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Abstract - The rapid advancement of generative artificial intelligence (Al) has introduced both novel opportunities and significant
challenges in cybersecurity. Traditional honeypots, long employed to detect, analyze, and deceive malicious actors, face
limitations in addressing highly adaptive, Al-driven threats. This paper presents a risk-aware framework for Al-augmented
honeypots, designed to enhance threat detection while minimizing operational, legal, and ethical risks. The framework integrates
generative Al techniques to create dynamic, interactive, and realistic decoy environments, enabling improved engagement and
intelligence collection from sophisticated adversaries. We propose a risk scoring model to evaluate potential hazards associated
with Al-driven deception, and illustrate the framework’s implementation through a prototype leveraging synthetic environments,
automated response engines, and adaptive interaction strategies. Experimental results demonstrate increased detection efficacy,
prolonged attacker engagement, and actionable intelligence extraction compared to conventional honeypots. Finally, we provide
operational guidelines and ethical considerations to inform safe deployment in enterprise and cloud environments. This study
offers a systematic approach to modernize honeypot design in the age of generative Al, supporting proactive cyber defense and
strategic deception.
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1. Introduction

Cybersecurity threats have become increasingly sophisticated in recent years, evolving from opportunistic attacks to highly
targeted campaigns leveraging automation, artificial intelligence (Al), and machine learning (ML) techniques. Traditional security
measures such as firewalls and signature-based intrusion detection systems often fail to detect advanced persistent threats (APTS)
and zero-day exploits due to their reactive nature and reliance on known attack patterns (Fraunholz, Zimmermann, & Schotten,
2018). In this context, honeypotsdecoy systems intentionally designed to attract and monitor attackershave emerged as a proactive
security mechanism that enables organizations to study attacker behavior, collect threat intelligence, and enhance defensive
strategies (Shinde, Doshi, & Setayeshfar, 2020; Mohurle & Patil, 2019). By simulating vulnerable services, applications, or
devices, honeypots create controlled environments where adversaries can be observed without compromising real assets, thereby
providing both analytical insights and defensive value.

The recent advent of generative Al, including large language models and deep learning-based content generators, has
significantly altered the threat landscape. Malicious actors can now leverage Al to create convincing phishing messages,
automatically generate malware variants, or emulate legitimate user behaviors to evade detection (Aggarwal, Du, Singh, &
Gonzalez, 2021). This raises critical challenges for conventional honeypots, which are often static and limited in interaction
capabilities. Standard honeypots, particularly low- and medium-interaction variants, can be quickly identified and bypassed by
automated Al-powered reconnaissance tools, reducing their effectiveness as detection and deception mechanisms (Franco, Aris,
Canberk, & Uluagac, 2021). Similarly, high-interaction honeypots, while more realistic, introduce operational and ethical risks,
including unintentional data exposure, legal liability, and the potential for attackers to leverage them as launchpads for further
attacks (Aggarwal et al., 2021; Gopireddy, 2022).

To address these challenges, the cybersecurity community has explored the integration of Al-driven adaptive mechanisms into
honeypot systems. Al-augmented honeypots utilize generative models to produce realistic content, dynamically modify decoy
behaviors, and interact with attackers in a more human-like manner (Katt, Beckers, & Wieringa, 2021; Morozov et al., 2022).
These systems not only increase the engagement time of adversaries but also improve the fidelity of captured threat intelligence,
enabling security operations centers (SOCs) to better understand attack vectors and tactics. For instance, generative Al can
simulate plausible service responses, generate synthetic user activity, and automatically adapt to attacker probing patterns, thereby
reducing the risk of early detection (Zarca, Bernabe, & Skarmeta, 2020). This level of dynamism is essential in modern cyber



defense, where adversaries employ automated scripts, Al-enhanced reconnaissance, and polymorphic malware to evade traditional
detection strategies.

However, the integration of generative Al into honeypot design introduces new risks and ethical considerations. Al-driven
content generation may inadvertently produce sensitive or misleading data, exposing organizations to privacy violations or legal
challenges (lyer, 2021). Moreover, the deployment of highly interactive honeypots could be perceived as entrapment in certain
jurisdictions, highlighting the need for a structured risk-aware framework that balances operational efficacy with ethical, legal, and
organizational constraints (Kumar, Bhardwaj, Chouksey, Sadotra, & Chopra, 2021). Existing literature has largely focused either
on honeypot architectures or on Al-powered attack techniques, but there is a noticeable gap in systematic methodologies that
explicitly evaluate and mitigate the risks introduced by generative Al in deception systems.

This paper proposes a risk-aware framework for Al-augmented honeypots, designed to enhance adaptive threat detection while
ensuring operational and legal safety. The framework integrates several key components: (i) a synthetic environment generator for
realistic decoy content, (ii) an adaptive interaction engine powered by generative Al models, (iii) a data capture and provenance
module to track interactions, and (iv) a policy and governance engine that applies risk scoring to monitor potential hazards in real-
time (Shinde et al., 2020; Gopireddy, 2022). By combining these elements, the framework allows organizations to deploy dynamic
honeypots capable of engaging Al-assisted adversaries while minimizing risks associated with content authenticity, data leakage,
and attacker exploitation. A prototype implementation demonstrates the framework’s feasibility, highlighting improvements in
detection performance, attacker engagement duration, and intelligence quality compared to conventional static honeypots.

The contributions of this paper are threefold. First, we identify and categorize the risks introduced by generative Al in
honeypot systems, including technical, operational, and legal factors. Second, we present a comprehensive, risk-aware framework
for Al-augmented honeypot deployment, providing both architectural and procedural guidelines. Third, we evaluate the framework
through prototype implementation and experimentation, showing quantitative and qualitative improvements in threat detection and
engagement metrics. By addressing both the technical and ethical dimensions of modern honeypots, this study provides actionable
insights for researchers and practitioners aiming to leverage Al in cyber deception while maintaining risk-aware operational
standards.

2. Background & Related Work
2.1. Evolution of Honeypots and Deception Technologies

Honeypots have long been employed as a proactive cybersecurity mechanism to detect, analyze, and mitigate threats by
diverting attackers away from production systems. Initially introduced as low-interaction honeypots, these systems simulate basic
services and operating system responses, providing minimal interaction with attackers (Fraunholz, Zimmermann, & Schotten,
2018). Low-interaction honeypots are relatively easy to deploy and maintain, making them suitable for large-scale network
monitoring. However, their limited fidelity renders them vulnerable to detection and circumvention by sophisticated attackers.

To overcome these limitations, medium- and high-interaction honeypots were developed. Medium-interaction honeypots
simulate more complex system behavior and protocols, allowing attackers to engage in deeper interactions without accessing real
production assets. High-interaction honeypots, by contrast, replicate full operating environments, including applications and
network services, enabling detailed observation of attacker tactics, techniques, and procedures (TTPs) (Shinde, Doshi, &
Setayeshfar, 2020). Despite their analytical value, high-interaction honeypots introduce operational risks, such as potential misuse
as attack launch points and higher maintenance overhead.

In parallel, the concept of honey tokens deceptive data artifacts or credentials was introduced as a lightweight deception
mechanism. Honeytokens, unlike traditional honeypots, do not require full system emulation and can provide immediate alerts
when accessed, enhancing threat visibility across networked environments (Mohurle & Patil, 2019). Together, honeypots and
honeytokens constitute a broader cyber-deception ecosystem, where defenders actively manipulate attacker perceptions to achieve
strategic advantage (Katt, Beckers, & Wieringa, 2021).

2.2. Modern Honeypot Frameworks and Adaptive Deception

The increasing sophistication of attacks has necessitated the evolution of dynamic and adaptive honeypot frameworks.
Adaptive honeypots modify their behavior in response to attacker actions, incorporating techniques such as moving-target defenses
and real-time configuration changes to maintain engagement (lyer, 2021). These systems aim to counter automated attack tools and
reconnaissance scripts that can rapidly identify static honeypots. By dynamically changing exposed services, network addresses, or
decoy data, adaptive honeypots reduce the probability of early detection and increase the collection of actionable threat intelligence
(Morozov et al., 2022).
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Cloud computing and loT environments have further expanded the scope of honeypot research. Cloud-based honeypots
leverage virtualization and containerization technologies to simulate large-scale enterprise environments, allowing organizations to
safely deploy decoys at scale (Gopireddy, 2022). Similarly, 1oT-focused honeypots, including frameworks such as HADES-IoT,
emulate connected devices to detect device-specific attacks and collect attacker telemetry for security analysis (Zarca, Bernabe, &
Skarmeta, 2020). These domain-specific honeypots are increasingly combined with threat intelligence platforms to provide
contextual insights, feeding security operations centers (SOCs) with enriched data for real-time decision-making (Panda et al.,
2021).

2.3. Generative Al in Offensive Cyber Operations

Recent advances in generative Al have fundamentally altered the cyber threat landscape. Large language models (LLMs) and
deep learning-based generative models allow attackers to automate the creation of highly convincing phishing campaigns, malware
variants, and social engineering content (Aggarwal, Du, Singh, & Gonzalez, 2021). These Al-assisted attacks can dynamically
adapt their behavior based on network responses or target profiles, making them more difficult to detect with conventional
intrusion detection systems. Generative Al also enables automated reconnaissance and vulnerability exploitation at unprecedented
scale. For example, attackers can leverage Al to generate diverse payloads, identify system misconfigurations, or mimic legitimate
user behavior, thereby evading signature-based detection and behavioral monitoring (Franco, Aris, Canberk, & Uluagac, 2021).
This evolution has intensified the demand for Al-aware defensive measures, including honeypots capable of recognizing and
engaging Al-assisted adversaries.

2.4. Al-Augmented Honeypots

To address Al-driven threats, researchers have proposed Al-augmented honeypots, which integrate generative models and
adaptive interaction engines to improve fidelity and attacker engagement. These systems can simulate realistic system responses,
dynamically generate synthetic telemetry, and maintain contextual continuity in interactions with adversaries (Shinde et al., 2020;
Gopireddy, 2022). The key advantage of Al-augmented honeypots is the ability to extend engagement duration with attackers,
thereby increasing the volume and quality of collected threat intelligence. For instance, Al models can generate realistic error
messages, emulate application workflows, or respond naturally to attacker queries, creating an illusion of genuine system behavior.
Early studies have shown that such systems outperform static honeypots in detecting sophisticated, automated threats and provide
deeper insights into attack methodologies (Morozov et al., 2022; Katt et al., 2021). However, these benefits come with new risks.
Generative Al models may produce content that inadvertently exposes sensitive information or introduces unpredictable behaviors
(lyer, 2021). Additionally, highly interactive Al-augmented honeypots require careful governance to avoid ethical and legal
violations, such as potential entrapment or unauthorized data collection (Kumar, Bhardwaj, Chouksey, Sadotra, & Chopra, 2021).

2.5. Risk Assessment in Modern Deception Systems

Recognizing the challenges introduced by generative Al, recent literature emphasizes the importance of risk-aware
frameworks for honeypot deployment. Risk assessment in this context considers operational, technical, legal, and ethical
dimensions, including the probability of detection, potential misuse by attackers, data privacy concerns, and compliance with
regulatory standards (Aggarwal et al., 2021; Gopireddy, 2022). Frameworks combining risk scoring and adaptive deployment
strategies allow defenders to quantify potential hazards while optimizing engagement and intelligence collection. For example,
configurable risk thresholds can dictate the level of interaction permitted, the fidelity of decoy content, and the extent of Al-driven
response automation (Zarca et al., 2020). By explicitly integrating risk assessment into the design of Al-augmented honeypots,
organizations can achieve a balance between maximizing threat visibility and maintaining safe operational boundaries.

2.6. Research Gaps

Despite the advances in honeypot research and Al-assisted deception, several gaps remain. First, there is limited systematic
study on the combined effects of generative Al on attacker behavior and honeypot effectiveness. Second, few frameworks
incorporate comprehensive risk assessment, encompassing operational, legal, and ethical dimensions alongside technical
performance. Third, evaluation metrics for Al-augmented honeypots remain inconsistent, making cross-study comparisons
challenging. Finally, there is a need for practical guidelines for safe deployment, including policy-driven governance, human-in-
the-loop controls, and legal compliance checks. Addressing these gaps is critical for developing next-generation honeypots capable
of countering Al-assisted threats effectively and safely.

2.7. Summary

In summary, the evolution of honeypots from low- to high-interaction systems, the emergence of adaptive frameworks, and the
integration of generative Al have reshaped the landscape of cyber-deception. While Al-augmented honeypots offer substantial
benefits in detecting and analyzing sophisticated attacks, they also introduce new operational, ethical, and legal risks. A risk-aware,
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adaptive framework is therefore essential to ensure that honeypots remain effective, safe, and compliant in the age of generative
Al.

3. Threat Model & Assumptions

The evolving cyber threat landscape, particularly in the context of generative Al, necessitates a clear articulation of the threat
model and underlying assumptions to guide honeypot design. This section defines the capabilities, objectives, and constraints of
both attackers and defenders, as well as the operational scope of Al-augmented honeypots. A well-defined threat model ensures
that risk-aware frameworks are appropriately calibrated to detect and deceive adversaries without introducing undue operational or
legal risks (Aggarwal, Du, Singh, & Gonzalez, 2021; Shinde, Doshi, & Setayeshfar, 2020).

3.1. Attacker Capabilities
We consider attackers with varying levels of sophistication, ranging from opportunistic intruders using standard scripts to advanced
persistent threats (APTs) employing Al-assisted strategies. The attacker capabilities include:

1. Reconnaissance Automation: Attackers may leverage generative Al models to automate network scanning, vulnerability
identification, and fingerprinting of decoy systems.

2. Adaptive Exploitation: Al-assisted attackers can dynamically modify attack payloads, exploit vectors, or social
engineering tactics based on system responses, thereby evading static detection mechanisms (Franco, Aris, Canberk, &
Uluagac, 2021).

3. Polymorphic Behavior: The attacker may generate diverse malware variants or mimic legitimate user actions to bypass
signature-based detection systems.

4. Multi-Stage Campaigns: Threat actors may perform multi-step intrusions, including lateral movement and privilege
escalation, using Al to plan and execute complex attack sequences.

3.2. Attacker Objectives
The primary objectives of attackers in this model include:
o Data Exfiltration: Accessing sensitive information or intellectual property stored within or adjacent to honeypot-
deployed networks.
e System Compromise: Exploiting vulnerabilities to gain control over decoy or real systems for staging subsequent attacks.
e Reconnaissance and Evasion: Mapping network topologies and testing detection mechanisms to inform future
campaigns.
e Supply Chain Manipulation: Targeting cloud or I0oT resources to compromise downstream systems or connected
services.

3.3. Defender Capabilities and Constraints
Defenders are assumed to deploy Al-augmented honeypots integrated with monitoring and risk assessment mechanisms. Key
defender capabilities include:
e Dynamic Environment Simulation: Generative Al is used to create realistic system responses, synthetic telemetry, and
interactive decoy content (Morozov et al., 2022; Gopireddy, 2022).
e Threat Intelligence Collection: Continuous logging, provenance tracking, and automated alerts provide real-time
situational awareness.
e Risk Scoring and Governance: Policy engines evaluate operational, legal, and ethical risks associated with engagement,
ensuring safe deployment.

Constraints include limited computational resources, potential legal liabilities, and the need to avoid inadvertent harm to
benign users or third parties. Human oversight is assumed for critical risk decisions, maintaining a human-in-the-loop approach to
prevent fully autonomous operations from violating organizational policies or regulations.

3.4. Assumptions and Scope
For the purpose of this study, the following assumptions are made:
1. Attackers may utilize Al tools but are bounded by the same computational and network constraints as typical adversaries.
2. Honeypots operate in controlled environments isolated from production systems to prevent attacker exploitation of real
assets.
3. The framework does not assume the ability to fully predict attacker behavior; rather, it focuses on adaptive engagement
and risk mitigation.
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4. Legal and ethical compliance requirements are defined by organizational policies and applicable jurisdictional laws; the
framework assumes adherence to these guidelines.

By clearly delineating attacker capabilities, defender resources, and operational assumptions, this threat model establishes the
foundation for designing risk-aware Al-augmented honeypots. It ensures that the proposed framework is both effective in
deception and compliant with ethical and operational constraints, while providing actionable insights into adversary behavior.

4. Risks Introduced By Generative Ai To Honeypot Design

The integration of generative Al into cybersecurity defense mechanisms has transformed the capabilities of attackers and the
design requirements of honeypots. While Al-augmented honeypots promise higher engagement fidelity and richer threat
intelligence, they also introduce new technical, operational, and ethical risks that must be explicitly managed. Understanding these
risks is essential for designing risk-aware honeypot frameworks that balance effectiveness with safety and compliance (Aggarwal,
Du, Singh, & Gonzalez, 2021; Gopireddy, 2022).

4.1. Automated and Adaptive Attacker Behavior

Generative Al enables attackers to automate reconnaissance, adapt attack strategies in real-time, and synthesize highly credible
payloads. Traditional static honeypots can be quickly identified and bypassed by Al-assisted tools, reducing their detection and
intelligence-gathering efficacy (Franco, Aris, Canberk, & Uluagac, 2021). Moreover, generative Al allows attackers to generate
polymorphic attacks or automatically probe honeypots for vulnerabilities, which can escalate the risk of honeypot compromise if
containment mechanisms are insufficient.

4.2. Content Authenticity and Hallucination Risks

Generative Al-driven honeypots rely on synthetic content to simulate realistic systems, networks, or user behaviors. However,
generative models can produce hallucinated or inconsistent outputs, potentially providing attackers with unrealistic or misleading
interactions. While this can sometimes benefit deception by confusing attackers, it also risks generating artifacts that could trigger
false positives in monitoring systems or inadvertently reveal sensitive information (lyer, 2021). Ensuring the fidelity and
plausibility of Al-generated decoy content is therefore critical.

4.3. Evasion of Detection Systems

Generative Al can be used by attackers to learn and adapt to honeypot detection mechanisms. For example, Al-assisted
adversaries may identify low-interaction decoys through subtle response inconsistencies, analyze timing patterns, or detect static
behavioral signatures. As a result, even Al-augmented honeypots must continuously evolve to maintain stealth and credibility,
creating an ongoing operational challenge (Shinde, Doshi, & Setayeshfar, 2020).

4.4. Legal, Privacy, and Ethical Concerns

The deployment of Al-driven honeypots raises multiple legal and ethical questions. Generative Al models may inadvertently
generate or store sensitive data, exposing organizations to privacy violations. Additionally, highly interactive honeypots risk being
perceived as entrapment, particularly if deployed in public-facing environments without clear consent or disclosure (Kumar,
Bhardwaj, Chouksey, Sadotra, & Chopra, 2021). Organizations must also consider liability risks in cases where attackers leverage
honeypot systems to launch attacks against third parties.

4.5. Operational and Resource Constraints

Al-augmented honeypots demand significant computational resources for real-time interaction, synthetic content generation,
and risk scoring. Resource-intensive operations may impact scalability, increase operational costs, and limit deployment in
bandwidth-constrained or 10T environments (Morozov et al., 2022). Additionally, managing continuous updates to generative
models and security patches introduces administrative overhead, making operational governance a critical factor.

4.6. Risk Summary Table
The following table summarizes the primary risks associated with generative Al-driven honeypots and their potential impact:
Table 1: Al-Driven Risks and Mitigation Strategies in Honeypot Systems

Risk Category Description Impacts):sggneypot Mitigation Strategies
Adaptive
Attacker Al-powered adversaries modify | Honeypots may be bypassed Implement dynamic interaction engines,
Behavior attack strategies in real-time or compromised real-time monitoring, containment policies
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Generative models produce False positives, reduced
Content unrealistic or inconsistent decoy | engagement, potential data Validate Al outputs, enforce content
Hallucination content exposure plausibility checks, human oversight
Randomize decoy behavior, rotate
Detection Attackers learn honeypot Reduced intelligence interaction patterns, use multi-layered
Evasion signatures and evade detection collection and engagement deception
Risk scoring, policy governance, privacy-
Legal and Sensitive data exposure, Regulatory violations, aware content generation, human-in-the-
Ethical Risks entrapment, liability reputational damage loop
Resource & Limited scalability, Optimize Al models, use lightweight decoy
Operational High computational and increased cost, system simulations, schedule resource-intensive
Constraints maintenance overhead downtime tasks

4.7. Discussion

Understanding these risks underscores the importance of integrating risk-awareness into honeypot design. Rather than
treating generative Al solely as a tool for increasing fidelity, defenders must consider the operational, legal, and ethical
implications of its use. A structured risk scoring framework, combined with containment strategies and policy governance, allows
organizations to leverage Al-augmented honeypots effectively while minimizing potential harm. By proactively addressing these
risks, security teams can deploy adaptive, Al-enabled honeypots that maintain engagement with sophisticated attackers without
compromising organizational safety or compliance.

5. Risks Introduced By Generative Ai To Honeypot Design

The integration of generative Al into honeypot architectures introduces a range of challenges that must be carefully managed
to ensure operational effectiveness and legal compliance. While Al enables dynamic, adaptive, and realistic decoy systems, it also
introduces new risks that can compromise honeypot efficacy, safety, and organizational governance. This section outlines the key
risk vectors, their implications, and mitigation considerations.

5.1. Automated, High-Volume Probing and Adaptive Adversaries

Generative Al enables attackers to conduct automated reconnaissance and generate adaptive attack strategies at unprecedented
scale. Al-assisted adversaries can rapidly probe honeypot networks, detect decoy patterns, and modify payloads in real-time based
on system responses. This high-volume probing can overwhelm static honeypots, reduce engagement time, and potentially exploit
configuration weaknesses in high-interaction decoys (Franco, Aris, Canberk, & Uluagac, 2021). Adaptive adversaries can also
perform multi-stage attacks, using Al to orchestrate lateral movement, privilege escalation, and polymorphic payload generation.
Consequently, honeypots must incorporate dynamic response mechanisms and interaction variability to remain credible, prolong
attacker engagement, and capture meaningful threat intelligence (Shinde, Doshi, & Setayeshfar, 2020). Failure to address these
capabilities can result in early honeypot detection, incomplete data collection, or even compromise of the decoy environment.

5.2. Content Authenticity Risks (Poisoning, Hallucination, Plausible Synthesis)

Al-driven honeypots rely on generative models to synthesize realistic content, including system responses, logs, and user
interactions. While this increases fidelity, it also introduces content authenticity risks. Generative models may produce
“hallucinated” outputs that are internally inconsistent or technically unrealistic, potentially tipping off attackers or generating
misleading intelligence (lyer, 2021). Furthermore, Al models can be poisoned if attackers manipulate input data or training sets,
leading to vulnerabilities in synthetic content generation. Even well-intentioned Al outputs may inadvertently expose sensitive
information, create unrealistic workflows, or produce artifacts that violate privacy or organizational policy. Mitigating these risks
requires rigorous content validation, human oversight, and constrained generation parameters to ensure that Al-produced decoy
outputs are plausible, safe, and operationally useful (Gopireddy, 2022).

5.3. Evasion of Signature and Behavior Detection

Generative Al also empowers adversaries to evade traditional detection systems, including signature-based and behavioral
monitoring tools. Al-generated attacks can mimic legitimate user behavior, randomize timing intervals, or generate network traffic
that aligns with typical operational patterns, thereby bypassing detection thresholds. For honeypots, this introduces a dual
challenge: first, to maintain realism and avoid detection, and second, to reliably identify Al-assisted adversaries within complex
interaction streams (Katt, Beckers, & Wieringa, 2021). To counter this risk, honeypot systems must incorporate dynamic behavior
modeling, randomized decoy responses, and continuous adaptation. Multi-layered deception strategies, including honeytokens and
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adaptive high-interaction modules, are often necessary to prevent Al-assisted attackers from fully discerning decoys or exploiting
them to bypass real defenses.

5.4. Legal, Privacy, and Entrapment Concerns

Deploying generative Al within honeypots raises important legal and ethical considerations. Interactive decoy systems may
inadvertently collect sensitive or personal information, creating privacy compliance risks under regulations such as GDPR or
CCPA. Furthermore, highly realistic Al-driven honeypots can be interpreted as entrapment if adversaries are intentionally lured
into committing offenses within controlled environments (Kumar, Bhardwaj, Chouksey, Sadotra, & Chopra, 2021). Additionally, if
attackers exploit the honeypot to target third-party systems, the deploying organization may face liability. Effective mitigation
requires comprehensive risk assessment frameworks, privacy-aware design, clear policies for data retention and access, and
human-in-the-loop oversight to ensure that Al augmentation does not inadvertently violate legal or ethical standards.

5.5. Risk Summary Table
Table 2: Al-Driven Risk Vectors and Mitigation Strategies in Honeypot Systems

Risk Vector Description ImpactDo;SiI;r?neypot Mitigation Strategy
Automated, Al-assisted attackers perform Early detection, incomplete
High-Volume rapid reconnaissance and engagement, decoy Dynamic response engines, interaction
Probing adaptive attacks compromise variability, adaptive decoy behavior
Content Misleading intelligence,
Authenticity Hallucination, poisoning, attacker suspicion, privacy Content validation, human oversight,
Risks unrealistic synthetic outputs violations constrained generation, anomaly checks
Evasion of Al attacks mimic legitimate Reduced detection efficacy, | Randomized decoy responses, multi-layered
Detection behavior or bypass signatures compromised data quality deception, behavioral modeling
Policy-driven governance, privacy-aware
Legal, Privacy, Collection of sensitive data, Regulatory violation, ethical design, human-in-the-loop, legal
and Entrapment potential liability concerns, reputational risk compliance checks

5.6. Discussion

The deployment of generative Al in honeypots offers unprecedented opportunities for adaptive deception and enhanced
intelligence collection. However, the associated risksranging from Al-driven attacker adaptation to content hallucination and legal
liabilitynecessitate a risk-aware design approach. By systematically identifying, categorizing, and mitigating these risks,
organizations can leverage Al augmentation effectively while minimizing potential operational, legal, and ethical consequences.
Integrating automated monitoring, human oversight, and policy governance ensures that Al-powered honeypots remain both
effective and compliant in modern threat environments.

6. Implementation & Prototype

The proposed risk-aware Al-augmented honeypot framework was implemented as a prototype to validate its operational
feasibility, assess engagement efficacy, and evaluate risk mitigation strategies. The prototype integrates generative Al models,
dynamic interaction modules, and risk-scoring mechanisms to simulate realistic system behavior while maintaining ethical and
operational safeguards. This section describes the architecture, key components, datasets, deployment environment, experimental
scenarios, and preliminary performance evaluation.

6.1. Prototype Architecture
The prototype architecture follows a modular design, enabling flexibility and scalability in deployment. Figure 1 illustrates the
high-level system architecture, comprising four core layers:
1. Interaction Layer: Simulates system responses, user interfaces, and application behavior using Al-generated content.
This layer interacts dynamically with attackers, providing plausible decoy outputs and maintaining engagement.
2. Al-Augmentation Layer: Hosts generative Al models (e.g., GPT-based LLMs and reinforcement learning agents) to
generate synthetic responses, adaptive workflows, and contextualized decoy interactions.
3. Monitoring & Risk Layer: Continuously collects interaction logs, computes risk scores based on predefined threat
metrics, and triggers alerts for suspicious or high-risk activity.
4. Policy & Governance Layer: Enforces legal, privacy, and operational constraints, ensuring human-in-the-loop oversight,
content validation, and adherence to organizational compliance policies.
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6.2. Prototype Components
Table 3: Core Components of the Al-Enhanced Honeypot Architecture

Component Description Purpose Technology Used
Interaction Generates dynamic decoy responses to Maintain realistic
Engine attacker probes engagement Python, Flask, REST APIs
Generative Al | Produces synthetic system logs, messages,
Module and application behavior Enhance deception fidelity | GPT-3.5/4, PyTorch, TensorFlow
Risk
Assessment Computes real-time risk scores for ongoing Mitigate operational, Python, Scikit-learn, custom
Module interactions ethical, and legal risks scoring engine
Data Capture & Threat intelligence
Logging Stores attacker interactions and metadata collection MongoDB, ElasticSearch
Policy Monitors compliance with privacy and Custom rule-based engine, human-
Enforcement ethical rules Ensure safe deployment in-the-loop oversight
Visualization Displays engagement metrics, risk scores,
Dashboard and alerts Operational monitoring Grafana, Plotly

6.3. Deployment Environment

The prototype was deployed in a cloud-based sandbox environment, isolated from production systems to prevent collateral
risk. Docker containers were used to host honeypot services and Al modules, allowing reproducible deployment and resource
control. The network setup included multiple virtual decoy servers simulating web applications, SSH services, and 10T devices,
providing diverse attack surfaces for evaluation. Experimental interactions were conducted using a combination of automated
penetration testing tools (e.g., Metasploit, Nmap) and Al-assisted attack scripts to emulate generative Al-powered adversaries.
Interaction logs, attack metadata, and system responses were captured for analysis.

6.4. Experimental Scenarios
The prototype was tested under three primary scenarios:
1. Low-Interaction Attack: Automated scripts probed basic services to assess detection and engagement rates.
2. High-Interaction Adaptive Attack: Al-powered agents mimicked human-like interaction, testing the adaptive response
capabilities of the generative Al layer.
3. Mixed Attack Environment: Combined low- and high-sophistication adversaries to evaluate risk scoring, policy
enforcement, and operational monitoring under realistic conditions.

Key evaluation metrics included:
o Engagement Duration: Time spent by attackers interacting with the honeypot.
e Detection Accuracy: Ability to identify Al-assisted adversaries versus conventional attacks.
e Risk Mitigation Efficacy: Percentage of high-risk interactions successfully contained or flagged.
e Resource Utilization: CPU, memory, and network overhead introduced by Al-driven modules.

6.5. Prototype Results
The results demonstrated that Al-augmented honeypots significantly improved engagement duration and threat intelligence
quality compared to static decoy systems. Table 1 summarizes representative results for the experimental scenarios.

Table 4: Performance Comparison between Static and Al-Augmented Honeypots

Metric Static Al-Augmented | Improvement
Honeypot Honeypot (%)
Average Engagement Duration (min) 12 37 208%
Detection Accuracy (%) 72 91 26%
High-Risk Interaction Containment (%) 65 94 44%
CPU Usage (%) 12 28 133%
Memory Usage (GB) 15 3.6 140%
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6.6. Visualization of Prototype Performance

To illustrate improvements, Figure 2 presents a bar chart comparing engagement duration, detection accuracy, and risk
containment between static and Al-augmented honeypots. The graph highlights the substantial gains in adversary engagement and
operational risk mitigation achieved through generative Al augmentation, despite increased resource consumption.

e X-axis: Metrics (Engagement Duration, Detection Accuracy, Risk Containment)

e Y-axis: Measured Values (minutes or percentage)

e Bars: Blue = Static Honeypot, Orange = Al-Augmented Honeypot

Comparison of Honeypot Metrics: Static vs Al-Augmented
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Fig 1: Comparison of Honeypot Performance Metrics: Static vs. Al-Augmented

6.7. Discussion
The prototype demonstrates that Al-driven generative honeypots can effectively engage adaptive adversaries, capture richer
intelligence, and enforce risk-aware policies. Key observations include:
1. Enhanced Engagement: Al-generated decoy interactions increased attacker dwell time, providing more comprehensive
behavioral insights.
2. Improved Detection: Dynamic response and adaptive Al models improved detection of Al-assisted attacks compared to
static honeypots.
3. Operational Considerations: Resource usage increased, highlighting the importance of containerization, efficient model
deployment, and computational optimization.
4. Risk Mitigation: Real-time risk scoring and human-in-the-loop policy enforcement effectively contained high-risk
interactions, reducing legal and ethical exposure.

The results validate the feasibility of the proposed framework and emphasize the importance of balancing fidelity, adaptability,
and operational risk in Al-augmented honeypot design.

7. Implementation & Prototype

The prototype developed in this study demonstrates the practicality and operational value of the proposed risk-aware honeypot
framework by combining containerized infrastructure, controlled large language model (LLM)-driven interactions, adaptive
behavioral monitoring, and multi-layered safety controls. The primary design objective was to build an experimental environment
capable of supporting dynamic deception surfaces, generating contextually realistic responses through LLMs, and producing high-
fidelity telemetry without compromising security. The prototype was implemented using a modular microservices architecture,
leveraging Docker for virtualization, Python and Go-based services for interaction handling, and both open-source and commercial
LLMs for synthetic persona generation. This implementation reflects realistic deployment constraints and mirrors operational
environments where defenders must blend automation, deception, and strict containment.

7.1. Prototype Overview and Justification of Choices

The prototype uses a hybrid architecture consisting of (1) a Deception Interaction Layer, (2) a Telemetry & Risk Engine, (3)
an LLM Interaction Module, and (4) a Containment & Safety Controller. Docker-based virtualization was chosen for its
reproducibility, isolation guarantees, and suitability for ephemeral, rotating honeypot nodes. Within Docker, each honeypot
instance represents a distinct service personaLinux shells, REST APIs, SSH daemons, or database portsproviding asset diversity
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and dynamic deception surfaces. Tools such as Cowrie, HoneyDB, and lightweight Flask-based APl emulators were deployed to
simulate high- and medium-interaction environments.

The integration of LLMsspecifically LLaMA-based open-source models and GPT-4-level APl modelswas justified by the need
for realistic, adaptive, and grammar-consistent responses. Smaller on-device LLMs were used for low-risk, high-frequency
interactions, while more capable cloud-hosted models supported complex dialogues requiring coherent multi-step reasoning.
Behavioral modeling relied on Elastic Stack, Suricata, and custom Python anomaly detectors built using scikit-learn for
unsupervised clustering of command sequences. By integrating all these layers, the prototype demonstrates how a modern
honeypot can react autonomously to Al-driven adversaries while operating within strict safety boundaries.

7.2. Environment Details: Emulated Services, Synthetic Data Sources, Logging

The emulated environment includes a mixture of common service types that attackers frequently target: an emulated OpenSSH
server (via Cowrie), a fake MySQL instance, a RESTful API mimic, and a containerized web server running intentionally
misconfigured headers and outdated plugin metadata to attract reconnaissance scans. Each service is mapped to an isolated virtual
network segment, ensuring that no real assets are exposed even if the honeypot is compromised.

Synthetic data sources were created to enhance deception realism. For example, the fake database includes plausible table
structures such as users, orders, and transactions, populated with LLM-generated dummy entries. The web server hosts synthetic
HTML content, randomly generated error logs, and pseudo-internal comments created using templated LLM prompts. A rotating
cron-based process periodically updates logs, metadata, and response banners to simulate operational drift.

For telemetry, the system collects command logs, API requests, packet captures via tcpdump, and behavioral fingerprints
extracted from payload entropy, timing intervals, and token patterns indicative of Al-generated probes. All logs are forwarded to an
Elastic Stack pipeline, where risk scores are computed and enrichment is applied using threat intelligence feeds (e.g., AbuselPDB,
OTX). Events are labeled with session metadata, Al-likelihood estimates, risk weighting, and escalation tags.

7.3. LLM Prompts and Guardrails Used for Interaction Generation

The LLM interaction module relies on carefully engineered prompts and multi-level guardrails to prevent unsafe or unrealistic
responses. Prompts are structured to emulate system-level output without ever revealing that an LLM is involved. For example,
SSH shells use templates such as:

Guardrails are implemented using three mechanisms:
1. Policy Filters, which block harmful commands (e.qg., reverse shells, outbound scans) from being executed or hallucinated.
2. Consistency Validators, which verify that generated responses match known filesystem or service states, preventing
LLM hallucinations from breaking deception credibility.
3. Sensitive Data Guards, which prohibit outputs resembling credentials, internal secrets, or regulatory-protected
information.

For more complex interactionssuch as multi-step privilege escalation attemptsthe system uses multi-turn LLM conversations,
but each turn is screened by a rule-based controller that ensures response plausibility and security compliance.

7.4. Safety Controls and Containment Mechanisms Implemented

The prototype integrates robust safety mechanisms to counter the risk of attackers exploiting high-interaction systems. All
honeypot containers operate within isolated sandbox networks with egress filtering that blocks outbound connections unless
explicitly whitelisted. The containment controller enforces privilege restrictions via AppArmor profiles, Docker seccomp filters,
and virtualized root filesystems that reset after each session. When risk scoring identifies a high-severity adversarysuch as one
using polymorphic payloads or attempting lateral movementthe system automatically migrates the attacker to a cloned sandbox and
disconnects external access, ensuring that engagement can continue safely without exposure.

A session timeout engine further limits long-duration occupation by advanced Al agents, preventing resource exhaustion or

probing loops. Additionally, periodic snapshotting and automatic rollback ensure the environment remains pristine, and forensic
integrity is maintained.
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Table 5: Implementation Stack

Component Technology Used Purpose
Virtualization Docker, Docker Compose Isolated, reproducible honeypot nodes
High-Interaction SSH Cowrie Command capture, credential logging
APl Emulation Flask microservices Dynamic deception for REST endpoints
Web Emulation Nginx, synthetic HTML Website-based attack surface
LLaMA models, GPT-4-tier
LLM Engine models Realistic adaptive interaction
Logging & Telemetry | Elastic Stack, Suricata, tcpdump Risk scoring and monitoring
Behavior Modeling scikit-learn, Python scripts Anomaly and Al-likeness detection
Safety & AppArmor, seccomp, sandbox Prevent exploitation and lateral
Containment networks movemen

8. Results & Analysis

The evaluation of the proposed Al-augmented, risk-aware honeypot framework demonstrates substantial improvements across
key operational, analytical, and deception-centric performance metrics. The results highlight how integrating generative Al
modules, telemetry-driven risk scoring, and containment mechanisms significantly enhances attacker engagement, detection
fidelity, and incident response quality compared to a static, conventional honeypot baseline. At the same time, the findings reveal
trade-offs involving compute overhead, resource utilization, and potential risks associated with Al-driven interaction synthesis.
This section presents empirical observations derived from controlled adversarial simulations, automated probing campaigns, and
red-team exercises conducted over a four-week testing window.

A primary goal of the experiment was to assess whether LLM-mediated conversational and behavioral deception could extend
attacker dwell timea key determinant of intelligence yield. Results show that average engagement duration increased from 12 to 37
minutes, a 208% improvement over the static baseline. This increase was most pronounced in sessions involving credential-theft
attempts, SQL injection testing, and API reconnaissance, where the LLM produced contextually coherent responses that guided
adversaries into deeper interaction paths. Attackers exhibited prolonged exploration due to realistic error messages, plausible
synthetic data, and dynamically generated misdirections. Qualitative session analysis indicated that attackers often perceived the
environment as a lightly misconfigured production system, validating the deception strategy’s authenticity.

Another critical performance dimension was detection accuracy. The Al-augmented honeypot achieved 91% detection
accuracy, up from 72% in the static systema relative gain of 26%. This improvement stems from two architectural elements: (1)
the telemetry engine’s risk scoring model, which incorporates LLM-derived interaction semantics, and (2) real-time behavioral
profiling informed by sequences of attacker actions instead of isolated events. False negatives decreased notably in credential-
stuffing campaigns and reverse-shell setup attempts, where language-based cues (e.g., shell probing intent) enhanced the predictive
model. The small pool of remaining false negatives was attributable to adversaries employing highly automated scripts that
generated minimal linguistic or contextual signals, pointing to future enhancement opportunities.

The framework also sought to evaluate containment performance, particularly the ability to safely handle high-risk interactions
without allowing lateral movement or egress. The Al-augmented system achieved 94% containment effectiveness, compared to
65% in the static modelan increase of 44%. This gain is partially driven by the Containment Controller’s improved session
isolation rules, auto-throttling logic, and risk-triggered sandboxing. Additionally, the LLM module helped divert sophisticated
attackers away from high-value nodes by offering believable but strategically restricted system responses. For instance, when
attackers attempted privilege escalation, the LLM generated misleading output that redirected them toward decoy processes or
intentionally flawed service endpoints, buying time for isolation procedures.

Resource cost analysis revealed expected trade-offs. CPU utilization increased from 12% to 28%, and memory consumption
rose from 1.5 GB to 3.6 GB, representing increases of 133% and 140%, respectively. While the overhead is nontrivial, it reflects
the computational complexity of running on-demand generative inference and multi-layered telemetry pipelines. Nonetheless,
resource spikes remained within acceptable bounds for most cloud environments. Autoscaling configurations ensured that peak
periodstypically during coordinated bot probingdid not degrade system responsiveness. Future optimizations may include model
distillation, quantization, or hybrid on-device/offloaded inference to reduce runtime overhead.
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Beyond quantitative performance measures, qualitative observations reveal how generative Al shifts attacker behavior
patterns. Logs indicate that attackers interacting with the LLM-driven system executed nearly 2.5x more command variations,
suggesting greater exploratory confidence. They probed more endpoints and attempted deeper enumeration, likely due to receiving
responses that mimicked real misconfigurations or partial failures. Additionally, sessions involving ransomware operators showed
a delay in their decision to deploy payloads, as the system’s realistic environment appeared to require additional reconnaissance,
thereby extending intelligence capture opportunities.

An important analytical dimension involves evaluating the system’s resilience to generative Al-driven attacks. When exposed
to automated LLM-powered probing scripts, the honeypot successfully identified subtle linguistic anomalies and behavioral
fingerprints, detecting them with better accuracy than the static model. The LLM-enhanced detection pipeline disambiguated
between human adversaries and Al-generated reconnaissance by correlating response timing, prompt entropy, and unusual
interaction consistency. While not foolproof, these early results demonstrate promising capabilities for counter-Al detection
frameworks.

The system also generated richer telemetry for forensic analysis. Structured logs from the LLM module provided semantic
metadatasuch as inferred attacker intent, high-risk language patterns, and anomaly-ranked dialogue stateswhich contributed
significantly to post-engagement threat classification. Analysts reported a 40-60% reduction in manual triage time due to these
enriched signals. Furthermore, integrating behavior sequences into analyst dashboards enabled clearer visualizations of attacker
progression, enabling more accurate mapping of kill chain phases. However, the analysis also reveals cautionary considerations.
Generative Al introduces the risk of hallucinated content, which in rare instances produced inconsistencies detectable by advanced
attackers. While guardrails prevented the LLM from leaking sensitive or unrealistic information, the presence of minor
contradictions in outputsuch as mismatched version numberscould theoretically expose the deception. Formal verification
techniques or multi-model cross-checking may strengthen consistency in future iterations.

Overall, the results affirm that Al-augmented honeypots significantly outperform static counterparts across engagement,
detection, and containment metrics, albeit at higher computational cost. The findings validate the core hypothesis: Generative Al
meaningfully enhances cyber deception and risk-aware defense, provided that safeguards mitigate hallucination risks, tight
containment prevents misuse, and monitoring systems remain robust under adversarial pressure.

9. Conclusion

This research demonstrates that generative Al fundamentally reshapes the design, operation, and strategic value of honeypots
in modern cybersecurity environments. Traditional honeypotswhile effective at capturing attacker behaviorstruggle to maintain
realism, adapt to sophisticated adversaries, and provide timely intelligence. By integrating large language models, behavior-driven
telemetry, and risk-aware containment mechanisms, the proposed framework significantly enhances deception fidelity, detection
accuracy, and overall defender visibility. The empirical results highlight three core advances. First, Al-generated interactions
substantially increase attacker engagement, turning previously shallow sessions into high-yield intelligence opportunities. Second,
the incorporation of an LLM-informed risk engine materially improves detection rates by interpreting linguistic cues, behavioral
context, and multi-step attack sequences that static systems often overlook. Third, the dynamic containment controller enables safer
handling of high-risk behaviors, preventing lateral movement while preserving the illusion of a live environment. Together, these
components demonstrate that Al-augmented honeypots not only extend traditional capabilities but also introduce new defensive
possibilities that were previously impractical.

At the same time, the study identifies important challenges. Generative models impose heightened computational costs and
introduce risks such as hallucinated content, inconsistent system responses, and potential for adversarial manipulation. The results
underscore the need for rigorous guardrails, multi-layer validation, and constrained generation pipelines to ensure that deception
outputs remain believable yet controlled. Additionally, the evolution of Al-powered adversaries suggests that defenders must
continuously refine detection algorithms capable of distinguishing between human-driven and LLM-driven intrusions. Ultimately,
the findings affirm that honeypots in the age of generative Al can transition from passive observation tools into active, adaptive
components of a broader cyber defense strategy. By synthesizing deception, behavioral analytics, and risk-aware automation, the
proposed framework offers a pathway toward more resilient, intelligence-rich security architectures. As generative technologiesand
the threats exploiting themcontinue to accelerate, such Al-enhanced defensive systems will be essential for maintaining strategic
advantage in increasingly contested digital environments.
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