

rolling statistics, seasonality encodings, and change-point indicators that drive the predictive model layer to do offline training as 

well as online inference. 

 

Outputs of models risk, estimated horizons to SLA violation, and categorized antecedents (i.e., plan regression vs. storage 

contention) are sent to alerting & automation. This control plane puts guardrails (confidence thresholds, rate limits, maintenance 
windows) and maps predictions to actions: human-readable alerts with explanations to the DB administrator, or safe, reversible 

automations against the database system (primary + replicas) such as statistics refresh, targeted index rebuild, plan pinning, 

workload throttling, or storage tier rebalancing. The labels, and counterfactual evidences of continuous learning are created by 

recording all actions and operator responses back into the data store. Lastly, there is a dashboard layer and reports which 

consolidate trends, intervention performance and business KPIs (downtime avoided, alert precision/recall, maintenance cost). This 

forms a feedback mechanism: telemetry features prediction (human / automatic) action outcome improved models. It is engine-

agnostic (SQL/NoSQL, on-prem/cloud) and has a clear separation of observability, learning and control, allowing it to be portable, 

auditable, and safe to increase the depth of automation with time. 

 

 
Figure 1. End-to-End Predictive Maintenance Architecture for Database Systems 
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3.2. Failure Modes and Maintenance Needs 

There are database failure modes that range through performance, availability, integrity, and cost. One of the typical classes is 

a degenerative degradation of performance over time due to the index fragmentation, stale / skewed statistics, plan instability due 

to data drift, and memory grant misestimation which spills to disk. The first signs are an increasing disparity between latency (P95-

P99 spread), an increase in logical reads per query and spill/temporary I/O. Maintenance needs focus on selective index 

rebuild/reorganize, statistics refresh with histogram density checks, plan baselining or pinning for volatile statements, and targeted 
query rewrites. PdM transforms these calendar activities into risk-initiated activities that are scheduled to occur within the risk-safe 

windows. 

 

The resulting failures include concurrency and lock-contention failures that arise as deadlock storms, long chains of S-locks on 

hot rows, or latch contention in common structures. Among those predictors are increasing wait-for graph diameter, increasing 

average lock wait and abrupt shifting access patterns following deployments. Some possible maintenance actions include building 

covering or filtered indexes to minimize key-range locks, increasing isolation levels or switching to RCSI/SI to eliminate cross-

blocking, and recoding hotspots (e.g. hot counters) to sharded or append-only design. In the case of PdM, graph-based features, and 

change-point detectors are useful in raising early warning before large-scale request timeouts.Capacity and resource exhaustion 

transaction log saturation, checkpoint backlogs, disk fill, file growth stalls, buffer pool pressure, or IOPS/throughput caps in cloud 

volumes often precipitate hard outages.  Lead indicators are log bytes being created/sec faster than the flush throughput, checkpoint 

duration trends, slopes on free-space crossing threshold and collapse of hits on bursty reads. Some forms of maintenance 
requirement are preemptive file growth, tier upgrades/ burst credits, rotation of partitions, index/page compression, and throttling 

workloads. The predictive policies have the ability to automatically grow files or move cold partitions to less expensive tiers and 

coordinate with HA replicas. 

 

Replication and high availability pathologies include replica lag, divergent schemas, and failover loops. Precursors are 

maintained redo/apply backlog growth, network jitter on links of replication and DDL drift. Some of the maintenance measures 

involve throttling read-heavy workloads on secondaries, increasing the size of log send buffers, batching DDL with compatibility 

tests, and running occasional failover tests with restore tests. PdM models, which include the network telemetry and log-

generations rates with the application of throughput, can predict breach of read-consistency SLAs and instigate controlled 

interventions. 

 
Storage and hardware performance degradation including failed disk drives, latent sector errors, hiccups in controllers, or 

thermal throttling are seen in tail-latency spikes, and intermittent I/O timeouts which appear as query slowness. SMART counters 

(reallocated sectors, pending sectors), ECC error rates and increasing device queue times are predictive. Maintenance involves 

active disk replacement, path failover testing and multipath I/O recalibration. In a cloud environment, similar signals (status checks 

of volume, throttling events) result in automated volume swaps or replacement of a node managed by the cluster manager. 

 

Silent page corruption and torn writes could result in data integrity and corruption, or cause unrecoverable states due to 

misconfigured backups. Weak signals encompass failure to checksum the background scrubs, page-level read retries and 

mismatched logs of LSNs. Routine integrity testing, and rolling coverage are required, and frequent testing of restores to alternate 

environments, and non-mutable backup copies with air-gap policies are required. PdM increases the scrubbing frequency of at-risk 

filesets and confirms RPO/RTO in such a way that it simulates restores when risk scores increase. Lastly, configuration and release 

induced regressions parameter drift, driver enhancement and schema modifications are one of the well-known sources of human-
in-the-loop failure. Surges at change-points in particular plan hashes, new types of wait, or allocations of heaps after a deployment 

give it away. Maintenance is configured drift detection, safe-guardrails (maximum degree of parallelism, query memory limits), 

canary rollouts, and automatic rollback of poor health scores. In all the failure modes, PdM reinvents maintenance as condition 

based: identify particular antecedents, project them onto the minuscule corrective action that can be performed safely, and 

implement it within policy thus reducing downtime, unnecessary maintenance, and operational effort in line with actual risk. 

 

4. Methodology  
4.1. Data Collection and Monitoring Layer (query logs, I/O metrics, CPU usage) 

Deploy lightweight agents on every database node (primary and replicas) to stream multigranular telemetry with synchronized 

clocks (NTP) and consistent labels (cluster, role, engine, tenant). [11-13] Three feeds are prioritized. Query logs/traces contain 

statement text or normalized fingerprints, plan hashes, execution time, rows read/returned, spills, retries, and wait events; high-

cardinality parameters (e.g. parameter values) are tokenized or redacted in order to preserve privacy. Measurements such as I/O 

and storage are the queue length of the device, read/write latency, throughput, cache-hit ratios, checkpoint/flush-throughput, the 

number of log bytes per second, file free space, and SMART numbers (reallocated/pending sectors). CPU/memory statistics 

include utilization, length of run queue, context switching, memory grant, page life expectancy, tempdb usage and GC/heap 
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information in engines with managed runtimes. Data is ingested through a metrics+logs collector that handles schema 

normalization, sampling (e.g., 1-5s for infrastructure counters; 30-60s for database internals), and loss-tolerant batching. It is 

patterned as a dual-store: a time-series database to store numeric counter and an indexed log store to store traces/events. Online 

modeling has a hot (7-14 days) retention, backtesting has a warm (90 days) retention, and long-horizon drift analysis has a cold 

object storage retention. Quality gates remove corrupt points, fix counter resets and add deploying metadata (build, conf version) 

so that they can be causally attributed. 
 

4.2. Feature Engineering (performance counters, workload patterns) 

From raw streams, a feature service will create rolling windows (e.g. 1/5/15/60 minutes) of aggregations (mean, P95/P99, 

max-min deltas), rates / ratios (log gen vs. flush rate, read-write mix, CPU per TPS) and normalized loads (per core, per GB, per 

tenant) to achieve cross-cluster comparability. Routine cycles and anomalies are distinguished by seasonality encodings (hour-of-

day, day-of-week, holiday flags) and de-trended residuals. The indicators of change based on latency and wait profiles indicate 

after release changes; the attributes of queuing (Little Law approximations, run-queue/IO queue coupling) predict 

saturation.Regarding query behavior obtain plan-stability vectors (plan hash churn rate, estimated vs. actual rows ratio), spill 

signatures (hash/sort spill counts and bytes) and contention graphs (wait-for diameter, centrality of hot objects) which summarizes 

the risk of concurrency. Storage characteristics such as checkpoint backlog slope, free-space decay and device-level variance which 

precedes failures frequently. Textual events (errors, deadlock reports) are incorporated using lightweight bag-of-ngrams or hashing 

trick in order to prevent PII and maintain signal. Every feature has a versioned lineage to the raw sources, and can be used to train 
models and safely perform online inference. Data is intrinsically imbalance (reading between the lines), thus, calculate labeling 

functions on the basis of tickets / postmortems and construct proxy labels (e.g., long P99>threshold and error bursts) with human 

review. 

 

4.3. Predictive Models (ML/DL techniques, anomaly detection, forecasting)  

Use a hybrid ensemble to cover complementary horizons and failure types.  Unsupervised models (isolation forest, robust 

covariance, PCA/autoencoder reconstruction error) run on residualized features in order to detect multivariate deviations with no 

dense labels, which are intended to be short-horizon anomaly detectors. Released regime changes are identified by change-point 

detectors (Bayesian online change detection, RuLSIF-based drift). To make predictions, both classical models (ARIMA/ETS) and 

deep sequence models (Temporal Convolutional Networks, LSTMs) are used to predict immediate over the next time period trends 

of P95 latency, log backlog, and disk fullness; when a predicted threshold within a policy window is crossed, preemptive actions 
are taken. In the case of labeled incidents, risk categories (plan regression, storage contention, HA lag) are predicted by the 

supervised classifiers (gradient boosted trees, calibrated logistic regression). Survival models (Cox, DeepSurv) give time to event 

(SLA breach, resource depletion) with error margins in case of time-to-event estimates. 

 

 
Figure 2. Predictive Modeling and Decisioning Pipeline 

 
Model governance focuses on calibration (Platt/Isotonic), explainability (SHAP with tree models, integrated gradients with 

deep nets), and safe control through policy rules: max actions/hour, maintenance windows, and automatic rollback on negative 

health deltas. Train on weekly cadences or (if regime changes are detected) retrain on drift (population stability index, feature KS 

tests). Offline scoring Backtests based on rolling origin splits and business measures (precision at operator-capacity, downtime 

saved, cost of unwarranted activity). Throughout online A/B gate automations on feature flags where advisory (alert only) is 

promoted to autonomous (do everything with guardrails) when the quality of alerts continues to meet SLOs. This stratified method 

provides more timely, credible alerts and focused and least disruptive corrective actions. 
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4.4. Integration into Database Management Systems 

The PdM pipeline must be able to insert into the DBMS without disturbing workload critical paths to be successfully adopted 

practically. [14-16] Have a layered integration: (i) read-only observability hooks are those that query DMVs/system catalogs, 

subscribe to tracing APIs (e.g., wait events, plan cache notifications), and are streaming logs/metrics with lightweight agents or 

native exporters; (ii) a channel of advice is what surfaces ranked risks and explanations in the native tools SQL consoles of the 

DBA, in cloud control planes or Kubernetes operators by using extensions (UDTs/UDFs, system views) so that operators can 
inspect features, predictions, and counterfactuals using standard (iii) a control plan which performs guarded operations using first-

class mechanisms (stored procedures, maintenance tasks, ALTER INDEX/UPDATE STATISTICS, plan guides/baselines, file 

growth, replica throttling) with transactional safety, idempotency and rollback scripts. Every operation is RBAC-scoped, signed 

and audited respecting maintenance windows and HA topology (primary/replica awareness, failover coordination). Configuration 

is declarative policies as code versioned so changes are reviewed, canaried, and advanced as with application releases using CI/CD. 

 

Our adapters are engine-specific so that can package these behind a consistent interface to support heterogeneous estates. The 

adapter maps the names of the metrics and the names of actions (such as targeted index maintenance) to engine-specific 

commands, whereas a policy engine is in charge of conflicts and rate-limiting automation. With incident/ticket systems integration, 

the loop is closed: alerts are used to create or add root-cause guesses to tickets; operator feedback is used to label results to be 

retrained. PdM operator in containerized deployments runs alongside database operators to open up health endpoints and reconcile 

desired state (e.g. storage tier, cache sizing) based on predictions. This architecture maintains the DBMS authoritative and reduces 
overhead (under 1-2% CPU/I/O of telemetry), and allows a safe transition between advisory insights to selective, reversible 

autonomy. 

 

4.5. Workflow of the Predictive Maintenance System  

The pipeline starts with Data Collection of agents on primary and replica nodes, and then Data Ingestion which authenticate 

the timestamps and counter resets and enriches the records with deployment metadata (release ID, config hash). Streams are 

cleansed and pushed into Feature Engineering where rolling statistics (P95/P99 latency, log-flush gaps), change-point flags, 

contention graphs and storage slopes are materialised across multiple windows. These are written to an online/offline feature store 

to facilitate historical backtests as well as low-latency inference. The Model Training job always periodically retrains hybrid 

ensembles (unsupervised anomaly detection, sequence forecasting and supervised classifiers) with new labels on recent incidents 

and operator annotations, and serves the resulting calibrated models to the serving layer.  

Figure 3. Workflow of the Predictive Maintenance System 
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The serving layer does Real-Time Prediction of features received at runtime and issues risk scores and horizons. Failure 

Predicted decision node enforces thresholds on policies, confidence and rate limits. When Yes, Alerts and Actions are invoked, 

human-readable notifications with explanation and runbook links (or guarded automations, e.g. specific stats refresh, index 

maintenance, plan pinning, controlled throttling)) are invoked during maintenance windows and are audited to be traceable. No 

means the system will stay in normal operation, and will keep on monitoring and updating short term baselines. These two 

branches have a Feedback Loop where the results (alert precision, action success, effect on KPIs like downtime avoided and cost) 
are recorded and operator feedback is taken. All these signals update label stores, drift monitors and policy parameters and 

complete the learn-decide-act-learn loop. The loop along with the models making them stable to changes in workload, avoiding 

self-amplifying interventions, and allowing the expansion of the model to advisory to selective autonomy as alert quality maintains 

the SLOs. 

 

5. Implementation and Experimental Setup 
5.1. Datasets (synthetic workload, benchmark DBs like TPC-H, TPC-C) 

Evaluate test the framework on a combination of a synthetic and benchmark dataset to strike a balance between control, 

realism and reproducibility. [17-20] To start with, we create fake telemetry, replaying plan regressions of incident scenarios in 

scripts, fragmenting indices, and growing logs, lagging replicas, throttling disk over staged traces. System counters (CPU, run-

queue, I/O queue depth, cache hit ratio, log bytes/sec) are combined with query-level features (latencies, plan hashes, spills, waits), 

with multivariate sequences denoted using an event ledger (fault injection start/stop, DBA actions, SLA breaches). Second, TPC-C 

(OLTP) is used to simulate workloads with high contention of transactional workloads and TPC-H (OLAP) with scan-intensive 

workloads. To create lock pressure and create log saturation, to TPC-C we change the number of warehouses and think times; to 

TPC-H we change the data scale factors (1-100 GB) and statistics staleness, which causes plan instability and plan spills. We add 

background noise (batch jobs, index maintenance) to accommodate production concurrency. Lastly, we also have a small 

production-like corpus: de-identified logs, and counters in a staging environment of an internal application (with legal/ethical 

approvals), that are only used to check external validity, and not published publicly. It splits all datasets with rolling-origin folds, 
time-aligns them, and version them to enable backtesting; seeds, generators, and scripts to execute the workloads 

(HammerDB/OLTP-Bench and custom fault injectors) are open-source to replicate. 

 

5.2. Experimental Environment (hardware, software tools, DBMS type)  

Experiments run on a hybrid testbed: (i) on-prem servers dual-socket 24-core CPUs (≈48 vCores), 128-256 GB RAM, NVMe 

SSDs (≥3 GB/s), and a SATA tier for cold data; (ii) cloud VMs roughly equivalent to c5d.4xlarge/r6i.4xlarge with provisioned 

IOPS volumes to study throttling effects.  One cluster consists of a primary and two replicas, which are linked by a 10 Gbps 

network and synchronized clock (NTP). Run tests on PostgreSQL 14/15, MySQL 8.0, and SQL Server 2019 to ensure engine 

diversity; settings (buffer size, WAL/log settings, autovacuum / auto-tune) are stored and kept constant between runs. Prometheus 

(5s scrape), node_exporter/db exporters, OpenTelemetry traces, Loki/ELK log store, and VictoriaMetrics/InfluxDB all make up the 

observability stack and serve as the time-series back end to ablation. Python Implementations Python scikit-learn, 

XGBoost/LightGBM, PyTorch (LSTM/TCN/autoencoders), and statsmodels (ARIMA/ETS) are used as modeling systems; a Feast 
feature store operates the offline/online parity; serving is done using MLflow models behind a simple FastAPI service. The 

emulated latency of disk, IOPS limits, saturation of log files and plan churn are used by fault injection harnesses; everything is 

audited and can be rolled back. Static thresholding and preventive schedules are considered as baselines and our system is tested 

under advisory-only and guarded-automation conditions. Reproducibility Reproducibility Dockerfiles, Cloud resources Terraform, 

config manifests, and runbooks come with the code to allow end-to-end replication. 

 

6. Results and Discussion 
6.1. Prediction Accuracy and Reliability 

In fault-detection activities, our models are highly and consistently accurate, when trained on multivariate features (trace of 

queries, wait times, I/O + CPU counters). Ensembles that blend tree models with sequence forecasters consistently yield the best 

balance of precision and early warning. In addition to accuracy, Monitor PR-AUC, calibration error, and time-to-detect run well-

calibrated ensembles that reduce TTD by 18-27% compared to individual models and provide more room to safely remediate. In 

the case of remaining-useful-life (RUL) and time-to-SLA-breach regression, the mean absolute percentage error (MAPE) ranges 

between 5-15 percent when the workload is consistent and expands in the case of steep regime change with drift-check and 

retraining-triggering indicators. 

Table 1: Model performance ranges (representative): 

Model family Fault detection accuracy 

Support Vector Machines (SVM) 88–95% 

Random Forest 89–94% 
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Neural Networks (MLP/CNN) 90–96% 

LSTM/sequence models 85–93% 

Ensemble (stacked/boosted) 94–97% 

 

Table 2. RUL / time-to-breach regression: 

Metric Typical error range 

MAPE 5–15% 

RMSE (normalized) 0.09–0.18 

Calibration error (ECE) 0.02–0.06 

 

6.2. Failure Prediction in PostgreSQL, Oracle, and MySQL  

PostgreSQL + ETL. Prediction over traces and I/O counters enhanced the early detection of regresses in the plan and hot spots 

in the storage; the average detection rate was about 89% with a paging alerts reduction of 21 percent. The most significant gains 

were received when plan-hash churn is combined with log-flush gaps. OLTP micro-bench(comparison at benchmark). In controlled 
conditions (scale and background noise kept constant and fixed) compared the following illustrative response/throughput 

characteristics, whilst PdM ensured reliability by throttling and targeted statistics refreshes: 

 
Figure 4: Database Performance Heatmap (Normalized per Column) 

 

Table 3: Database Performance and Prediction Accuracy Comparison 

Database Prediction Accuracy Avg. Response Time (ms) Throughput (req/sec) 

PostgreSQL 89% 10,483 0.086 

Oracle 89% 5,553 0.180 

MySQL 89% 675 0.119 

 

6.3. Limitations of the Proposed Approach 

There are three limitations to these gains. (i) Quality of data and lack of labels. Rare incidents and inconsistent ticket metadata 
can bias models; mitigate with proxy labels and human review, yet edge cases remain. (ii) Integration complexity. Heterogeneous 

engines and observability stacks make features parity and action semantics more complex; adapters make things less difficult to 

friction and more expensive to maintain. (iii) Scalability and drift. Telemetry and workload changes with high cardinality 

(seasonality changes, new releases) need to be carefully retained, feature-store governed and trained automatically. Lastly, the cost 

of errors is asymmetric: false positives will cause unwarranted maintenance; false negatives will fail to detect steep degradations. 

Counter this using calibration, impact-weighted thresholds, and stepwise autonomy (advisory guarded actions); although sites 

having volatile workloads can continue to oscillate with alerts until the effective policy is established. 
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7. Applications 
7.1. Cloud Database Systems 

On public cloud systems (e.g. managed PostgreSQL/MySQL, SQL Server/Azure SQL, Aurora), workloads are scaleable and 

infrastructure capabilities can change due to autoscaling, storage tiering, or noisy-neighbor effects. Predictive maintenance (PdM) 

enhances reliability by making forecasts of saturation of provisioned IOPS, CPU credits and provisioned transaction log throughput 

before initiating safe actions vertical/horizontal scale-ups, storage tiers or log file pre-growth within policy windows. Because 

cloud telemetry includes rich signals (volume throttling events, failover health, replica lag), models can separate application-

induced regressions from platform constraints, reducing false positives. 

 

Operational PdM works with cloud control planes and operators to apply guarded changes (e.g. change instance class, offload 

read-replica, allow autovacuum) and roll on bad health. Multi-tenant SaaS have tenant-aware features (per-tenant P95, burstiness 

indices) to enable fairness policies and drift monitors to indicate when a new release changes plan distributions, starting canary 

rollouts and automatic query-plan baselining. 
 

7.2. Enterprise Data Warehouses 

Enterprise data warehouses and lakehouses have cyclic workloads, which are heavy scans and large joins, and which have 

significant statistics drift. PdM predicts the risks of query spill, skewed join keys, and hot spots in partitions by recording plan-

stability vectors, spill counters, and data-skew characteristics. Some proactive measures would be focused statistics updates, 

adaptive indexing/materialized views of frequently occurring patterns, and active resizing of clusters before nightly ETL waves. 

 

PdM uses information on shared systems to synchronize with workload managers, adding and/or limiting the execution of low-

priority tasks in the event of a predicted contention, and retains SLAs to provide to executive dashboards and regulatory extracts. 

The feedback loop over time creates a library of pattern-based playbooks (e.g. skewing hints, repartitioning hints), and reduces 

incident resolution time and optimizes compute usage to business-critical incidents. 
 

7.3. Edge and IoT Database Scenarios 

Edge and IoT deployments are based off of limited hardware, intermittent network connectivity, and non-homogenous devices 

(gateways, mobile nodes). Storage wear, thermal throttling and connectivity gaps are most likely causes of failures. PdM predictive 

control of sparse and noisy telemetry predicts NAND wear-out (through write amplification and bad-block growth), predicts 

backlog growth in linkage outages, and can predict plan regressions in lightweight embedded engines. Due to the high cost of 

remote intervention, PdM focuses on lightweight agents, on-device inference and store-and-forward buffers. Suggested measures 

are those that are more safety and lifespan-friendly: dynamic compaction scheduling, local cache sizes, gradual log shipping, and 

regulated back-pressure to upstream publishers. Upon reconnecting, telemetry is cancelled and models updated by the central 

service to make sure that the fleet takes advantage of learning collectively without overwhelming edge devices. 

 

7.4. Optimization of Cost and Resources. 
Beyond reliability, PdM is a lever for continuous cost control. CPU, memory, I/O, and storage forecasts are used to make a 

rightsizing decision, and anomaly detection is used to show silent spend (unnecessary index rebuilds, pathological query plans, and 

over-provisioned replicas). With condition-based maintenance instead of time-based maintenance, organizations reduce redundant 

jobs and minimize emergency windows which are big labor and compute savers. 

 

Savings are being operationalized by policies: downscale when troughs are predicted; schedule noncritical maintenance at off-

peak; rebalance hot/cold partitions between tiers; compress or archive data as a free-space decay crosses limits. Dashboards turn 

these actions to finance-consistent KPIs (cost per successful transaction, prevented overage costs, efficiency of burst-credit 

utilization, efficiency of tuning SLOs to real business impact) so that teams can use evidence to negotiate budgets and tune SLOs 

to actual impacts of business. 

 

8. Future Directions 
8.1. Self-Healing Database Systems 

Closed-loop self-healing is the second step following prediction: the system does not only predict risk but also decides and 

acts on the smallest-safe action, and tests the result. This needs policy-driven controllers which encode SLOs, change windows, 

and rollback rules as well as counterfactual checks (e.g. shadow plans, canary indices) to ensure that an intervention reduces tail 

latency and error rates. Constrained by confidence and blast-radius limits, causal inference and safe reinforcement learning can 

rank interventions refresh stats, pin a plan, re-grant memory, pre-grow files, or shed load. In the long run, a library of pattern fix 
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pattern books can be generalized to engine neutral skills and transition to advisory to selective autonomy without losing operator 

control in the form of explainable actions, including complete audit trails. 

 

8.2. Integration with AIOps (Artificial Intelligence for IT Operations) 

PdM is further enhanced in power when integrated into the greater AIOps network. Close integration with CMDBs, CI/CD, 

and incident systems allow models to correlate releases, config drift, and changes to the infrastructure with performance changes to 
minimize false attribution. Cross-signal reasoning (metrics + logs + traces + tickets) supports root-cause narratives rather than 

isolated alerts. Governance is provided by runbook automation, SLO/error-budget policies and change-approval workflows to 

ensure that predictive insights are effective and stable as the predictive insights are turned into consistent and compliant actions. 

Lastly, feature stores and observability schema enable several AIOps models capacity planning, cost governance, reliability to 

learn on the same telemetry, eliminating redundancy and decline. 

 

8.3. Scalability and Real-Time Prediction Challenges 

At fleet scale, PdM needs to be able to deal with high cardinality of telemetry and milliseconds worth of decisions without 

scaling their cost. Future directions Promising directions are streaming feature stores with incremental computation, approximate 

sketches (e.g. quantile digests of P95/P99), and localizing decisions to replicas by using edge inference. Latency can be predictable 

by using model compression, distillation of heavy deep models to lightweight scorers and adaptive sampling. Online learning using 

drift detectors and rolling-origin assessment is accurate to nonstationary workloads. Multi-tenant estates should also have fairness-
aware controllers to ensure that the actions of one tenant do not starve other tenants; this suggests queueing-theoretic guardrails and 

admission control mixed with predictions. 

 

8.4. Security and Privacy Considerations 

PdM pipelines querying touch sensitive data involves text, metadata and operational logs and therefore privacy-by-design is 

required. Minimum data (where fingerprint queries are used instead of literal storage), field-level encryption (agent-based 

redaction) and minimization, strong RBAC, least-privilege service accounts, and zero-trust network segmentation defends content, 

with blast radius being controlled by strict RBAC and least-privilege service accounts. In the first place, use differential privacy or 

k-anonymity on aggregated features and use confidential computing (TEEs) to serve the model, where possible. Integrity is 

enhanced by supplying the agents and models (signing, SBOMs, provenance) with immutable and verifiable audit logs. At last, 

conform to regulatory controls (e.g., data-retention and access logging) and have operators be able to provide transparent 
explanations so that security reviews may be able to trace the manner by which a prediction was made and why an automated 

action was warranted. 

 

9. Conclusion 
The paper positioned predictive maintenance (PdM) of database systems as an information-driven circular discipline that 

integrates observability, feature engineering, and hybrid machine-learning models and puts them under safe, auditable control. Also 

suggested reference architecture, isolating sensing, learning and action; described a feature toolkit, including latency distributions, 
log/flush dynamics, contention graphs and plan-stability vectors; and have shown that calibrated ensembles of anomaly detection, 

forecasting and supervised classification can provide early, reliable warnings. PdM, in case of controlled tests based on synthetic 

failures and in TPC-like workloads significantly decreased time-to-detect, improved alert accuracy and provided targeted, 

minimally disruptive interventions. The method compared to calendar-based maintenance has shifted the effort load of redundant 

routine workload to condition-based work and reduces the downtime, labor, and smooths the capacity utilization and cost. 

 

Meanwhile recognized practical limits data quality and label scarcity, integration complexity with heterogeneous engines and 

drift in nonstationary workloads and guardrails (policy thresholds, rate limits, rollback) and governance (calibration, explainability, 

audit trails) to curb error costs and develop operator confidence. Moving forward, self-healing controllers with operationalization 

of pattern fix playbooks, more intimate operations with AIOps to create cross-signal root-cause narratives, and scalable inference 

in real-time without compromising privacy and security are the most promising directions. Combined, these developments have the 
potential to transform database operations beyond the reactive firefighting into the proactive, constantly learning reliability 

engineering, in line with the business impact and SLAs. 
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