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Abstract - The rapid advancement of generative artificial intelligence (AI) has introduced both novel opportunities and significant 

challenges in cybersecurity. Traditional honeypots, long employed to detect, analyze, and deceive malicious actors, face 

limitations in addressing highly adaptive, AI-driven threats. This paper presents a risk-aware framework for AI-augmented 

honeypots, designed to enhance threat detection while minimizing operational, legal, and ethical risks. The framework integrates 

generative AI techniques to create dynamic, interactive, and realistic decoy environments, enabling improved engagement and 

intelligence collection from sophisticated adversaries. We propose a risk scoring model to evaluate potential hazards associated 

with AI-driven deception, and illustrate the framework’s implementation through a prototype leveraging synthetic environments, 

automated response engines, and adaptive interaction strategies. Experimental results demonstrate increased detection efficacy, 

prolonged attacker engagement, and actionable intelligence extraction compared to conventional honeypots. Finally, we provide 

operational guidelines and ethical considerations to inform safe deployment in enterprise and cloud environments. This study 

offers a systematic approach to modernize honeypot design in the age of generative AI, supporting proactive cyber defense and 

strategic deception. 

 

Keywords - Honeypots; Cyber Deception; Generative AI; Risk-Aware Security; Adaptive Threat Detection; AI-Augmented Cyber 

Defense. 

 

1. Introduction 
Cybersecurity threats have become increasingly sophisticated in recent years, evolving from opportunistic attacks to highly 

targeted campaigns leveraging automation, artificial intelligence (AI), and machine learning (ML) techniques. Traditional security 

measures such as firewalls and signature-based intrusion detection systems often fail to detect advanced persistent threats (APTs) 

and zero-day exploits due to their reactive nature and reliance on known attack patterns (Fraunholz, Zimmermann, & Schotten, 

2018). In this context, honeypotsdecoy systems intentionally designed to attract and monitor attackershave emerged as a proactive 

security mechanism that enables organizations to study attacker behavior, collect threat intelligence, and enhance defensive 

strategies (Shinde, Doshi, & Setayeshfar, 2020; Mohurle & Patil, 2019). By simulating vulnerable services, applications, or 

devices, honeypots create controlled environments where adversaries can be observed without compromising real assets, thereby 

providing both analytical insights and defensive value. 

 

The recent advent of generative AI, including large language models and deep learning-based content generators, has 

significantly altered the threat landscape. Malicious actors can now leverage AI to create convincing phishing messages, 

automatically generate malware variants, or emulate legitimate user behaviors to evade detection (Aggarwal, Du, Singh, & 

Gonzalez, 2021). This raises critical challenges for conventional honeypots, which are often static and limited in interaction 

capabilities. Standard honeypots, particularly low- and medium-interaction variants, can be quickly identified and bypassed by 

automated AI-powered reconnaissance tools, reducing their effectiveness as detection and deception mechanisms (Franco, Aris, 

Canberk, & Uluagac, 2021). Similarly, high-interaction honeypots, while more realistic, introduce operational and ethical risks, 

including unintentional data exposure, legal liability, and the potential for attackers to leverage them as launchpads for further 

attacks (Aggarwal et al., 2021; Gopireddy, 2022). 

 

To address these challenges, the cybersecurity community has explored the integration of AI-driven adaptive mechanisms into 

honeypot systems. AI-augmented honeypots utilize generative models to produce realistic content, dynamically modify decoy 

behaviors, and interact with attackers in a more human-like manner (Katt, Beckers, & Wieringa, 2021; Morozov et al., 2022). 

These systems not only increase the engagement time of adversaries but also improve the fidelity of captured threat intelligence, 

enabling security operations centers (SOCs) to better understand attack vectors and tactics. For instance, generative AI can 

simulate plausible service responses, generate synthetic user activity, and automatically adapt to attacker probing patterns, thereby 

reducing the risk of early detection (Zarca, Bernabe, & Skarmeta, 2020). This level of dynamism is essential in modern cyber 
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defense, where adversaries employ automated scripts, AI-enhanced reconnaissance, and polymorphic malware to evade traditional 

detection strategies. 

 

However, the integration of generative AI into honeypot design introduces new risks and ethical considerations. AI-driven 

content generation may inadvertently produce sensitive or misleading data, exposing organizations to privacy violations or legal 

challenges (Iyer, 2021). Moreover, the deployment of highly interactive honeypots could be perceived as entrapment in certain 

jurisdictions, highlighting the need for a structured risk-aware framework that balances operational efficacy with ethical, legal, and 

organizational constraints (Kumar, Bhardwaj, Chouksey, Sadotra, & Chopra, 2021). Existing literature has largely focused either 

on honeypot architectures or on AI-powered attack techniques, but there is a noticeable gap in systematic methodologies that 

explicitly evaluate and mitigate the risks introduced by generative AI in deception systems. 

 

This paper proposes a risk-aware framework for AI-augmented honeypots, designed to enhance adaptive threat detection while 

ensuring operational and legal safety. The framework integrates several key components: (i) a synthetic environment generator for 

realistic decoy content, (ii) an adaptive interaction engine powered by generative AI models, (iii) a data capture and provenance 

module to track interactions, and (iv) a policy and governance engine that applies risk scoring to monitor potential hazards in real-

time (Shinde et al., 2020; Gopireddy, 2022). By combining these elements, the framework allows organizations to deploy dynamic 

honeypots capable of engaging AI-assisted adversaries while minimizing risks associated with content authenticity, data leakage, 

and attacker exploitation. A prototype implementation demonstrates the framework’s feasibility, highlighting improvements in 

detection performance, attacker engagement duration, and intelligence quality compared to conventional static honeypots. 

 

The contributions of this paper are threefold. First, we identify and categorize the risks introduced by generative AI in 

honeypot systems, including technical, operational, and legal factors. Second, we present a comprehensive, risk-aware framework 

for AI-augmented honeypot deployment, providing both architectural and procedural guidelines. Third, we evaluate the framework 

through prototype implementation and experimentation, showing quantitative and qualitative improvements in threat detection and 

engagement metrics. By addressing both the technical and ethical dimensions of modern honeypots, this study provides actionable 

insights for researchers and practitioners aiming to leverage AI in cyber deception while maintaining risk-aware operational 

standards. 

 

2. Background & Related Work 
2.1. Evolution of Honeypots and Deception Technologies 

Honeypots have long been employed as a proactive cybersecurity mechanism to detect, analyze, and mitigate threats by 

diverting attackers away from production systems. Initially introduced as low-interaction honeypots, these systems simulate basic 

services and operating system responses, providing minimal interaction with attackers (Fraunholz, Zimmermann, & Schotten, 

2018). Low-interaction honeypots are relatively easy to deploy and maintain, making them suitable for large-scale network 

monitoring. However, their limited fidelity renders them vulnerable to detection and circumvention by sophisticated attackers. 

 

To overcome these limitations, medium- and high-interaction honeypots were developed. Medium-interaction honeypots 

simulate more complex system behavior and protocols, allowing attackers to engage in deeper interactions without accessing real 

production assets. High-interaction honeypots, by contrast, replicate full operating environments, including applications and 

network services, enabling detailed observation of attacker tactics, techniques, and procedures (TTPs) (Shinde, Doshi, & 

Setayeshfar, 2020). Despite their analytical value, high-interaction honeypots introduce operational risks, such as potential misuse 

as attack launch points and higher maintenance overhead. 

 

In parallel, the concept of honey tokens deceptive data artifacts or credentials was introduced as a lightweight deception 

mechanism. Honeytokens, unlike traditional honeypots, do not require full system emulation and can provide immediate alerts 

when accessed, enhancing threat visibility across networked environments (Mohurle & Patil, 2019). Together, honeypots and 

honeytokens constitute a broader cyber-deception ecosystem, where defenders actively manipulate attacker perceptions to achieve 

strategic advantage (Katt, Beckers, & Wieringa, 2021). 

 

2.2. Modern Honeypot Frameworks and Adaptive Deception 

The increasing sophistication of attacks has necessitated the evolution of dynamic and adaptive honeypot frameworks. 

Adaptive honeypots modify their behavior in response to attacker actions, incorporating techniques such as moving-target defenses 

and real-time configuration changes to maintain engagement (Iyer, 2021). These systems aim to counter automated attack tools and 

reconnaissance scripts that can rapidly identify static honeypots. By dynamically changing exposed services, network addresses, or 

decoy data, adaptive honeypots reduce the probability of early detection and increase the collection of actionable threat intelligence 

(Morozov et al., 2022). 
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Cloud computing and IoT environments have further expanded the scope of honeypot research. Cloud-based honeypots 

leverage virtualization and containerization technologies to simulate large-scale enterprise environments, allowing organizations to 

safely deploy decoys at scale (Gopireddy, 2022). Similarly, IoT-focused honeypots, including frameworks such as HADES-IoT, 

emulate connected devices to detect device-specific attacks and collect attacker telemetry for security analysis (Zarca, Bernabe, & 

Skarmeta, 2020). These domain-specific honeypots are increasingly combined with threat intelligence platforms to provide 

contextual insights, feeding security operations centers (SOCs) with enriched data for real-time decision-making (Panda et al., 

2021). 

 

2.3. Generative AI in Offensive Cyber Operations 

Recent advances in generative AI have fundamentally altered the cyber threat landscape. Large language models (LLMs) and 

deep learning-based generative models allow attackers to automate the creation of highly convincing phishing campaigns, malware 

variants, and social engineering content (Aggarwal, Du, Singh, & Gonzalez, 2021). These AI-assisted attacks can dynamically 

adapt their behavior based on network responses or target profiles, making them more difficult to detect with conventional 

intrusion detection systems. Generative AI also enables automated reconnaissance and vulnerability exploitation at unprecedented 

scale. For example, attackers can leverage AI to generate diverse payloads, identify system misconfigurations, or mimic legitimate 

user behavior, thereby evading signature-based detection and behavioral monitoring (Franco, Aris, Canberk, & Uluagac, 2021). 

This evolution has intensified the demand for AI-aware defensive measures, including honeypots capable of recognizing and 

engaging AI-assisted adversaries. 

 

2.4. AI-Augmented Honeypots 

To address AI-driven threats, researchers have proposed AI-augmented honeypots, which integrate generative models and 

adaptive interaction engines to improve fidelity and attacker engagement. These systems can simulate realistic system responses, 

dynamically generate synthetic telemetry, and maintain contextual continuity in interactions with adversaries (Shinde et al., 2020; 

Gopireddy, 2022). The key advantage of AI-augmented honeypots is the ability to extend engagement duration with attackers, 

thereby increasing the volume and quality of collected threat intelligence. For instance, AI models can generate realistic error 

messages, emulate application workflows, or respond naturally to attacker queries, creating an illusion of genuine system behavior. 

Early studies have shown that such systems outperform static honeypots in detecting sophisticated, automated threats and provide 

deeper insights into attack methodologies (Morozov et al., 2022; Katt et al., 2021). However, these benefits come with new risks. 

Generative AI models may produce content that inadvertently exposes sensitive information or introduces unpredictable behaviors 

(Iyer, 2021). Additionally, highly interactive AI-augmented honeypots require careful governance to avoid ethical and legal 

violations, such as potential entrapment or unauthorized data collection (Kumar, Bhardwaj, Chouksey, Sadotra, & Chopra, 2021). 

 

2.5. Risk Assessment in Modern Deception Systems 

Recognizing the challenges introduced by generative AI, recent literature emphasizes the importance of risk-aware 

frameworks for honeypot deployment. Risk assessment in this context considers operational, technical, legal, and ethical 

dimensions, including the probability of detection, potential misuse by attackers, data privacy concerns, and compliance with 

regulatory standards (Aggarwal et al., 2021; Gopireddy, 2022). Frameworks combining risk scoring and adaptive deployment 

strategies allow defenders to quantify potential hazards while optimizing engagement and intelligence collection. For example, 

configurable risk thresholds can dictate the level of interaction permitted, the fidelity of decoy content, and the extent of AI-driven 

response automation (Zarca et al., 2020). By explicitly integrating risk assessment into the design of AI-augmented honeypots, 

organizations can achieve a balance between maximizing threat visibility and maintaining safe operational boundaries. 

 

2.6. Research Gaps 

Despite the advances in honeypot research and AI-assisted deception, several gaps remain. First, there is limited systematic 

study on the combined effects of generative AI on attacker behavior and honeypot effectiveness. Second, few frameworks 

incorporate comprehensive risk assessment, encompassing operational, legal, and ethical dimensions alongside technical 

performance. Third, evaluation metrics for AI-augmented honeypots remain inconsistent, making cross-study comparisons 

challenging. Finally, there is a need for practical guidelines for safe deployment, including policy-driven governance, human-in-

the-loop controls, and legal compliance checks. Addressing these gaps is critical for developing next-generation honeypots capable 

of countering AI-assisted threats effectively and safely. 

 

2.7. Summary 

In summary, the evolution of honeypots from low- to high-interaction systems, the emergence of adaptive frameworks, and the 

integration of generative AI have reshaped the landscape of cyber-deception. While AI-augmented honeypots offer substantial 

benefits in detecting and analyzing sophisticated attacks, they also introduce new operational, ethical, and legal risks. A risk-aware, 
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adaptive framework is therefore essential to ensure that honeypots remain effective, safe, and compliant in the age of generative 

AI. 

 

3. Threat Model & Assumptions 
The evolving cyber threat landscape, particularly in the context of generative AI, necessitates a clear articulation of the threat 

model and underlying assumptions to guide honeypot design. This section defines the capabilities, objectives, and constraints of 

both attackers and defenders, as well as the operational scope of AI-augmented honeypots. A well-defined threat model ensures 

that risk-aware frameworks are appropriately calibrated to detect and deceive adversaries without introducing undue operational or 

legal risks (Aggarwal, Du, Singh, & Gonzalez, 2021; Shinde, Doshi, & Setayeshfar, 2020). 

 

3.1. Attacker Capabilities 

We consider attackers with varying levels of sophistication, ranging from opportunistic intruders using standard scripts to advanced 

persistent threats (APTs) employing AI-assisted strategies. The attacker capabilities include: 

1. Reconnaissance Automation: Attackers may leverage generative AI models to automate network scanning, vulnerability 

identification, and fingerprinting of decoy systems. 

2. Adaptive Exploitation: AI-assisted attackers can dynamically modify attack payloads, exploit vectors, or social 

engineering tactics based on system responses, thereby evading static detection mechanisms (Franco, Aris, Canberk, & 

Uluagac, 2021). 

3. Polymorphic Behavior: The attacker may generate diverse malware variants or mimic legitimate user actions to bypass 

signature-based detection systems. 

4. Multi-Stage Campaigns: Threat actors may perform multi-step intrusions, including lateral movement and privilege 

escalation, using AI to plan and execute complex attack sequences. 

 

3.2. Attacker Objectives 

The primary objectives of attackers in this model include: 

 Data Exfiltration: Accessing sensitive information or intellectual property stored within or adjacent to honeypot-

deployed networks. 

 System Compromise: Exploiting vulnerabilities to gain control over decoy or real systems for staging subsequent attacks. 

 Reconnaissance and Evasion: Mapping network topologies and testing detection mechanisms to inform future 

campaigns. 

 Supply Chain Manipulation: Targeting cloud or IoT resources to compromise downstream systems or connected 

services. 

 

3.3. Defender Capabilities and Constraints 

Defenders are assumed to deploy AI-augmented honeypots integrated with monitoring and risk assessment mechanisms. Key 

defender capabilities include: 

 Dynamic Environment Simulation: Generative AI is used to create realistic system responses, synthetic telemetry, and 

interactive decoy content (Morozov et al., 2022; Gopireddy, 2022). 

 Threat Intelligence Collection: Continuous logging, provenance tracking, and automated alerts provide real-time 

situational awareness. 

 Risk Scoring and Governance: Policy engines evaluate operational, legal, and ethical risks associated with engagement, 

ensuring safe deployment. 

 

Constraints include limited computational resources, potential legal liabilities, and the need to avoid inadvertent harm to 

benign users or third parties. Human oversight is assumed for critical risk decisions, maintaining a human-in-the-loop approach to 

prevent fully autonomous operations from violating organizational policies or regulations. 

 

3.4. Assumptions and Scope 

For the purpose of this study, the following assumptions are made: 

1. Attackers may utilize AI tools but are bounded by the same computational and network constraints as typical adversaries. 

2. Honeypots operate in controlled environments isolated from production systems to prevent attacker exploitation of real 

assets. 

3. The framework does not assume the ability to fully predict attacker behavior; rather, it focuses on adaptive engagement 

and risk mitigation. 
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4. Legal and ethical compliance requirements are defined by organizational policies and applicable jurisdictional laws; the 

framework assumes adherence to these guidelines. 

 

By clearly delineating attacker capabilities, defender resources, and operational assumptions, this threat model establishes the 

foundation for designing risk-aware AI-augmented honeypots. It ensures that the proposed framework is both effective in 

deception and compliant with ethical and operational constraints, while providing actionable insights into adversary behavior. 

 

4. Risks Introduced By Generative Ai To Honeypot Design 
The integration of generative AI into cybersecurity defense mechanisms has transformed the capabilities of attackers and the 

design requirements of honeypots. While AI-augmented honeypots promise higher engagement fidelity and richer threat 

intelligence, they also introduce new technical, operational, and ethical risks that must be explicitly managed. Understanding these 

risks is essential for designing risk-aware honeypot frameworks that balance effectiveness with safety and compliance (Aggarwal, 

Du, Singh, & Gonzalez, 2021; Gopireddy, 2022). 

 

4.1. Automated and Adaptive Attacker Behavior 

Generative AI enables attackers to automate reconnaissance, adapt attack strategies in real-time, and synthesize highly credible 

payloads. Traditional static honeypots can be quickly identified and bypassed by AI-assisted tools, reducing their detection and 

intelligence-gathering efficacy (Franco, Aris, Canberk, & Uluagac, 2021). Moreover, generative AI allows attackers to generate 

polymorphic attacks or automatically probe honeypots for vulnerabilities, which can escalate the risk of honeypot compromise if 

containment mechanisms are insufficient. 

 

4.2. Content Authenticity and Hallucination Risks 

Generative AI-driven honeypots rely on synthetic content to simulate realistic systems, networks, or user behaviors. However, 

generative models can produce hallucinated or inconsistent outputs, potentially providing attackers with unrealistic or misleading 

interactions. While this can sometimes benefit deception by confusing attackers, it also risks generating artifacts that could trigger 

false positives in monitoring systems or inadvertently reveal sensitive information (Iyer, 2021). Ensuring the fidelity and 

plausibility of AI-generated decoy content is therefore critical. 

 

4.3. Evasion of Detection Systems 

Generative AI can be used by attackers to learn and adapt to honeypot detection mechanisms. For example, AI-assisted 

adversaries may identify low-interaction decoys through subtle response inconsistencies, analyze timing patterns, or detect static 

behavioral signatures. As a result, even AI-augmented honeypots must continuously evolve to maintain stealth and credibility, 

creating an ongoing operational challenge (Shinde, Doshi, & Setayeshfar, 2020). 

 

4.4. Legal, Privacy, and Ethical Concerns 

The deployment of AI-driven honeypots raises multiple legal and ethical questions. Generative AI models may inadvertently 

generate or store sensitive data, exposing organizations to privacy violations. Additionally, highly interactive honeypots risk being 

perceived as entrapment, particularly if deployed in public-facing environments without clear consent or disclosure (Kumar, 

Bhardwaj, Chouksey, Sadotra, & Chopra, 2021). Organizations must also consider liability risks in cases where attackers leverage 

honeypot systems to launch attacks against third parties. 

 

4.5. Operational and Resource Constraints 

AI-augmented honeypots demand significant computational resources for real-time interaction, synthetic content generation, 

and risk scoring. Resource-intensive operations may impact scalability, increase operational costs, and limit deployment in 

bandwidth-constrained or IoT environments (Morozov et al., 2022). Additionally, managing continuous updates to generative 

models and security patches introduces administrative overhead, making operational governance a critical factor. 

 

4.6. Risk Summary Table 

The following table summarizes the primary risks associated with generative AI-driven honeypots and their potential impact: 

Table 1: AI-Driven Risks and Mitigation Strategies in Honeypot Systems 

Risk Category Description 
Impact on Honeypot 

Design 
Mitigation Strategies 

Adaptive 

Attacker 

Behavior 

AI-powered adversaries modify 

attack strategies in real-time 

Honeypots may be bypassed 

or compromised 

Implement dynamic interaction engines, 

real-time monitoring, containment policies 
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Content 

Hallucination 

Generative models produce 

unrealistic or inconsistent decoy 

content 

False positives, reduced 

engagement, potential data 

exposure 

Validate AI outputs, enforce content 

plausibility checks, human oversight 

Detection 

Evasion 

Attackers learn honeypot 

signatures and evade detection 

Reduced intelligence 

collection and engagement 

Randomize decoy behavior, rotate 

interaction patterns, use multi-layered 

deception 

Legal and 

Ethical Risks 

Sensitive data exposure, 

entrapment, liability 

Regulatory violations, 

reputational damage 

Risk scoring, policy governance, privacy-

aware content generation, human-in-the-

loop 

Resource & 

Operational 

Constraints 

High computational and 

maintenance overhead 

Limited scalability, 

increased cost, system 

downtime 

Optimize AI models, use lightweight decoy 

simulations, schedule resource-intensive 

tasks 

 

4.7. Discussion 

Understanding these risks underscores the importance of integrating risk-awareness into honeypot design. Rather than 

treating generative AI solely as a tool for increasing fidelity, defenders must consider the operational, legal, and ethical 

implications of its use. A structured risk scoring framework, combined with containment strategies and policy governance, allows 

organizations to leverage AI-augmented honeypots effectively while minimizing potential harm. By proactively addressing these 

risks, security teams can deploy adaptive, AI-enabled honeypots that maintain engagement with sophisticated attackers without 

compromising organizational safety or compliance. 

 

5. Risks Introduced By Generative Ai To Honeypot Design 
The integration of generative AI into honeypot architectures introduces a range of challenges that must be carefully managed 

to ensure operational effectiveness and legal compliance. While AI enables dynamic, adaptive, and realistic decoy systems, it also 

introduces new risks that can compromise honeypot efficacy, safety, and organizational governance. This section outlines the key 

risk vectors, their implications, and mitigation considerations. 

 

5.1. Automated, High-Volume Probing and Adaptive Adversaries 

Generative AI enables attackers to conduct automated reconnaissance and generate adaptive attack strategies at unprecedented 

scale. AI-assisted adversaries can rapidly probe honeypot networks, detect decoy patterns, and modify payloads in real-time based 

on system responses. This high-volume probing can overwhelm static honeypots, reduce engagement time, and potentially exploit 

configuration weaknesses in high-interaction decoys (Franco, Aris, Canberk, & Uluagac, 2021). Adaptive adversaries can also 

perform multi-stage attacks, using AI to orchestrate lateral movement, privilege escalation, and polymorphic payload generation. 

Consequently, honeypots must incorporate dynamic response mechanisms and interaction variability to remain credible, prolong 

attacker engagement, and capture meaningful threat intelligence (Shinde, Doshi, & Setayeshfar, 2020). Failure to address these 

capabilities can result in early honeypot detection, incomplete data collection, or even compromise of the decoy environment. 

 

5.2. Content Authenticity Risks (Poisoning, Hallucination, Plausible Synthesis) 

AI-driven honeypots rely on generative models to synthesize realistic content, including system responses, logs, and user 

interactions. While this increases fidelity, it also introduces content authenticity risks. Generative models may produce 

“hallucinated” outputs that are internally inconsistent or technically unrealistic, potentially tipping off attackers or generating 

misleading intelligence (Iyer, 2021). Furthermore, AI models can be poisoned if attackers manipulate input data or training sets, 

leading to vulnerabilities in synthetic content generation. Even well-intentioned AI outputs may inadvertently expose sensitive 

information, create unrealistic workflows, or produce artifacts that violate privacy or organizational policy. Mitigating these risks 

requires rigorous content validation, human oversight, and constrained generation parameters to ensure that AI-produced decoy 

outputs are plausible, safe, and operationally useful (Gopireddy, 2022). 

 

5.3. Evasion of Signature and Behavior Detection 

Generative AI also empowers adversaries to evade traditional detection systems, including signature-based and behavioral 

monitoring tools. AI-generated attacks can mimic legitimate user behavior, randomize timing intervals, or generate network traffic 

that aligns with typical operational patterns, thereby bypassing detection thresholds. For honeypots, this introduces a dual 

challenge: first, to maintain realism and avoid detection, and second, to reliably identify AI-assisted adversaries within complex 

interaction streams (Katt, Beckers, & Wieringa, 2021). To counter this risk, honeypot systems must incorporate dynamic behavior 

modeling, randomized decoy responses, and continuous adaptation. Multi-layered deception strategies, including honeytokens and 
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adaptive high-interaction modules, are often necessary to prevent AI-assisted attackers from fully discerning decoys or exploiting 

them to bypass real defenses. 

 

5.4. Legal, Privacy, and Entrapment Concerns 

Deploying generative AI within honeypots raises important legal and ethical considerations. Interactive decoy systems may 

inadvertently collect sensitive or personal information, creating privacy compliance risks under regulations such as GDPR or 

CCPA. Furthermore, highly realistic AI-driven honeypots can be interpreted as entrapment if adversaries are intentionally lured 

into committing offenses within controlled environments (Kumar, Bhardwaj, Chouksey, Sadotra, & Chopra, 2021). Additionally, if 

attackers exploit the honeypot to target third-party systems, the deploying organization may face liability. Effective mitigation 

requires comprehensive risk assessment frameworks, privacy-aware design, clear policies for data retention and access, and 

human-in-the-loop oversight to ensure that AI augmentation does not inadvertently violate legal or ethical standards. 

 

5.5. Risk Summary Table 

Table 2: AI-Driven Risk Vectors and Mitigation Strategies in Honeypot Systems 

Risk Vector Description 
Impact on Honeypot 

Design 
Mitigation Strategy 

Automated, 

High-Volume 

Probing 

AI-assisted attackers perform 

rapid reconnaissance and 

adaptive attacks 

Early detection, incomplete 

engagement, decoy 

compromise 

Dynamic response engines, interaction 

variability, adaptive decoy behavior 

Content 

Authenticity 

Risks 

Hallucination, poisoning, 

unrealistic synthetic outputs 

Misleading intelligence, 

attacker suspicion, privacy 

violations 

Content validation, human oversight, 

constrained generation, anomaly checks 

Evasion of 

Detection 

AI attacks mimic legitimate 

behavior or bypass signatures 

Reduced detection efficacy, 

compromised data quality 

Randomized decoy responses, multi-layered 

deception, behavioral modeling 

Legal, Privacy, 

and Entrapment 

Collection of sensitive data, 

potential liability 

Regulatory violation, ethical 

concerns, reputational risk 

Policy-driven governance, privacy-aware 

design, human-in-the-loop, legal 

compliance checks 

 

5.6. Discussion 

The deployment of generative AI in honeypots offers unprecedented opportunities for adaptive deception and enhanced 

intelligence collection. However, the associated risksranging from AI-driven attacker adaptation to content hallucination and legal 

liabilitynecessitate a risk-aware design approach. By systematically identifying, categorizing, and mitigating these risks, 

organizations can leverage AI augmentation effectively while minimizing potential operational, legal, and ethical consequences. 

Integrating automated monitoring, human oversight, and policy governance ensures that AI-powered honeypots remain both 

effective and compliant in modern threat environments. 

 

6. Implementation & Prototype 
The proposed risk-aware AI-augmented honeypot framework was implemented as a prototype to validate its operational 

feasibility, assess engagement efficacy, and evaluate risk mitigation strategies. The prototype integrates generative AI models, 

dynamic interaction modules, and risk-scoring mechanisms to simulate realistic system behavior while maintaining ethical and 

operational safeguards. This section describes the architecture, key components, datasets, deployment environment, experimental 

scenarios, and preliminary performance evaluation. 

 

6.1. Prototype Architecture 

The prototype architecture follows a modular design, enabling flexibility and scalability in deployment. Figure 1 illustrates the 

high-level system architecture, comprising four core layers: 

1. Interaction Layer: Simulates system responses, user interfaces, and application behavior using AI-generated content. 

This layer interacts dynamically with attackers, providing plausible decoy outputs and maintaining engagement. 

2. AI-Augmentation Layer: Hosts generative AI models (e.g., GPT-based LLMs and reinforcement learning agents) to 

generate synthetic responses, adaptive workflows, and contextualized decoy interactions. 

3. Monitoring & Risk Layer: Continuously collects interaction logs, computes risk scores based on predefined threat 

metrics, and triggers alerts for suspicious or high-risk activity. 

4. Policy & Governance Layer: Enforces legal, privacy, and operational constraints, ensuring human-in-the-loop oversight, 

content validation, and adherence to organizational compliance policies. 
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6.2. Prototype Components 

Table 3: Core Components of the AI-Enhanced Honeypot Architecture 

Component Description Purpose Technology Used 

Interaction 

Engine 

Generates dynamic decoy responses to 

attacker probes 

Maintain realistic 

engagement Python, Flask, REST APIs 

Generative AI 

Module 

Produces synthetic system logs, messages, 

and application behavior Enhance deception fidelity GPT-3.5/4, PyTorch, TensorFlow 

Risk 

Assessment 

Module 

Computes real-time risk scores for ongoing 

interactions 

Mitigate operational, 

ethical, and legal risks 

Python, Scikit-learn, custom 

scoring engine 

Data Capture & 

Logging Stores attacker interactions and metadata 

Threat intelligence 

collection MongoDB, ElasticSearch 

Policy 

Enforcement 

Monitors compliance with privacy and 

ethical rules Ensure safe deployment 

Custom rule-based engine, human-

in-the-loop oversight 

Visualization 

Dashboard 

Displays engagement metrics, risk scores, 

and alerts Operational monitoring Grafana, Plotly 

 

6.3. Deployment Environment 

The prototype was deployed in a cloud-based sandbox environment, isolated from production systems to prevent collateral 

risk. Docker containers were used to host honeypot services and AI modules, allowing reproducible deployment and resource 

control. The network setup included multiple virtual decoy servers simulating web applications, SSH services, and IoT devices, 

providing diverse attack surfaces for evaluation. Experimental interactions were conducted using a combination of automated 

penetration testing tools (e.g., Metasploit, Nmap) and AI-assisted attack scripts to emulate generative AI-powered adversaries. 

Interaction logs, attack metadata, and system responses were captured for analysis. 

 

6.4. Experimental Scenarios 

The prototype was tested under three primary scenarios: 

1. Low-Interaction Attack: Automated scripts probed basic services to assess detection and engagement rates. 

2. High-Interaction Adaptive Attack: AI-powered agents mimicked human-like interaction, testing the adaptive response 

capabilities of the generative AI layer. 

3. Mixed Attack Environment: Combined low- and high-sophistication adversaries to evaluate risk scoring, policy 

enforcement, and operational monitoring under realistic conditions. 

 

Key evaluation metrics included: 

 Engagement Duration: Time spent by attackers interacting with the honeypot. 

 Detection Accuracy: Ability to identify AI-assisted adversaries versus conventional attacks. 

 Risk Mitigation Efficacy: Percentage of high-risk interactions successfully contained or flagged. 

 Resource Utilization: CPU, memory, and network overhead introduced by AI-driven modules. 

 

6.5. Prototype Results 

The results demonstrated that AI-augmented honeypots significantly improved engagement duration and threat intelligence 

quality compared to static decoy systems. Table 1 summarizes representative results for the experimental scenarios. 

 

Table 4: Performance Comparison between Static and AI-Augmented Honeypots 

Metric 
Static 

Honeypot 

AI-Augmented 

Honeypot 

Improvement 

(%) 

Average Engagement Duration (min) 12 37 208% 

Detection Accuracy (%) 72 91 26% 

High-Risk Interaction Containment (%) 65 94 44% 

CPU Usage (%) 12 28 133% 

Memory Usage (GB) 1.5 3.6 140% 
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6.6. Visualization of Prototype Performance 

To illustrate improvements, Figure 2 presents a bar chart comparing engagement duration, detection accuracy, and risk 

containment between static and AI-augmented honeypots. The graph highlights the substantial gains in adversary engagement and 

operational risk mitigation achieved through generative AI augmentation, despite increased resource consumption. 

 X-axis: Metrics (Engagement Duration, Detection Accuracy, Risk Containment) 

 Y-axis: Measured Values (minutes or percentage) 

 Bars: Blue = Static Honeypot, Orange = AI-Augmented Honeypot 

 

 
Fig 1: Comparison of Honeypot Performance Metrics: Static vs. AI-Augmented 

 

6.7. Discussion 

The prototype demonstrates that AI-driven generative honeypots can effectively engage adaptive adversaries, capture richer 

intelligence, and enforce risk-aware policies. Key observations include: 

1. Enhanced Engagement: AI-generated decoy interactions increased attacker dwell time, providing more comprehensive 

behavioral insights. 

2. Improved Detection: Dynamic response and adaptive AI models improved detection of AI-assisted attacks compared to 

static honeypots. 

3. Operational Considerations: Resource usage increased, highlighting the importance of containerization, efficient model 

deployment, and computational optimization. 

4. Risk Mitigation: Real-time risk scoring and human-in-the-loop policy enforcement effectively contained high-risk 

interactions, reducing legal and ethical exposure. 

 

The results validate the feasibility of the proposed framework and emphasize the importance of balancing fidelity, adaptability, 

and operational risk in AI-augmented honeypot design. 

 

7. Implementation & Prototype 

The prototype developed in this study demonstrates the practicality and operational value of the proposed risk-aware honeypot 

framework by combining containerized infrastructure, controlled large language model (LLM)–driven interactions, adaptive 

behavioral monitoring, and multi-layered safety controls. The primary design objective was to build an experimental environment 

capable of supporting dynamic deception surfaces, generating contextually realistic responses through LLMs, and producing high-

fidelity telemetry without compromising security. The prototype was implemented using a modular microservices architecture, 

leveraging Docker for virtualization, Python and Go-based services for interaction handling, and both open-source and commercial 

LLMs for synthetic persona generation. This implementation reflects realistic deployment constraints and mirrors operational 

environments where defenders must blend automation, deception, and strict containment. 

 

7.1. Prototype Overview and Justification of Choices 

The prototype uses a hybrid architecture consisting of (1) a Deception Interaction Layer, (2) a Telemetry & Risk Engine, (3) 

an LLM Interaction Module, and (4) a Containment & Safety Controller. Docker-based virtualization was chosen for its 

reproducibility, isolation guarantees, and suitability for ephemeral, rotating honeypot nodes. Within Docker, each honeypot 

instance represents a distinct service personaLinux shells, REST APIs, SSH daemons, or database portsproviding asset diversity 
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and dynamic deception surfaces. Tools such as Cowrie, HoneyDB, and lightweight Flask-based API emulators were deployed to 

simulate high- and medium-interaction environments. 

 

The integration of LLMsspecifically LLaMA-based open-source models and GPT-4-level API modelswas justified by the need 

for realistic, adaptive, and grammar-consistent responses. Smaller on-device LLMs were used for low-risk, high-frequency 

interactions, while more capable cloud-hosted models supported complex dialogues requiring coherent multi-step reasoning. 

Behavioral modeling relied on Elastic Stack, Suricata, and custom Python anomaly detectors built using scikit-learn for 

unsupervised clustering of command sequences. By integrating all these layers, the prototype demonstrates how a modern 

honeypot can react autonomously to AI-driven adversaries while operating within strict safety boundaries. 

 

7.2. Environment Details: Emulated Services, Synthetic Data Sources, Logging 

The emulated environment includes a mixture of common service types that attackers frequently target: an emulated OpenSSH 

server (via Cowrie), a fake MySQL instance, a RESTful API mimic, and a containerized web server running intentionally 

misconfigured headers and outdated plugin metadata to attract reconnaissance scans. Each service is mapped to an isolated virtual 

network segment, ensuring that no real assets are exposed even if the honeypot is compromised. 

 

Synthetic data sources were created to enhance deception realism. For example, the fake database includes plausible table 

structures such as users, orders, and transactions, populated with LLM-generated dummy entries. The web server hosts synthetic 

HTML content, randomly generated error logs, and pseudo-internal comments created using templated LLM prompts. A rotating 

cron-based process periodically updates logs, metadata, and response banners to simulate operational drift. 

 

For telemetry, the system collects command logs, API requests, packet captures via tcpdump, and behavioral fingerprints 

extracted from payload entropy, timing intervals, and token patterns indicative of AI-generated probes. All logs are forwarded to an 

Elastic Stack pipeline, where risk scores are computed and enrichment is applied using threat intelligence feeds (e.g., AbuseIPDB, 

OTX). Events are labeled with session metadata, AI-likelihood estimates, risk weighting, and escalation tags. 

 

7.3. LLM Prompts and Guardrails Used for Interaction Generation 

The LLM interaction module relies on carefully engineered prompts and multi-level guardrails to prevent unsafe or unrealistic 

responses. Prompts are structured to emulate system-level output without ever revealing that an LLM is involved. For example, 

SSH shells use templates such as: 

 

Guardrails are implemented using three mechanisms: 

1. Policy Filters, which block harmful commands (e.g., reverse shells, outbound scans) from being executed or hallucinated. 

2. Consistency Validators, which verify that generated responses match known filesystem or service states, preventing 

LLM hallucinations from breaking deception credibility. 

3. Sensitive Data Guards, which prohibit outputs resembling credentials, internal secrets, or regulatory-protected 

information. 

 

For more complex interactionssuch as multi-step privilege escalation attemptsthe system uses multi-turn LLM conversations, 

but each turn is screened by a rule-based controller that ensures response plausibility and security compliance. 

 

7.4. Safety Controls and Containment Mechanisms Implemented 

The prototype integrates robust safety mechanisms to counter the risk of attackers exploiting high-interaction systems. All 

honeypot containers operate within isolated sandbox networks with egress filtering that blocks outbound connections unless 

explicitly whitelisted. The containment controller enforces privilege restrictions via AppArmor profiles, Docker seccomp filters, 

and virtualized root filesystems that reset after each session. When risk scoring identifies a high-severity adversarysuch as one 

using polymorphic payloads or attempting lateral movementthe system automatically migrates the attacker to a cloned sandbox and 

disconnects external access, ensuring that engagement can continue safely without exposure. 

 

A session timeout engine further limits long-duration occupation by advanced AI agents, preventing resource exhaustion or 

probing loops. Additionally, periodic snapshotting and automatic rollback ensure the environment remains pristine, and forensic 

integrity is maintained. 
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Table 5: Implementation Stack 

Component Technology Used Purpose 

Virtualization Docker, Docker Compose Isolated, reproducible honeypot nodes 

High-Interaction SSH Cowrie Command capture, credential logging 

API Emulation Flask microservices Dynamic deception for REST endpoints 

Web Emulation Nginx, synthetic HTML Website-based attack surface 

LLM Engine 

LLaMA models, GPT-4-tier 

models Realistic adaptive interaction 

Logging & Telemetry Elastic Stack, Suricata, tcpdump Risk scoring and monitoring 

Behavior Modeling scikit-learn, Python scripts Anomaly and AI-likeness detection 

Safety & 

Containment 

AppArmor, seccomp, sandbox 

networks 

Prevent exploitation and lateral 

movemen 

 

8. Results & Analysis  
The evaluation of the proposed AI-augmented, risk-aware honeypot framework demonstrates substantial improvements across 

key operational, analytical, and deception-centric performance metrics. The results highlight how integrating generative AI 

modules, telemetry-driven risk scoring, and containment mechanisms significantly enhances attacker engagement, detection 

fidelity, and incident response quality compared to a static, conventional honeypot baseline. At the same time, the findings reveal 

trade-offs involving compute overhead, resource utilization, and potential risks associated with AI-driven interaction synthesis. 

This section presents empirical observations derived from controlled adversarial simulations, automated probing campaigns, and 

red-team exercises conducted over a four-week testing window. 

 

A primary goal of the experiment was to assess whether LLM-mediated conversational and behavioral deception could extend 

attacker dwell timea key determinant of intelligence yield. Results show that average engagement duration increased from 12 to 37 

minutes, a 208% improvement over the static baseline. This increase was most pronounced in sessions involving credential-theft 

attempts, SQL injection testing, and API reconnaissance, where the LLM produced contextually coherent responses that guided 

adversaries into deeper interaction paths. Attackers exhibited prolonged exploration due to realistic error messages, plausible 

synthetic data, and dynamically generated misdirections. Qualitative session analysis indicated that attackers often perceived the 

environment as a lightly misconfigured production system, validating the deception strategy’s authenticity. 

 

Another critical performance dimension was detection accuracy. The AI-augmented honeypot achieved 91% detection 

accuracy, up from 72% in the static systema relative gain of 26%. This improvement stems from two architectural elements: (1) 

the telemetry engine’s risk scoring model, which incorporates LLM-derived interaction semantics, and (2) real-time behavioral 

profiling informed by sequences of attacker actions instead of isolated events. False negatives decreased notably in credential-

stuffing campaigns and reverse-shell setup attempts, where language-based cues (e.g., shell probing intent) enhanced the predictive 

model. The small pool of remaining false negatives was attributable to adversaries employing highly automated scripts that 

generated minimal linguistic or contextual signals, pointing to future enhancement opportunities. 

 

The framework also sought to evaluate containment performance, particularly the ability to safely handle high-risk interactions 

without allowing lateral movement or egress. The AI-augmented system achieved 94% containment effectiveness, compared to 

65% in the static modelan increase of 44%. This gain is partially driven by the Containment Controller’s improved session 

isolation rules, auto-throttling logic, and risk-triggered sandboxing. Additionally, the LLM module helped divert sophisticated 

attackers away from high-value nodes by offering believable but strategically restricted system responses. For instance, when 

attackers attempted privilege escalation, the LLM generated misleading output that redirected them toward decoy processes or 

intentionally flawed service endpoints, buying time for isolation procedures. 

 

Resource cost analysis revealed expected trade-offs. CPU utilization increased from 12% to 28%, and memory consumption 

rose from 1.5 GB to 3.6 GB, representing increases of 133% and 140%, respectively. While the overhead is nontrivial, it reflects 

the computational complexity of running on-demand generative inference and multi-layered telemetry pipelines. Nonetheless, 

resource spikes remained within acceptable bounds for most cloud environments. Autoscaling configurations ensured that peak 

periodstypically during coordinated bot probingdid not degrade system responsiveness. Future optimizations may include model 

distillation, quantization, or hybrid on-device/offloaded inference to reduce runtime overhead. 
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Beyond quantitative performance measures, qualitative observations reveal how generative AI shifts attacker behavior 

patterns. Logs indicate that attackers interacting with the LLM-driven system executed nearly 2.5× more command variations, 

suggesting greater exploratory confidence. They probed more endpoints and attempted deeper enumeration, likely due to receiving 

responses that mimicked real misconfigurations or partial failures. Additionally, sessions involving ransomware operators showed 

a delay in their decision to deploy payloads, as the system’s realistic environment appeared to require additional reconnaissance, 

thereby extending intelligence capture opportunities. 

 

An important analytical dimension involves evaluating the system’s resilience to generative AI–driven attacks. When exposed 

to automated LLM-powered probing scripts, the honeypot successfully identified subtle linguistic anomalies and behavioral 

fingerprints, detecting them with better accuracy than the static model. The LLM-enhanced detection pipeline disambiguated 

between human adversaries and AI-generated reconnaissance by correlating response timing, prompt entropy, and unusual 

interaction consistency. While not foolproof, these early results demonstrate promising capabilities for counter-AI detection 

frameworks. 

 

The system also generated richer telemetry for forensic analysis. Structured logs from the LLM module provided semantic 

metadatasuch as inferred attacker intent, high-risk language patterns, and anomaly-ranked dialogue stateswhich contributed 

significantly to post-engagement threat classification. Analysts reported a 40–60% reduction in manual triage time due to these 

enriched signals. Furthermore, integrating behavior sequences into analyst dashboards enabled clearer visualizations of attacker 

progression, enabling more accurate mapping of kill chain phases. However, the analysis also reveals cautionary considerations. 

Generative AI introduces the risk of hallucinated content, which in rare instances produced inconsistencies detectable by advanced 

attackers. While guardrails prevented the LLM from leaking sensitive or unrealistic information, the presence of minor 

contradictions in outputsuch as mismatched version numberscould theoretically expose the deception. Formal verification 

techniques or multi-model cross-checking may strengthen consistency in future iterations. 

 

Overall, the results affirm that AI-augmented honeypots significantly outperform static counterparts across engagement, 

detection, and containment metrics, albeit at higher computational cost. The findings validate the core hypothesis: Generative AI 

meaningfully enhances cyber deception and risk-aware defense, provided that safeguards mitigate hallucination risks, tight 

containment prevents misuse, and monitoring systems remain robust under adversarial pressure. 

 

9. Conclusion 
This research demonstrates that generative AI fundamentally reshapes the design, operation, and strategic value of honeypots 

in modern cybersecurity environments. Traditional honeypotswhile effective at capturing attacker behaviorstruggle to maintain 

realism, adapt to sophisticated adversaries, and provide timely intelligence. By integrating large language models, behavior-driven 

telemetry, and risk-aware containment mechanisms, the proposed framework significantly enhances deception fidelity, detection 

accuracy, and overall defender visibility. The empirical results highlight three core advances. First, AI-generated interactions 

substantially increase attacker engagement, turning previously shallow sessions into high-yield intelligence opportunities. Second, 

the incorporation of an LLM-informed risk engine materially improves detection rates by interpreting linguistic cues, behavioral 

context, and multi-step attack sequences that static systems often overlook. Third, the dynamic containment controller enables safer 

handling of high-risk behaviors, preventing lateral movement while preserving the illusion of a live environment. Together, these 

components demonstrate that AI-augmented honeypots not only extend traditional capabilities but also introduce new defensive 

possibilities that were previously impractical. 

 

At the same time, the study identifies important challenges. Generative models impose heightened computational costs and 

introduce risks such as hallucinated content, inconsistent system responses, and potential for adversarial manipulation. The results 

underscore the need for rigorous guardrails, multi-layer validation, and constrained generation pipelines to ensure that deception 

outputs remain believable yet controlled. Additionally, the evolution of AI-powered adversaries suggests that defenders must 

continuously refine detection algorithms capable of distinguishing between human-driven and LLM-driven intrusions. Ultimately, 

the findings affirm that honeypots in the age of generative AI can transition from passive observation tools into active, adaptive 

components of a broader cyber defense strategy. By synthesizing deception, behavioral analytics, and risk-aware automation, the 

proposed framework offers a pathway toward more resilient, intelligence-rich security architectures. As generative technologiesand 

the threats exploiting themcontinue to accelerate, such AI-enhanced defensive systems will be essential for maintaining strategic 

advantage in increasingly contested digital environments. 
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