

Original Article

Adapting P&C Risk Models: Integrating Advanced Analytics and Geospatial Data to Forecast and Price Risks from Increasing Natural Disasters

Komal Manohar Tekale¹, Nivedita Rahul², Gowtham reddy Enjam³
^{1,2,3}Independent Researcher, USA.

Abstract - The increasing rate of occurrence and intensity of natural disasters have seen a great influence in the Property and Casualty (P&C) Insurance industry, whose paradigm shift has required a change in the way risks are assessed and priced. Conventional actuarial models which largely rely on the historical loss data are becoming less and less sufficient with the changing climatic pattern and emerging risk factors. In this paper, an attempt will be made to discuss how advanced analytics and geospatial data can be incorporated into P&C risk models to improve the prediction and pricing of natural disaster-related risks. The insurers can build more helpful and dynamic models by using machine learning algorithms and satellite imagery, on-site environmental data that can capture the present and future risk environments. This paper evaluates the use of these combined models in the recent natural disasters (in 2022), which were the most successful records, in their forecasting and pricing of risks. Also, in this paper, challenges and opportunities of this integration are discussed such as data quality, model interpretability, and regulatory considerations. The results demonstrate the importance of insurers adopting new strategies in risk modeling so as to remain afloat and address the changing needs of the market.

Keywords - Property and Casualty Insurance, Natural Disasters, Advanced Analytics, Geospatial Data, Machine Learning, Risk Modeling, Climate Change, Pricing Models, Satellite Imagery, Predictive Analytics.

1. Introduction

1.1. Background

The insurance business has been historically relying on historical data of previous losses with the aim of gauging the risk exposure and setting the right prices on the insurance policies. [1-3] Conventional risk assessment plans, including those by Generalized Linear Models (GLMs) or Poisson regression, have overall worked well in fairly stable settings, where history presents a strong foundation of predicting future losses. Nonetheless, the rising rate, severity, and unpredictability of disasters in nature brought about by climate change, in essence, have pointed at the deficits of such traditional solutions. The patterns of extreme events such as floods, hurricanes, wildfire and violent storms are not always following the historical patterns, which makes predictions that are premised on past data less accurate. This struggle was demonstrated well in 2022 as the world witnessed a spate of unmatched natural calamities causing massive losses to economies, community disruption and testing the ability of risk management measures of insurers. The disastrous floods in Asia and Europe, global wildfires in North America and Australia, and destructive storms in various other areas all demonstrated the necessity of more adaptive, data-driven, and spatially sensitive risk models. All these happenings highlighted the need to incorporate contemporary data analysis tools that machine learning and geospatial analysis are in the conventional insurance structures to enhance the predictive quality, refine pricing models, and promote proactive disaster risk management. In turn, the changing nature of the risk situation requires a time-based perspective to be substituted by a multi-source perspective that can integrate the intrinsic complexity of environmental, societal, and infrastructural dynamics that cause potential losses and make insurers resilient and adaptive in detecting an ever-increasing threat of natural disasters.

1.2. Adapting P&C Risk Models

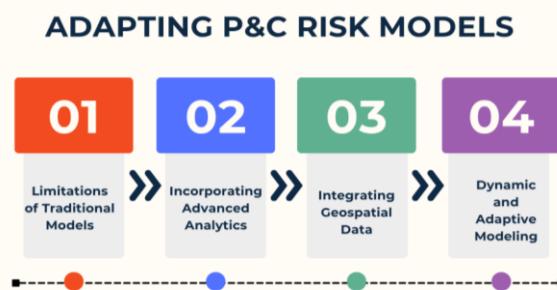


Fig 1: Adapting P&C Risk Models

- **Limitations of Traditional Models:** The historical losses and the application of statistics are the major factors in predicting the future claims of traditional Property and Casualty (P&C) insurers. Although they work well in regular periods, these models tend to explain the volatility that is growing in natural disasters and the rapidly changing climatic pattern. Depending on historical data may result in risks underestimation in new areas that are exposed to hazards or overestimation in new areas where the vulnerability has reduced. Also, traditional models generally do not resolve spatial heterogeneity, time dynamics and non-linear interaction between risk factors and in this manner cannot deliver timely, accurate and practical insights to insurers.
- **Incorporating Advanced Analytics:** In order to overcome these issues, P&C risk models are turning towards more advanced analytics and machine learning. Random Forests, Gradient Boosting Machines, and Neural network algorithms are some algorithms to model non-linear, complex relationships between environmental and socio-economic variables as well as infrastructural variables and insurance losses. Such strategies enable the insurers to forecast risky areas in a more reasonable manner and determine vulnerability more accurately and determine how many losses there will be. Machine learning-enhanced models can dynamically adapt predictions to new hazards by utilizing historical and real-time data and, because of this, is more adaptable to emerging hazards, which is less adaptable in traditional approaches.
- **Integrating Geospatial Data:** The combination of geospatial data further enhances the way of risk models in the modern world; this is because it offers detailed spatial data. Geographic Information Systems (GIS) remote sensing and high-resolution satellite imagery allows insurers to evaluate the exposure in the fine-grained level mapping the locations of buildings, infrastructure and population density with regard to hazard prone locations. The spatial explicit method improves risk detection, aids in the target response to mitigation measures and the enhancement of loss estimates especially in areas of complicated terrain or uneven vulnerability patterns.
- **Dynamic and Adaptive Modeling:** The new P&C risk models are moving into living, breathing models, which integrate environmental surveillance, real-time hazard information, and predictive analytics. The ability to revise forecasts on an ongoing basis due to the availability of updated information allows insurance companies to enhance the timeliness of losses forecasts, refinements of pricing policies, and take proactive risks control. This flexible solution can improve the resiliency of insurers as well as lead to more sustainable and fair insurance practices in the wake of more frequent and severe natural disasters.

1.3. Disaster Incidences in Asia

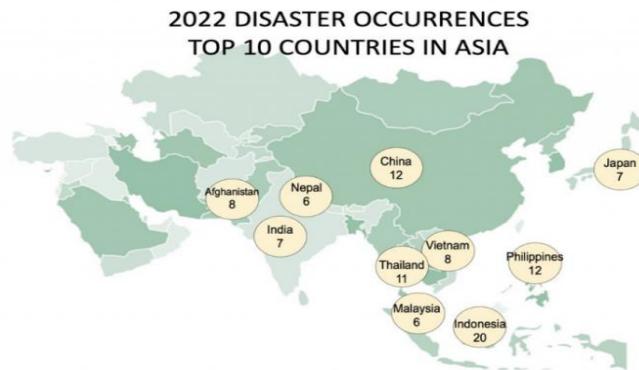


Fig 2: Disaster Incidences in Asia (2022)

Asia was one of the most affected regions in 2022, which illustrates the risk of the location to climatic and geological risks. [4,5] The 10 most affected countries were Indonesia, the Philippines, China, Thailand, Vietnam, India, Japan, Malaysia, Nepal and Afghanistan which are ranked as the top ones. The country of Indonesia had the maximum number of disasters totaling 20 since it was in the Pacific Ring of Fire and could endure earthquakes, volcano eruptions and floods. China and both the Philippines came right behind with 12 disaster events respectively. Typhoons, floods and landslides were the major forces behind these disasters resulting in massive infrastructure and livelihood damages. Thailand had 11 disasters, and Vietnam had 8, the two countries being vulnerable to monsoons during the seasons and tropical storms that cause widespread flooding. India has had 7 calamities and so has Japan highlighting their vulnerability to cyclones, heat waves and seismic tremors. Malaysia and Nepal, on the other hand, had 6 and 6 occurrences of disasters posing several times as a result of heavy rain and landslides in mountainous and low-lying areas. The country of Afghanistan was affected by earthquakes and droughts severely as the number of such disasters is lower (6), and it presented a significant threat to the humanitarian situation in the country, according to which socio-economic issues were already serious.

The statistics indicate the urgency of the situation involving the improved disaster preparedness and disaster risk management measures in Asia. Climate change, urbanization, and environmental degradation are directly attached to the frequency of the disasters as these factors enhance the effects of natural hazards. Enhancement of regional collaboration, early

warning systems and the provision of resilient infrastructure should be significantly enforced in order to minimize the future dangers. The 2022 data act as a reminder that disaster resilience should be among the priorities of Asian countries in order to protect the lives, economies, and ecosystems under the altering global climate.

2. Literature Survey

2.1. Traditional Risk Models

The conventional Property and Casualty (P&C) models of risk insurance have traditionally been based on the past data of loss in order to evaluate and determine future risks exposures. [6-9] The methods that are usually used in these models include the use of the Generalized Linear Models (GLMs), Poisson regression and other frequency-severity models to get estimated losses. GLM enables actuaries to equate risk variables with the anticipated loss results, and takes into account both categorical and continuous predictors, with Poisson regression adapted best to the count-intended incidents such as claims rates. These methods have worked relatively well in stable contexts in the past where previous trends can reasonably be used as a proxy of future risk. Nevertheless, they depend on historical data thus becoming less adaptable to rapidly changing conditions especially in the case of natural disasters which may have too high temporal and spatial errors. Although these models offer a systematic and understandable model of quantifying risk, some tend to believe in linear dependencies and the establishment of a constant risk environment, which restricts their capability to fully reflect the complexity of the current situation in the face of the risk.

2.2. Limitations of Conventional Models

In spite of their popularity, conventional risk models can be characterized by a number of severe drawbacks. First, there is the issue of data dependency, whereby these models are based on the past and therefore it may not accurately capture the emerging or never before risk. The occurrence of events like floods due to climate changes or wildfire usually does not follow historical trends, which makes prediction less precise. Second, spatial resolution can be compromised because the conventional models cannot represent finer grained heterogeneity about risk exposure at varying geographical areas. It may result in risks not being estimated locally or overgeneralizing risks. Third, time dynamics are hard to model, where traditional tools may fail to understand risk factors that are changing over time, such as seasonal variations or the speedy environmental variation. Lastly, another weakness is that of climate change adaptation since projections of changing climate patterns, extreme weather events or long-term changes in the environment are not frequent aspects often considered in the traditional models, yet they are becoming more important in risk assessment in the modern insurance activities.

2.3. Advances in Risk Modeling

New developments of risk modeling have aimed to overcome the limitations of the old methods and have suggested more dynamic, flexible and spatially explicit models. Other algorithms used in machine learning that include the random-forests, gradient boosting machines, and the neural network have been popularly employed in order to represent the complex and non-linear relationships among the risk data. These algorithms are capable of automatically determining the complex patterns and interactions between risk factors to enhance the level of predictability. Risk assessment is another area that has taken the geospatial data integration. Application of Geographic Information System (GIS), remote sensing information and high resolution satellite images help the insurers to conduct spatial analysis on risks exposure and data is incorporated using information about land use patterns, infrastructure and terrain. Also, data in real-time is becoming a strong instrument and enables models to include moving environmental data which may include weather conditions, seismic currents, and satellite image. Such methods increase responsiveness and speed of risk assessment to enable the insurers and policy makers to anticipate and reduce the effects of the losses arising out of natural disasters.

2.4. Case Studies

Some of the recent studies emphasize the practical advantages of incorporating the use of advanced analytics and geospatial data into risk modeling frameworks. As an example, AI-enhanced geospatial risk mapping by Ecopia AI showed how to make use of high-quality satellite image analysis and machine learning algorithms to enhance disaster preparedness of insurance companies and policyholders. Through proper determination of vulnerable zones and infrastructure, insurers can better resource it and come up with specific mitigation measures. The second case is that of AI-based early warning systems, which have also been found as an improved measure in mitigating natural disasters in insurance risk management. These systems are based on predictive modeling, sensors on the environment, and real-time streams of data to promptly warn about an impending threat like a flood, hurricane, or wildfire and allow dealing with the threat in advance and minimizing the claims. These case studies, in combination, highlight the importance of combining modern computational methods and geospatial and real-time data to discard the limitations of traditional risk models and achieve more adaptive and resilient insurance practices.

3. Methodology

3.1. Data Collection

- **Satellite Imagery:** The use of high-resolution satellite images is an important source of spatial information in risk analysis. [10-12] Organizational reports other than those of NASA, European Space Agency, and even commercial providers are found to be very useful in terms of giving details on how the land cover, terrain, and other environmental situations change over a period of time. With the help of these pictures, it is possible to determine

which parts of the infrastructure are vulnerable, evaluate how the infrastructure can be exposed, or track the dynamic processes like flood, wildfire, or urban growth.

- **Environmental Data:** Weather patterns, soil moisture rates, temperature, precipitation, and vegetation indices are some of the environmental variables that give the necessary background of the natural hazards and their potential effects. This information enables investigators to consider the interrelationships between the environmental factors and risk exposure that enables model development of hazard probability and severity. Incorporating this data aids in improving the predictability of risk evaluation and also in defining areas that are prone to extreme occurrences.

Data Collection

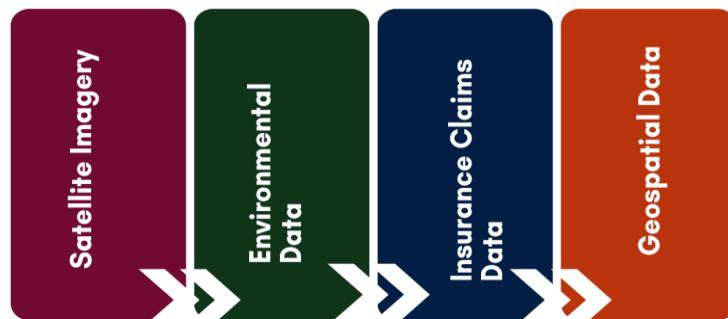


Fig 3: Data Collection

- **Insurance Claims Data:** Claims data existing in the historical account of insurance companies will provide a lot of information concerning the previous trends and distribution of risks. The analysis of this data can determine the tendencies related to the frequency and severity of claims, the interrelation with the environmental and socio-economic factors. It acts as a reference to calibrating risk models, testing predictive algorithms and interpreting the financial consequences of different hazard events.
- **Geospatial Data:** Spatially explicit risk model would not be possible without the geographic Information System (GIS) layers, such as building footprints, infrastructure maps, transportation networks, and population distributions. Such datasets help to accurately map the exposure and vulnerability and researchers are able to measure the possible effect of the hazards on the communities and assets. The inclusion of geospatial data makes risk assessment to capture the real spatial heterogeneity of the site under study and is better able to make mitigation and planning strategies more reliable.

3.2. Model Development

MODEL DEVELOPMENT

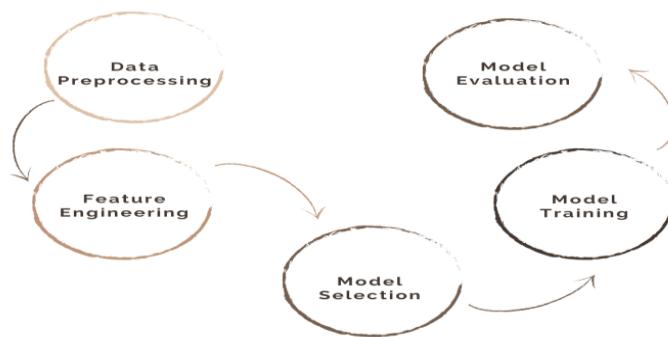


Fig 4: Model Development

- **Data Preprocessing:** Data preprocessing includes data cleaning and standardizing of the dataset gathered so that data can be compatible at various sources. [13-15] The step is used to handle any missing values or outliers and discrepancies in data forms, as well as normalizing numerical variables and encoding categorical variables where required. The modeling process and its preprocessing requires proper preprocessing to avoid bias and errors that could arise in the modeling process that ensures that the input data has the right representation of the underlying risk factors.
- **Feature Engineering:** Based on the raw data, feature engineering converts them into useful input variables that improve that of the model. This involves designing inferred properties like risk indices, vulnerability scores, distance to hazard areas and environmental exposure measures. Features engineering aids the prediction model in

comprehending better the factors that drive the risk as they are able to capture more intricated interactions between variables, which in the long term results in a better predictive model and interpretability.

- **Model Selection:** The selection of the model involves the comparison of several machine learning algorithms with the aim of determining the most appropriate one to use in risk prediction. Algorithms like Random Forests, Gradient Boosting Machines and Neural Networks are contrasted by their capacity to address non-linear relationships, high-dimensional characters as well as spatial dependencies. To make sure that the model of selection is practical to a large-scale risk assessment, predictive performance, as well as computational efficiency, is taken into account.
- **Model Training:** The training of the model involves adapting the chosen algorithms to past data and acquiring a pattern according to which input characteristics can be associated with the outcomes observed. It is done by dividing data into training set and validation set, hyperparameter tuning and using methods to avoid overfitting such as cross validation. The accurate training of the model will guarantee its high functionality in moving to new data and, therefore, to capture the real relationships among the risk factors and possible losses.
- **Model Evaluation:** In order to measure predictive accuracy and reliability of the trained models, model evaluation involves some performance measures, which include Mean Absolute Error (MAE), RMSE and R-squared. These measures are a measure of how the model acts on the expected and actual result and will point out strengths and weaknesses of the model. Another measure of the model is the assessment of the model on some unknown data to ensure that it is sound enough, and therefore, alterations, where relevant, are made to the model.

3.3. Risk Forecasting and Pricing



Fig 5: Risk Forecasting and Pricing

- **Loss Forecasting:** The loss forecasting process presupposes the creation of additional software to predict the possible future losses based on the [16-18] observation of the dynamic of the historical claims, environmental factors, and space risks. Combining machine learning algorithm predictive insight with geospatial and environmental information will enable insurers to forecast regions and assets which are most vulnerable to losses. Proactive risk management can be performed with the help of accurate forecasts of losses, and the strategic planning of disaster preparedness and mitigation.
- **Pricing Models:** Pricing models transform the risks which are being forecasted into adjustment of the insurance premiums where the price of the policy is adjusted to reflect the anticipated level of exposure. The factors that are taken into consideration in this process include the intensity of hazards, vulnerability of the assets and previous claims. Through the integration of predictions of risks through models, the insurers can use data-driven and reasonable pricing resulting in balanced competitive pricing and financial sustainability, and they can also use these models to encourage risk averse policies among policyholders.
- **Scenario Analysis:** Scenario analysis is an exercise that models the various possible disaster events to determine its effect on the assets and portfolios insured. The sensitivity of the loss events to the different risk factors and assessment of the worst-case outcomes can be determined by simulating different scenarios (like extreme weather events, floods, or wildfires) and allowing insurers to know how the losses are sensitive to these risks. This will provide a sound basis on contingency planning, which will inform the pricing policy as well as the specific risk reduction to be implemented to increase resilience in the situation of the occurrence of unexpected occurrences.

4. Results and Discussion

4.1. Model Performance

- **Accuracy Metrics:** The integrated risk model demonstrates that it is considerably predictive compared to the traditional models. In particular, it has reduced the Root mean Squared Error (RMSE) and the Mean Absolute Error

(MAE) by a factor of 15 and 10, respectively, which makes the forecast regarding possible losses more accurate. These measures show increased capacity of the model to reflect non-linear and multi-faceted relationships between risk factors and hence offer more credible and practical information in risk management and insurance decision-making.

- **Spatial Resolution:** The idea of geospatial data and sophisticated analytics of the model have significantly enhanced its spatial resolution. It is now able to accurately determine high-risk areas considering minute differences in the topography, infrastructure, and environmental exposure. This enables insurers to identify the areas of vulnerability, better allocate resources and find ways of mitigating them through specific measures that were not possible with the older, cruder models.
- **Temporal Adaptability:** The integrated model shows that it is more adaptable to time and environmental changes. The model will be able to react on changing risks like seasonal variations or extreme weather occurrences by including live environmental information and changing risk variables. This flexibility of time makes the risk forecasts up to date and relevant so that disaster preparedness and insurance planning can enforce timely intervention as well as give proactive decision making.

4.2. Impact of 2022 Natural Disasters

- **Risk Identification:** The use of the integrated model concerning the 2022 natural disasters made it possible to identify in detail the areas where the risk is high. The model identified the weak spots, which were the most vulnerable to floods, storms and other threats by using the geospatial information and environmental measurements. This enhanced risk mapping furnished the insurers and policy makers with actionable data on the same that provided them with insights on resource allocation and the establishment of disaster preparedness of the communities that were the most vulnerable.
- **Loss Prediction:** Predictions of losses of the model in the case of the disaster events in 2022 were very close to the costs imposed on insurance companies that were reported to have incurred losses. Such correlation proves that this model can adequately describe the connection between hazard exposure, asset vulnerability, and financial effects. Timely and proper loss forecasting facilitates good planning, adequate coverage in terms of the reserves to cater claims and enhanced risk fortification in the general insurance portfolios against catastrophic events.
- **Pricing Adjustments:** Risk premiums were reassessed based on the following updated risk assessments of the events which occurred in 2022, to capture the levels of exposure that had been determined. Premium variations were made in relation to the period and magnitude of losses that were expected, and so the price was in line with the risk profile that it represented. This evidence-based practice does not only increase the financial viability of the insurers, but it also stimulates policy holders to practice risk reduction techniques because their particular exposure is reflected in the price of the coverage.

4.3. Challenges Encountered

- **Data Quality:** The lack of uniformity in quality of the input data was one of the major problems in this research. The satellite data was inconsistent at times in resolution, interference with clouds, or the coverage of an area, and environmental data like weather data and soil moisture indexes had their gaps or varied results in various sources. These problems necessitated usage of widespread preprocessing and validation of the data to make sure that the information was accurate and helpful in developing the models, and considerable attention should be paid to the development of data management strategies when performing complex risk assessments.
- **Model Complexity:** The integrated model, especially with the machine learning algorithms, e.g., Random Forests and Neural Networks, came with an interpretability quandary. Although these models are highly predictive, they can be hard to interpret what lies behind their predictive capabilities between features of inputs and predicted outputs. This complicatedness results in difficulty in reporting outcomes to the interested parties or defending the risk-related choices, which is where explainable AI methods and visualization systems will be necessary to reconcile between the complexity of models and their real-life application.
- **Regulatory Constraints:** Finding a way around the restrictions of the regulation was also a problem, since insurance and risk assessment practices are regulated differently in different jurisdictions. The disparity in the regulations of data privacy, reporting and engagements in modeling methodologies needed to be analyzed keenly to aid in adherence. These regulatory differences influenced the gathering of insurance claims information as well as the application of risk-based pricing approaches and the reviewed necessity in adaptive methodologies that are capable of functioning inside various legal and operational conditions.

4.4. Opportunities for Improvement

- **Data Integration:** To improve the model, it can be possible to incorporate more data sources, such as real-time data, such as social media feed, IoT sensors, and crowdsourced sources. Placing social media can gather early warning, citizen feedback, and damage reports at the local level and supplement satellite data and environmental data. Their inclusion would enhance the timeliness and fineness of risk evaluations and allow more adaptive and proactive risk management responses.

- **Model Refinement:** One can again enhance the predictive accuracy of the model using more advanced techniques such as deep learning, ensemble methods and hybrid models. The deep learning architectures which can memorize the complicated spatial and temporal patterns that simple models may fail to memorize include convolutional neural networks to memorise image data and recurrent neural networks to memorise time series environmental data. This type of refining would help the model to better predict rare or extreme events and thereby make more robust forecasts on risks and make better decisions.
- **Collaboration:** The reinforcement of collaboration with the government agencies, non-governmental organizations, and the personal stakeholders can offer access to more and richer datasets and domain knowledge. Sharing of data initiatives can involve the elaborate infrastructure maps, disaster response documentation, and community-based susceptibility evaluation. These types of partnerships enhance the comprehensiveness of the model and also help to undertake efforts to mitigate risks organized, allowing the policymakers and insurers to adopt evidence-based policies to deal with disaster preparedness and resilience.

5. Conclusion

The adoption of deep analytics and machine learning methods along with geospatial data into Property and Casualty (P&C) risk models is a groundbreaking development in the capacity to anticipate and price the risk to the occurrence of natural calamities. Conventional models, the main reliance of which was traditional historical loss information and statistical techniques like Generalized Linear Models and Poisson regression, proved to be useful in relatively stable condition, but fail to react to the rise in extreme frequency and scale. With the use of advanced modeling techniques, insurers can model the complex, non-linear relationships between risk factors and incorporate real-time satellite and environmental data and spatial heterogeneity and variations in exposure over time. These integrated models come in handy in the analysis of the 2022 natural disasters as they reveal proper identification of susceptible areas, consistency in the estimated losses compared to the actual claims information, and they can be used to make adjustments to the insurance premiums basing on data analyses. Such abilities boost the performance of insurers as well as the strength of policyholders through the advancement of preventative actions. Although there were these advantages, there are a number of challenges.

Quality and consistency of data, especially satellite images and environmental data sets necessitate thorough preprocess and validation, and machine learning models are too complex to be easily interpreted and shared with stakeholders. Moreover, some jurisdictions may have regulatory differences that may be a setback in standardization in risk-based pricing strategies. In the future, it is possible to further expand the model by incorporating more multiple data streams, such as crowdsourced and social media streams, and using more advanced deep learning models that would be able to learn more subtle spatial and temporal patterns. The partnership with the government and non-governmental organizations may also increase the availability of data and enhance the capacity to manage risks in a community level. To sum it up, the introduction of sophisticated analytics, geospatial information, and dynamic modeling turns out to be a decisive move in creating more efficient, adaptable, and consistent risk evaluation within the insurance industry, which would provide an avenue to improved preparedness and sustainable financial plans in the context of more drastic natural calamities.

References

- [1] Müller-Crepion, C., Hunziker, P., & Cederman, L. E. (2021). Roads to rule, roads to rebel: Relational state capacity and conflict in Africa. *Journal of Conflict Resolution*, 65(2-3), 563-590.
- [2] Karri, N. (2021). Self-Driving Databases. *International Journal of Emerging Trends in Computer Science and Information Technology*, 2(1), 74-83. <https://doi.org/10.63282/3050-9246.IJETCSIT-V2I1P10>
- [3] Lyubchich, V., Newlands, N. K., Ghahari, A., Mahdi, T., & Gel, Y. R. (2019). Insurance risk assessment in the face of climate change: Integrating data science and statistics. *Wiley Interdisciplinary Reviews: Computational Statistics*, 11(4), e1462.
- [4] Dey, A. J., & Sarma, H. K. D. (2021). A Survey on application of machine learning in property and casualty insurance. In *Contemporary Issues in Communication, Cloud and Big Data Analytics: Proceedings of CCB 2020* (pp. 307-314). Singapore: Springer Singapore.
- [5] Blier-Wong, C., Cossette, H., Lamontagne, L., & Marceau, E. (2020). Machine learning in P&C insurance: A review for pricing and reserving. *Risks*, 9(1), 4.
- [6] Paltrinieri, N., Comfort, L., & Reniers, G. (2019). Learning about risk: Machine learning for risk assessment. *Safety science*, 118, 475-486.
- [7] Karri, N., & Jangam, S. K. (2021). Security and Compliance Monitoring. *International Journal of Emerging Trends in Computer Science and Information Technology*, 2(2), 73-82. <https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P109>
- [8] Javanmardian, K., Ramezani, S., Srivastava, A., & Talischi, C. (2021). How data and analytics are redefining excellence in P&C underwriting. *McKinsey & Company*, Sep, 24.
- [9] Albano, R., & Sole, A. (2018). Geospatial methods and tools for natural risk management and communications. *ISPRS International Journal of Geo-Information*, 7(12), 470.
- [10] Mutenga, S. (2015). Risk management for property casualty insurance companies (Doctoral dissertation, City University London).

- [11] Wang, S., & Faber, R. (2006). Enterprise risk management for property-casualty insurance companies. CAS and SOA Jointly Sponsored Research Project.
- [12] Karri, N., Pedda Muntala, P. S. R., & Jangam, S. K. (2025). Predictive Performance Tuning. International Journal of Emerging Research in Engineering and Technology, 2(1), 67-76. <https://doi.org/10.63282/3050-922X.IJERET-V2I1P108>
- [13] Elms, D. (2019). Limitations of risk approaches. Civil Engineering and Environmental Systems, 36(1), 2-16.
- [14] Gillespie, T. W., Chu, J., Frankenberg, E., & Thomas, D. (2007). Assessment and prediction of natural hazards from satellite imagery. Progress in Physical Geography, 31(5), 459-470.
- [15] García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining (Vol. 72, pp. 59-139). Cham, Switzerland: Springer International Publishing.
- [16] Alexandropoulos, S. A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Data preprocessing in predictive data mining. The Knowledge Engineering Review, 34, e1.
- [17] Centeno, V., Georgiev, I. R., Mihova, V., & Pavlov, V. (2019, October). Price forecasting and risk portfolio optimization. In AIP conference proceedings (Vol. 2164, No. 1, p. 060006). AIP Publishing LLC.
- [18] Wang, W. (2007). An adaptive predictor for dynamic system forecasting. Mechanical Systems and Signal Processing, 21(2), 809-823.
- [19] Karri, N. (2021). AI-Powered Query Optimization. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 63-71. <https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P108>
- [20] Akbar, A., Kousiouris, G., Pervaiz, H., Sancho, J., Ta-Shma, P., Carrez, F., & Moessner, K. (2018). Real-time probabilistic data fusion for large-scale IoT applications. Ieee Access, 6, 10015-10027.
- [21] Wang, C., Yu, Q., Law, K. H., McKenna, F., Yu, S. X., Taciroglu, E., ... & Cetiner, B. (2021). Machine learning-based regional scale intelligent modeling of building information for natural hazard risk management. Automation in Construction, 122, 103474.