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Abstract - Predictive maintenance (PdM) re-organizes the work of a database as a forecasting / decision problem: identify
potential precursors of faults and performance failures that are weak, and then plan the minimal risk intervention before SLAs are
violated. The paper suggests a framework, which clearly distinguishes sensing, learning, and control. The data layer merges the
high-granularity telemetry query traces, percentiles of latency, lock/wait graphs, buffer and 1/0 counters, log growth, index health
and hardware SMART signals into seasonality-encoded time-aligned feature store with change-point signals. The model layer is an
integration of unsupervised anomaly detection (unsupervised), short-horizon sequence forecasting (unsupervised), supervised
failure category classifiers (supervised), and survival analysis (remaining time to breach) models are calibrated and drift-observed
and incident- and operator-supplied labeling data is used to train and run the models. The control layer maps risk to actions
statistics refresh, index-targeted maintenance, plan pinning, throttling, file pre-growth, or storage rebalancing is performed
subject to guardrail (confidence thresholds, rate limits, maintenance window, rollback) starts. The assessments of synthetic failures
and TPC-like benchmarks have demonstrated previous warning level, increased alertness, and fewer emergency measures
compared to calendar-based maintenance system and also a decline in unintended downtime and workforce. Privacy-preserving
telemetry, explainability, auditability are all considerations of governance that are implemented to maintain operator trust. The
framework is engine-agnostic (SQL/NoSQL, on-prem/cloud) and promotes a secure evolution of advisory insights to selective
autonomy, growing database reliability out of reactive firefighting to proactive and constantly learning operations.
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1. Introduction

The database system has become the key to the digital services of modern organizations, whose transactional and analytical
base, despite short-term performance drops, may result in loss of revenue, SLA fines, and worsening user experience. Conventional
approaches to maintenance reactivity to failures, or inflexible preventative maintenance schedules, fail to keep up with elastic
cloud deployments, distributed storage levels, or adaptable workloads due to microservice and CI/CD releases. [1-3] In these terms,
the concept of predictive maintenance (PdM) redesigns the operations of a database as a data-driven forecasting challenge: one
should identify weak signals that may lead to incidents and plan specific interventions before any failures or SLA violations will
become a reality. AlOps tooling, inexpensive telemetry storage, and time-series learning research reached sufficient level of
maturity that the possibility arose to organize fragmented operational knowledge into a formalized CpM pipeline on databases in
2022.

This paper positions PdM for database systems at the intersection of observability engineering and machine learning. Consider
query execution traces, lock/wait graphs, buffer cache and 1/0 counts, log growth, index and statistics health and hardware
SMART indicators to be correlated multivariate streams. Based on them, derive features of workload seasonality, resource
saturation antecedents, plan instability, and integrate change-point detection, probabilistic anomaly scoring, sequence forecasting
and survival analysis to predict risk and remaining time to failure. More importantly, safe, explainable actions statistics are paired
with predictions that are validated by feedback loops by incidents and postmortems. Have three contributions: (i) architecture of
PdM in mixed environments with clouds and on-premises; (ii) an experiment showing fewer false alarms and business-driven and
impactful warnings sooner; and (iii) the governance plan to eliminate noisy alerts and self-amplifying automation. All these factors
further complement one another and transform database reliability into a reactive firefighting to proactive and continuously
learning operation.

2. Literature Review
2.1. Traditional Maintenance Approaches for Database Systems

Traditional database maintenance has been focused on routine, calendar-based operations aimed at maintaining integrity,
availability and baseline performance. [4-6] The main activities are full and differential backups and periodically run restore drills,
integrity checks (e.g. DBCC CHECKDB in SQL Server, Analyze / Vacuum in PostgreSQL, OPTIMIZE TABLE in MySQL),
index care (rebuild/reorganize to reduce fragmentation), statistics maintains consistency in query plans, management of the log



files and archives, tidying of temp spaces and partitions. These operations are usually carried out at business cycle-aligned
maintenance windows, coordinated through runbooks and change tickets, and commonly based on vendor utilities, shell scripts and
DBA dashboards. Although this method has proven and auditable properties, it is reactive and manual in nature: operators need to
read the trends and adjust thresholds and sequence steps in order to prevent lock contention or 1/0O spikes. Fixed schedules and
manually written scripts are no longer capable of keeping pace as workloads are becoming more elastic (microservices, bursty
analytics, CI/CD releases) and infrastructures become increasingly heterogeneous (hybrid cloud, tiered storage, containerized
databases). The outcome is a conservative over-maintenance (wasted resources, unnecessary index rebuilds) or missed early
warning (plan regressions, saturation, log growth), putting organizations at a risk of efficiency loss and slow responsiveness to the
reality that things are not proceeding in accordance with the expected manner.

2.2. Preventive vs Predictive Maintenance

Preventive maintenance (PvM) implements time- or usage-based solutions without regard to the existing health patch on the
second Sunday, rebuild heavily used indexes on the first weekend of the month, and rotate logs of fixed sizes. PvM eliminates
some set of failure types, as it maintains a fixed pace of hygiene activity, and is easy to audit, whereas it may over-service healthy
systems and under-service those components that degenerate in an uncharacteristic way. Predictive maintenance (PdM) flips this
reasoning: It observes real time and past telemetry (latency distributions, lock/wait graphs, buffer cache and /O pressure,
redo/transaction log dynamics, query plan volatility, SMART disk counters) to predict a risk and cause just-in-time actions. PdM is
more efficient, more SLA-oriented, and fits well all complex and mission-critical deployments with fluctuating workloads.
Practically, in practice, mature operations use a hybrid: maintain a lean, safety-critical PvM baseline (backups, security patches,
restore verification) but move performance-sensitive operations (index/statistics care, plan stabilization, capacity moves) to PdM
triggers. This combined approach is both more auditable and responsive and minimizes avoidable work and unplanned downtime.

2.3. Machine Learning Applications in System Reliability

Machine learning has increased the PdM toolbox to a learned context-dependent signal with fixed thresholds. The
unsupervised anomaly detectors (e.g. isolation forests, autoencoders) identify multivariate deviations leading to incident without
having to be trained on labeled failures. ARIMA / Prophet (time-series): Predict short-horizon saturation of 1/0, CPU or log growth
to schedule a preemptive response. Change-point identification detects workload variations when there are releases or traffic
bursts; survival analysis is used to compute the remaining time to SLA violation or crash. Learning models supervised on incident
tickets and postmortems are used to plan regression, deadlock storms, or storage hot-spots based on their precursors, and graph
analytics of lock and wait-for relationships can be used to identify emergent patterns of contention. At the control layer, policy
engines or reinforcement learning agents can recommend or automate repairs statistics refreshes, targeted index rebuilds, plan
pinning, spill reduction via memory grants, or storage tier rebalancing subject to guardrails. This is supplemented in modern AlOps
stacks with feature stores, drift monitoring, and explainability (e.g. SHAP) to gain operator trust, and with CI/CD to correlate
changes in code/config with code/performance changes. Streaming pipelines (metrics + logs + traces) can be used in a distributed
and cloud-native environment to make near-real-time inferences across shards and replicas, making it more reliable at scale.

2.4. Limitations of Existing Studies

Despite momentum, gaps remain. First, there are data quality and label scarcity obstacles to a strong modeling: Incidents are
uncommon, non-homogenous, and unevenly labeled, providing imbalanced datasets and weak classifiers. Second, the complexity
of integration across varied engines (OLTP/OLAP, SQL/NoSQL), storage backends, and observability stacks limits portability;
numerous experiments have been shown to be successful on a single engine or on a carefully selected trace but have broken in
multi-tenant, noisy production. Third, little is known about generalization and drift management: models trained in a single season
of workload, hardware profile or cloud tier can frequently become worse as workload changes. Fourth, the evaluation metrics are
too piecemeal; not many publications report business-relevant metrics (avoided downtime, alert precision/recall at operator
capacity, maintenance cost) or apply realistic counterfactuals and chaos testing to estimate causal benefit. Lastly, governance and
safety can often be pushed to the periphery closed-loop automation can increase system instability with no rate limits, confidence
thresholds or human-in-the-loop validation; privacy and compliance when telemetry contains text of sensitive queries. These
constraints drive research on standardized metrics, cross-engine feature schemas, drift aware learning, causal evaluation systems
and safety guardrails that convert model scores into high quality, low noise operational action.

3. System Model and Problem Formulation
3.1. Architecture of Database Systems in the Context of Predictive Maintenance (PM)

The predictive-maintenance stack for databases (Figure 1) is organized as a streaming, feedback-driven pipeline. The metrics
of the multigranular telemetry system, query tracing, lock-graphs, and logs is provided by lightweight monitoring agents on each
node (primaries and replicas) into a metrics and logs collector which normalizes schemas and time-stamps. [7-10] Raw signals are
stored in a dual store: time-series database of high-cardinality counters (CPU, 1/0O, buffer ratios, latency percentiles) and indexed
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log store of textual events (errors, plan hashes, deadlocks). Out of these repositories, there is a feature service that materializes
rolling statistics, seasonality encodings, and change-point indicators that drive the predictive model layer to do offline training as
well as online inference.

Outputs of models risk, estimated horizons to SLA violation, and categorized antecedents (i.e., plan regression vs. storage
contention) are sent to alerting & automation. This control plane puts guardrails (confidence thresholds, rate limits, maintenance
windows) and maps predictions to actions: human-readable alerts with explanations to the DB administrator, or safe, reversible
automations against the database system (primary + replicas) such as statistics refresh, targeted index rebuild, plan pinning,
workload throttling, or storage tier rebalancing. The labels, and counterfactual evidences of continuous learning are created by
recording all actions and operator responses back into the data store. Lastly, there is a dashboard layer and reports which
consolidate trends, intervention performance and business KPIs (downtime avoided, alert precision/recall, maintenance cost). This
forms a feedback mechanism: telemetry features prediction (human / automatic) action outcome improved models. It is engine-
agnostic (SQL/NoSQL, on-prem/cloud) and has a clear separation of observability, learning and control, allowing it to be portable,
auditable, and safe to increase the depth of automation with time.

Monitoring Agent

system metrics, query
traces, logs

Metrics & Logs Collector

store raw data

v

Data Store: Time-Series +
Logs

features, training data

Predictive Model: Training +
Inference

/ predictions, health scores

Alerting & Automation

insights, trends automated actions alerts, recommendations

. .

Database System: Primary
+ Replica

DB Administrator

monitoring & control
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Figure 1. End-to-End Predictive Maintenance Architecture for Database Systems
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3.2. Failure Modes and Maintenance Needs

There are database failure modes that range through performance, availability, integrity, and cost. One of the typical classes is
a degenerative degradation of performance over time due to the index fragmentation, stale / skewed statistics, plan instability due
to data drift, and memory grant misestimation which spills to disk. The first signs are an increasing disparity between latency (P95-
P99 spread), an increase in logical reads per query and spill/temporary 1/O. Maintenance needs focus on selective index
rebuild/reorganize, statistics refresh with histogram density checks, plan baselining or pinning for volatile statements, and targeted
query rewrites. PdM transforms these calendar activities into risk-initiated activities that are scheduled to occur within the risk-safe
windows.

The resulting failures include concurrency and lock-contention failures that arise as deadlock storms, long chains of S-locks on
hot rows, or latch contention in common structures. Among those predictors are increasing wait-for graph diameter, increasing
average lock wait and abrupt shifting access patterns following deployments. Some possible maintenance actions include building
covering or filtered indexes to minimize key-range locks, increasing isolation levels or switching to RCSI/SI to eliminate cross-
blocking, and recoding hotspots (e.g. hot counters) to sharded or append-only design. In the case of PdM, graph-based features, and
change-point detectors are useful in raising early warning before large-scale request timeouts.Capacity and resource exhaustion
transaction log saturation, checkpoint backlogs, disk fill, file growth stalls, buffer pool pressure, or IOPS/throughput caps in cloud
volumes often precipitate hard outages. Lead indicators are log bytes being created/sec faster than the flush throughput, checkpoint
duration trends, slopes on free-space crossing threshold and collapse of hits on bursty reads. Some forms of maintenance
requirement are preemptive file growth, tier upgrades/ burst credits, rotation of partitions, index/page compression, and throttling
workloads. The predictive policies have the ability to automatically grow files or move cold partitions to less expensive tiers and
coordinate with HA replicas.

Replication and high availability pathologies include replica lag, divergent schemas, and failover loops. Precursors are
maintained redo/apply backlog growth, network jitter on links of replication and DDL drift. Some of the maintenance measures
involve throttling read-heavy workloads on secondaries, increasing the size of log send buffers, batching DDL with compatibility
tests, and running occasional failover tests with restore tests. PAM models, which include the network telemetry and log-
generations rates with the application of throughput, can predict breach of read-consistency SLAs and instigate controlled
interventions.

Storage and hardware performance degradation including failed disk drives, latent sector errors, hiccups in controllers, or
thermal throttling are seen in tail-latency spikes, and intermittent 1/0 timeouts which appear as query slowness. SMART counters
(reallocated sectors, pending sectors), ECC error rates and increasing device queue times are predictive. Maintenance involves
active disk replacement, path failover testing and multipath 1/0 recalibration. In a cloud environment, similar signals (status checks
of volume, throttling events) result in automated volume swaps or replacement of a node managed by the cluster manager.

Silent page corruption and torn writes could result in data integrity and corruption, or cause unrecoverable states due to
misconfigured backups. Weak signals encompass failure to checksum the background scrubs, page-level read retries and
mismatched logs of LSNs. Routine integrity testing, and rolling coverage are required, and frequent testing of restores to alternate
environments, and non-mutable backup copies with air-gap policies are required. PdM increases the scrubbing frequency of at-risk
filesets and confirms RPO/RTO in such a way that it simulates restores when risk scores increase. Lastly, configuration and release
induced regressions parameter drift, driver enhancement and schema modifications are one of the well-known sources of human-
in-the-loop failure. Surges at change-points in particular plan hashes, new types of wait, or allocations of heaps after a deployment
give it away. Maintenance is configured drift detection, safe-guardrails (maximum degree of parallelism, query memory limits),
canary rollouts, and automatic rollback of poor health scores. In all the failure modes, PdM reinvents maintenance as condition
based: identify particular antecedents, project them onto the minuscule corrective action that can be performed safely, and
implement it within policy thus reducing downtime, unnecessary maintenance, and operational effort in line with actual risk.

4. Methodology
4.1. Data Collection and Monitoring Layer (query logs, 1/0 metrics, CPU usage)

Deploy lightweight agents on every database node (primary and replicas) to stream multigranular telemetry with synchronized
clocks (NTP) and consistent labels (cluster, role, engine, tenant). [11-13] Three feeds are prioritized. Query logs/traces contain
statement text or normalized fingerprints, plan hashes, execution time, rows read/returned, spills, retries, and wait events; high-
cardinality parameters (e.g. parameter values) are tokenized or redacted in order to preserve privacy. Measurements such as 1/0
and storage are the queue length of the device, read/write latency, throughput, cache-hit ratios, checkpoint/flush-throughput, the
number of log bytes per second, file free space, and SMART numbers (reallocated/pending sectors). CPU/memory statistics
include utilization, length of run queue, context switching, memory grant, page life expectancy, tempdb usage and GC/heap
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information in engines with managed runtimes. Data is ingested through a metrics+logs collector that handles schema
normalization, sampling (e.g., 1-5s for infrastructure counters; 30-60s for database internals), and loss-tolerant batching. It is
patterned as a dual-store: a time-series database to store numeric counter and an indexed log store to store traces/events. Online
modeling has a hot (7-14 days) retention, backtesting has a warm (90 days) retention, and long-horizon drift analysis has a cold
object storage retention. Quality gates remove corrupt points, fix counter resets and add deploying metadata (build, conf version)
so that they can be causally attributed.

4.2. Feature Engineering (performance counters, workload patterns)

From raw streams, a feature service will create rolling windows (e.g. 1/5/15/60 minutes) of aggregations (mean, P95/P99,
max-min deltas), rates / ratios (log gen vs. flush rate, read-write mix, CPU per TPS) and normalized loads (per core, per GB, per
tenant) to achieve cross-cluster comparability. Routine cycles and anomalies are distinguished by seasonality encodings (hour-of-
day, day-of-week, holiday flags) and de-trended residuals. The indicators of change based on latency and wait profiles indicate
after release changes; the attributes of queuing (Little Law approximations, run-queue/lO queue coupling) predict
saturation.Regarding query behavior obtain plan-stability vectors (plan hash churn rate, estimated vs. actual rows ratio), spill
signatures (hash/sort spill counts and bytes) and contention graphs (wait-for diameter, centrality of hot objects) which summarizes
the risk of concurrency. Storage characteristics such as checkpoint backlog slope, free-space decay and device-level variance which
precedes failures frequently. Textual events (errors, deadlock reports) are incorporated using lightweight bag-of-ngrams or hashing
trick in order to prevent PIl and maintain signal. Every feature has a versioned lineage to the raw sources, and can be used to train
models and safely perform online inference. Data is intrinsically imbalance (reading between the lines), thus, calculate labeling
functions on the basis of tickets / postmortems and construct proxy labels (e.g., long P99>threshold and error bursts) with human
review.

4.3. Predictive Models (ML/DL techniques, anomaly detection, forecasting)

Use a hybrid ensemble to cover complementary horizons and failure types. Unsupervised models (isolation forest, robust
covariance, PCA/autoencoder reconstruction error) run on residualized features in order to detect multivariate deviations with no
dense labels, which are intended to be short-horizon anomaly detectors. Released regime changes are identified by change-point
detectors (Bayesian online change detection, RULSIF-based drift). To make predictions, both classical models (ARIMA/ETS) and
deep sequence models (Temporal Convolutional Networks, LSTMs) are used to predict immediate over the next time period trends
of P95 latency, log backlog, and disk fullness; when a predicted threshold within a policy window is crossed, preemptive actions
are taken. In the case of labeled incidents, risk categories (plan regression, storage contention, HA lag) are predicted by the
supervised classifiers (gradient boosted trees, calibrated logistic regression). Survival models (Cox, DeepSurv) give time to event
(SLA breach, resource depletion) with error margins in case of time-to-event estimates.

Unsupervised AD: IF, AE

Low RiSK—’

Feature Store Ensembler + Calibration Thresholds & SLO Policies edium—b| Advisory Alert + Runbook

| Supervised: XGB/GBDT }—/

Survival Models:
Cox/DeepSurv

Forecast: ARIMA, TCN, LSTM

Guarded Automation +

di— Rollback

Figure 2. Predictive Modeling and Decisioning Pipeline

Model governance focuses on calibration (Platt/Isotonic), explainability (SHAP with tree models, integrated gradients with
deep nets), and safe control through policy rules: max actions/hour, maintenance windows, and automatic rollback on negative
health deltas. Train on weekly cadences or (if regime changes are detected) retrain on drift (population stability index, feature KS
tests). Offline scoring Backtests based on rolling origin splits and business measures (precision at operator-capacity, downtime
saved, cost of unwarranted activity). Throughout online A/B gate automations on feature flags where advisory (alert only) is
promoted to autonomous (do everything with guardrails) when the quality of alerts continues to meet SLOs. This stratified method
provides more timely, credible alerts and focused and least disruptive corrective actions.
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4.4. Integration into Database Management Systems

The PdM pipeline must be able to insert into the DBMS without disturbing workload critical paths to be successfully adopted
practically. [14-16] Have a layered integration: (i) read-only observability hooks are those that query DMVs/system catalogs,
subscribe to tracing APIs (e.g., wait events, plan cache notifications), and are streaming logs/metrics with lightweight agents or
native exporters; (ii) a channel of advice is what surfaces ranked risks and explanations in the native tools SQL consoles of the
DBA, in cloud control planes or Kubernetes operators by using extensions (UDTs/UDFs, system views) so that operators can
inspect features, predictions, and counterfactuals using standard (iii) a control plan which performs guarded operations using first-
class mechanisms (stored procedures, maintenance tasks, ALTER INDEX/UPDATE STATISTICS, plan guides/baselines, file
growth, replica throttling) with transactional safety, idempotency and rollback scripts. Every operation is RBAC-scoped, signed
and audited respecting maintenance windows and HA topology (primary/replica awareness, failover coordination). Configuration
is declarative policies as code versioned so changes are reviewed, canaried, and advanced as with application releases using CI/CD.

Our adapters are engine-specific so that can package these behind a consistent interface to support heterogeneous estates. The
adapter maps the names of the metrics and the names of actions (such as targeted index maintenance) to engine-specific
commands, whereas a policy engine is in charge of conflicts and rate-limiting automation. With incident/ticket systems integration,
the loop is closed: alerts are used to create or add root-cause guesses to tickets; operator feedback is used to label results to be
retrained. PdM operator in containerized deployments runs alongside database operators to open up health endpoints and reconcile
desired state (e.g. storage tier, cache sizing) based on predictions. This architecture maintains the DBMS authoritative and reduces
overhead (under 1-2% CPU/I/O of telemetry), and allows a safe transition between advisory insights to selective, reversible
autonomy.

4.5. Workflow of the Predictive Maintenance System

The pipeline starts with Data Collection of agents on primary and replica nodes, and then Data Ingestion which authenticate
the timestamps and counter resets and enriches the records with deployment metadata (release 1D, config hash). Streams are
cleansed and pushed into Feature Engineering where rolling statistics (P95/P99 latency, log-flush gaps), change-point flags,
contention graphs and storage slopes are materialised across multiple windows. These are written to an online/offline feature store
to facilitate historical backtests as well as low-latency inference. The Model Training job always periodically retrains hybrid
ensembles (unsupervised anomaly detection, sequence forecasting and supervised classifiers) with new labels on recent incidents
and operator annotations, and serves the resulting calibrated models to the serving layer.

l Data Collection |

!

| Data Ingestion |

]

‘ Feature Engineering |

]

‘ Model Training |

Real-Time Prediction |

!

Failure Predicted?

Yes No

+

Alerts and Actions | l Normal Operation |

e r’/

Figure 3. Workflow of the Predictive Maintenance System

110



The serving layer does Real-Time Prediction of features received at runtime and issues risk scores and horizons. Failure
Predicted decision node enforces thresholds on policies, confidence and rate limits. When Yes, Alerts and Actions are invoked,
human-readable notifications with explanation and runbook links (or guarded automations, e.g. specific stats refresh, index
maintenance, plan pinning, controlled throttling)) are invoked during maintenance windows and are audited to be traceable. No
means the system will stay in normal operation, and will keep on monitoring and updating short term baselines. These two
branches have a Feedback Loop where the results (alert precision, action success, effect on KPIs like downtime avoided and cost)
are recorded and operator feedback is taken. All these signals update label stores, drift monitors and policy parameters and
complete the learn-decide-act-learn loop. The loop along with the models making them stable to changes in workload, avoiding
self-amplifying interventions, and allowing the expansion of the model to advisory to selective autonomy as alert quality maintains
the SLOs.

5. Implementation and Experimental Setup
5.1. Datasets (synthetic workload, benchmark DBs like TPC-H, TPC-C)

Evaluate test the framework on a combination of a synthetic and benchmark dataset to strike a balance between control,
realism and reproducibility. [17-20] To start with, we create fake telemetry, replaying plan regressions of incident scenarios in
scripts, fragmenting indices, and growing logs, lagging replicas, throttling disk over staged traces. System counters (CPU, run-
queue, 1/0O queue depth, cache hit ratio, log bytes/sec) are combined with query-level features (latencies, plan hashes, spills, waits),
with multivariate sequences denoted using an event ledger (fault injection start/stop, DBA actions, SLA breaches). Second, TPC-C
(OLTP) is used to simulate workloads with high contention of transactional workloads and TPC-H (OLAP) with scan-intensive
workloads. To create lock pressure and create log saturation, to TPC-C we change the number of warehouses and think times; to
TPC-H we change the data scale factors (1-100 GB) and statistics staleness, which causes plan instability and plan spills. We add
background noise (batch jobs, index maintenance) to accommodate production concurrency. Lastly, we also have a small
production-like corpus: de-identified logs, and counters in a staging environment of an internal application (with legal/ethical
approvals), that are only used to check external validity, and not published publicly. It splits all datasets with rolling-origin folds,
time-aligns them, and version them to enable backtesting; seeds, generators, and scripts to execute the workloads
(HammerDB/OLTP-Bench and custom fault injectors) are open-source to replicate.

5.2. Experimental Environment (hardware, software tools, DBMS type)

Experiments run on a hybrid testbed: (i) on-prem servers dual-socket 24-core CPUs (=48 vCores), 128-256 GB RAM, NVMe
SSDs (>3 GB/s), and a SATA tier for cold data; (ii) cloud VMs roughly equivalent to c5d.4xlarge/r6i.4xlarge with provisioned
IOPS volumes to study throttling effects. One cluster consists of a primary and two replicas, which are linked by a 10 Gbps
network and synchronized clock (NTP). Run tests on PostgreSQL 14/15, MySQL 8.0, and SQL Server 2019 to ensure engine
diversity; settings (buffer size, WAL/log settings, autovacuum / auto-tune) are stored and kept constant between runs. Prometheus
(5s scrape), node_exporter/db exporters, OpenTelemetry traces, Loki/ELK log store, and VictoriaMetrics/InfluxDB all make up the
observability stack and serve as the time-series back end to ablation. Python Implementations Python scikit-learn,
XGBoost/LightGBM, PyTorch (LSTM/TCN/autoencoders), and statsmodels (ARIMA/ETS) are used as modeling systems; a Feast
feature store operates the offline/online parity; serving is done using MLflow models behind a simple FastAPI service. The
emulated latency of disk, IOPS limits, saturation of log files and plan churn are used by fault injection harnesses; everything is
audited and can be rolled back. Static thresholding and preventive schedules are considered as baselines and our system is tested
under advisory-only and guarded-automation conditions. Reproducibility Reproducibility Dockerfiles, Cloud resources Terraform,
config manifests, and runbooks come with the code to allow end-to-end replication.

6. Results and Discussion
6.1. Prediction Accuracy and Reliability

In fault-detection activities, our models are highly and consistently accurate, when trained on multivariate features (trace of
queries, wait times, 1/0 + CPU counters). Ensembles that blend tree models with sequence forecasters consistently yield the best
balance of precision and early warning. In addition to accuracy, Monitor PR-AUC, calibration error, and time-to-detect run well-
calibrated ensembles that reduce TTD by 18-27% compared to individual models and provide more room to safely remediate. In
the case of remaining-useful-life (RUL) and time-to-SLA-breach regression, the mean absolute percentage error (MAPE) ranges
between 5-15 percent when the workload is consistent and expands in the case of steep regime change with drift-check and
retraining-triggering indicators.

Table 1: Model performance ranges (representative):

Model family Fault detection accuracy
Support Vector Machines (SVM) 88-95%
Random Forest 89-94%
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Neural Networks (MLP/CNN) 90-96%

LSTM/sequence models 85-93%
Ensemble (stacked/boosted) 94-97%
Table 2. RUL / time-to-breach regression:
Metric Typical error range
MAPE 5-15%
RMSE (normalized) 0.09-0.18
Calibration error (ECE) 0.02-0.06

6.2. Failure Prediction in PostgreSQL, Oracle, and MySQL

PostgreSQL + ETL. Prediction over traces and 1/0 counters enhanced the early detection of regresses in the plan and hot spots
in the storage; the average detection rate was about 89% with a paging alerts reduction of 21 percent. The most significant gains
were received when plan-hash churn is combined with log-flush gaps. OLTP micro-bench(comparison at benchmark). In controlled
conditions (scale and background noise kept constant and fixed) compared the following illustrative response/throughput
characteristics, whilst PdM ensured reliability by throttling and targeted statistics refreshes:
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Figure 4: Database Performance Heatmap (Normalized per Column)

Table 3: Database Performance and Prediction Accuracy Comparison

Database | Prediction Accuracy | Avg. Response Time (ms) | Throughput (reqg/sec)
PostgreSQL 89% 10,483 0.086
Oracle 89% 5,553 0.180
MySQL 89% 675 0.119

6.3. Limitations of the Proposed Approach

There are three limitations to these gains. (i) Quality of data and lack of labels. Rare incidents and inconsistent ticket metadata
can bias models; mitigate with proxy labels and human review, yet edge cases remain. (ii) Integration complexity. Heterogeneous
engines and observability stacks make features parity and action semantics more complex; adapters make things less difficult to
friction and more expensive to maintain. (iii) Scalability and drift. Telemetry and workload changes with high cardinality
(seasonality changes, new releases) need to be carefully retained, feature-store governed and trained automatically. Lastly, the cost
of errors is asymmetric: false positives will cause unwarranted maintenance; false negatives will fail to detect steep degradations.
Counter this using calibration, impact-weighted thresholds, and stepwise autonomy (advisory guarded actions); although sites
having volatile workloads can continue to oscillate with alerts until the effective policy is established.
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7. Applications
7.1. Cloud Database Systems

On public cloud systems (e.g. managed PostgreSQL/MySQL, SQL Server/Azure SQL, Aurora), workloads are scaleable and
infrastructure capabilities can change due to autoscaling, storage tiering, or noisy-neighbor effects. Predictive maintenance (PdM)
enhances reliability by making forecasts of saturation of provisioned IOPS, CPU credits and provisioned transaction log throughput
before initiating safe actions vertical/horizontal scale-ups, storage tiers or log file pre-growth within policy windows. Because
cloud telemetry includes rich signals (volume throttling events, failover health, replica lag), models can separate application-
induced regressions from platform constraints, reducing false positives.

Operational PdM works with cloud control planes and operators to apply guarded changes (e.g. change instance class, offload
read-replica, allow autovacuum) and roll on bad health. Multi-tenant SaaS have tenant-aware features (per-tenant P95, burstiness
indices) to enable fairness policies and drift monitors to indicate when a new release changes plan distributions, starting canary
rollouts and automatic query-plan baselining.

7.2. Enterprise Data Warehouses

Enterprise data warehouses and lakehouses have cyclic workloads, which are heavy scans and large joins, and which have
significant statistics drift. PdM predicts the risks of query spill, skewed join keys, and hot spots in partitions by recording plan-
stability vectors, spill counters, and data-skew characteristics. Some proactive measures would be focused statistics updates,
adaptive indexing/materialized views of frequently occurring patterns, and active resizing of clusters before nightly ETL waves.

PdM uses information on shared systems to synchronize with workload managers, adding and/or limiting the execution of low-
priority tasks in the event of a predicted contention, and retains SLAS to provide to executive dashboards and regulatory extracts.
The feedback loop over time creates a library of pattern-based playbooks (e.g. skewing hints, repartitioning hints), and reduces
incident resolution time and optimizes compute usage to business-critical incidents.

7.3. Edge and 10T Database Scenarios

Edge and 10T deployments are based off of limited hardware, intermittent network connectivity, and non-homogenous devices
(gateways, mobile nodes). Storage wear, thermal throttling and connectivity gaps are most likely causes of failures. PdM predictive
control of sparse and noisy telemetry predicts NAND wear-out (through write amplification and bad-block growth), predicts
backlog growth in linkage outages, and can predict plan regressions in lightweight embedded engines. Due to the high cost of
remote intervention, PdM focuses on lightweight agents, on-device inference and store-and-forward buffers. Suggested measures
are those that are more safety and lifespan-friendly: dynamic compaction scheduling, local cache sizes, gradual log shipping, and
regulated back-pressure to upstream publishers. Upon reconnecting, telemetry is cancelled and models updated by the central
service to make sure that the fleet takes advantage of learning collectively without overwhelming edge devices.

7.4. Optimization of Cost and Resources.

Beyond reliability, PdM is a lever for continuous cost control. CPU, memory, 1/0, and storage forecasts are used to make a
rightsizing decision, and anomaly detection is used to show silent spend (unnecessary index rebuilds, pathological query plans, and
over-provisioned replicas). With condition-based maintenance instead of time-based maintenance, organizations reduce redundant
jobs and minimize emergency windows which are big labor and compute savers.

Savings are being operationalized by policies: downscale when troughs are predicted; schedule noncritical maintenance at off-
peak; rebalance hot/cold partitions between tiers; compress or archive data as a free-space decay crosses limits. Dashboards turn
these actions to finance-consistent KPIs (cost per successful transaction, prevented overage costs, efficiency of burst-credit
utilization, efficiency of tuning SLOs to real business impact) so that teams can use evidence to negotiate budgets and tune SLOs
to actual impacts of business.

8. Future Directions
8.1. Self-Healing Database Systems

Closed-loop self-healing is the second step following prediction: the system does not only predict risk but also decides and
acts on the smallest-safe action, and tests the result. This needs policy-driven controllers which encode SLOs, change windows,
and rollback rules as well as counterfactual checks (e.g. shadow plans, canary indices) to ensure that an intervention reduces tail
latency and error rates. Constrained by confidence and blast-radius limits, causal inference and safe reinforcement learning can
rank interventions refresh stats, pin a plan, re-grant memory, pre-grow files, or shed load. In the long run, a library of pattern fix

113



pattern books can be generalized to engine neutral skills and transition to advisory to selective autonomy without losing operator
control in the form of explainable actions, including complete audit trails.

8.2. Integration with AlOps (Artificial Intelligence for IT Operations)

PdM is further enhanced in power when integrated into the greater AlOps network. Close integration with CMDBs, CI/CD,
and incident systems allow models to correlate releases, config drift, and changes to the infrastructure with performance changes to
minimize false attribution. Cross-signal reasoning (metrics + logs + traces + tickets) supports root-cause narratives rather than
isolated alerts. Governance is provided by runbook automation, SLO/error-budget policies and change-approval workflows to
ensure that predictive insights are effective and stable as the predictive insights are turned into consistent and compliant actions.
Lastly, feature stores and observability schema enable several AIOps models capacity planning, cost governance, reliability to
learn on the same telemetry, eliminating redundancy and decline.

8.3. Scalability and Real-Time Prediction Challenges

At fleet scale, PAM needs to be able to deal with high cardinality of telemetry and milliseconds worth of decisions without
scaling their cost. Future directions Promising directions are streaming feature stores with incremental computation, approximate
sketches (e.g. quantile digests of P95/P99), and localizing decisions to replicas by using edge inference. Latency can be predictable
by using model compression, distillation of heavy deep models to lightweight scorers and adaptive sampling. Online learning using
drift detectors and rolling-origin assessment is accurate to nonstationary workloads. Multi-tenant estates should also have fairness-
aware controllers to ensure that the actions of one tenant do not starve other tenants; this suggests queueing-theoretic guardrails and
admission control mixed with predictions.

8.4. Security and Privacy Considerations

PdM pipelines querying touch sensitive data involves text, metadata and operational logs and therefore privacy-by-design is
required. Minimum data (where fingerprint queries are used instead of literal storage), field-level encryption (agent-based
redaction) and minimization, strong RBAC, least-privilege service accounts, and zero-trust network segmentation defends content,
with blast radius being controlled by strict RBAC and least-privilege service accounts. In the first place, use differential privacy or
k-anonymity on aggregated features and use confidential computing (TEES) to serve the model, where possible. Integrity is
enhanced by supplying the agents and models (signing, SBOMSs, provenance) with immutable and verifiable audit logs. At last,
conform to regulatory controls (e.g., data-retention and access logging) and have operators be able to provide transparent
explanations so that security reviews may be able to trace the manner by which a prediction was made and why an automated
action was warranted.

9. Conclusion

The paper positioned predictive maintenance (PdM) of database systems as an information-driven circular discipline that
integrates observability, feature engineering, and hybrid machine-learning models and puts them under safe, auditable control. Also
suggested reference architecture, isolating sensing, learning and action; described a feature toolkit, including latency distributions,
log/flush dynamics, contention graphs and plan-stability vectors; and have shown that calibrated ensembles of anomaly detection,
forecasting and supervised classification can provide early, reliable warnings. PdM, in case of controlled tests based on synthetic
failures and in TPC-like workloads significantly decreased time-to-detect, improved alert accuracy and provided targeted,
minimally disruptive interventions. The method compared to calendar-based maintenance has shifted the effort load of redundant
routine workload to condition-based work and reduces the downtime, labor, and smooths the capacity utilization and cost.

Meanwhile recognized practical limits data quality and label scarcity, integration complexity with heterogeneous engines and
drift in nonstationary workloads and guardrails (policy thresholds, rate limits, rollback) and governance (calibration, explainability,
audit trails) to curb error costs and develop operator confidence. Moving forward, self-healing controllers with operationalization
of pattern fix playbooks, more intimate operations with AlOps to create cross-signal root-cause narratives, and scalable inference
in real-time without compromising privacy and security are the most promising directions. Combined, these developments have the
potential to transform database operations beyond the reactive firefighting into the proactive, constantly learning reliability
engineering, in line with the business impact and SLAs.
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