
International Journal of Emerging Research in Engineering and Technology

Pearl Blue Research Group| Volume 6 Issue 2 PP 98-110, 2025

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V6I2P112

Original Article

Chaos Engineering for API-Centric Systems in Telecom &

eCommerce

Priyadarshini Jayakumar

Independent Researcher, USA.

Received On: 01/03/2025 Revised On: 26/04/2025 Accepted On: 10/05/2025 Published On: 29/05/2025

Abstract - As modern telecom and eCommerce platforms increasingly rely on distributed, API-centric architectures, ensuring

system resilience and reliability has become a critical challenge. Chaos engineering offers a proactive approach by deliberately

injecting controlled failures into systems to uncover weaknesses before they impact customers. This white paper examines the role

of chaos engineering in large-scale telecom and eCommerce environments, focusing on its application to orchestration layers,

control planes, service meshes, and edge routing. It identifies five key domains where chaos engineering delivers measurable value

to API-driven systems: resiliency testing, observability and monitoring, deployment and release reliability, performance and

scalability, and platform evolution and change management. By simulating real-world failure scenarios, organizations can validate

assumptions, improve fault tolerance, and strengthen operational readiness. The paper demonstrates how chaos engineering

functions not only as a technical practice, but as a strategic capability for safeguarding business continuity in high-scale digital

ecosystems.

Keywords - Chaos Engineering, API Middleware, Distributed Systems, Resilience Engineering, Telecom Networks, eCommerce

Platforms, Cloud-Native Architectures.

1. Introduction
In today’s connected digital world, API middleware serves

as the backbone of distributed systems. It manages transactions

between microservices, third-party integrations, and legacy

systems. As organizations grow, this middleware turns into a

complex web of dependencies, asynchronous calls, and

dynamic routing logic. This complexity makes it harder to

predict how the system will behave under stress or failure. The

challenge isn’t just technical; it’s systemic. Middleware

consists of several services that need to function well while

ensuring performance, reliability, and security under

unpredictable conditions and changing business needs.

Traditional testing methods, like unit tests, integration tests,

and end-to-end automation, struggle to predict the real

behaviors of modern API-focused systems. These methods

often assume that environments are stable, and that failures are

typical, ignoring the chain reactions caused by latency spikes,

partial outages, or misconfigured retries. In a microservices

setup, where services are loosely connected but closely reliant

on each other, a single failure can spread through the stack in

ways that are hard to simulate or expect with traditional

testing.

Domain-specific pressures add to this complexity. In

ecommerce, milliseconds are crucial. Checkout flows, payment

gateways, and inventory synchronization must work perfectly

during peak loads and changing traffic. A delay in API

response can lead to abandoned carts or double charges. In

telecommunications, 5G cores, virtualized network functions

(VNFs), and real-time service orchestration need ultra-low

latency and high availability. Failures in API middleware can

interfere with voice, data, and emergency services, leading to

regulatory issues and damage to reputation. To navigate this

complex area, chaos engineering stands out as a valuable

approach. By deliberately introducing faults and observing

how systems respond, chaos engineering helps teams find

hidden failure points, verify fallback methods, and build trust

in their systems’ ability to handle real-world challenges. When

applied to API middleware, it changes the focus from fixing

issues after they happen to preparing for them. This shift

allows organizations to design for failure, not just to bounce

back from it.

2. Chaos Engineering Fundamentals
2.1. Definition and Core Principles

Chaos Engineering is not just about breaking things. It is a

method to find systemic weaknesses before they appear in

production. For API middleware in distributed architectures,

where complexity and interdependence are high, the following

principles provide the foundation for validating resilient

systems.

2.1.1. Establish Steady-State Behavior and Baseline Metrics

Before introducing any disruption, teams must define what

―normal‖ looks like. Steady-state behavior is the expected

performance of the system under typical conditions. This

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

99

includes latency thresholds, throughput rates, error rates, and

resource use. Without a clear baseline, measuring the impact of

injected faults or validating recovery mechanisms is

impossible.

2.1.2. Formulate Hypotheses around System Behavior under

Failure

Chaos experiments start with a hypothesis, which is a

reasoned expectation of how the system will react when a

specific component fails. For instance, ―If the payment

gateway API becomes unresponsive, the checkout flow should

retry smoothly and show a user-friendly error.‖ These

hypotheses shape the design of experiments and assist in

confirming resilience strategies.

2.1.3. Introduce Controlled Chaos through Fault Injection

Fault injection is the main method of Chaos Engineering.

It involves purposefully causing failures like latency, dropped

connections, malformed payloads, or service crashes. In API

middleware, this might mean simulating a timeout in a

downstream inventory service or corrupting authentication

tokens to test how well the system handles errors. The goal is

to see how the system reacts under stress and whether it meets

the hypothesis.

2.1.4. Minimize Blast Radius and Ensure Safety Controls

Chaos must be introduced responsibly. Experiments

should be scoped to minimize impact on users and critical

services. Techniques such as traffic shadowing, canary

deployments and circuit breakers help contain the blast radius.

Safety controls, like automated rollback triggers and

monitoring thresholds, ensure that experiments do not lead to

real outages.

2.1.5. Automate Experiments for Continuous Validation

Resilience is not a one-time achievement; it needs constant

validation. Automating chaos experiments in CI/CD pipelines

or scheduled routines helps keep systems strong as code,

dependencies, and configurations change. Middleware teams

can add fault scenarios to regression suites to spot resilience

issues early.

2.1.6. Run Experiments in Production Environments

While staging environments offer a safe space, they rarely

reflect the complexity of production. Running chaos

experiments in live environments, with strict guardrails,

provides the most reliable insights into system behavior. For

latency-sensitive telecom APIs or high-volume ecommerce

flows, testing in production uncovers real-world failure modes

that pre-production cannot simulate.

2.1.7. Chaos Engineering vs. Traditional Testing

Traditional testing methods, including unit testing,

integration testing, and performance testing, play essential

roles in validating software correctness, interoperability, and

scalability. However, they work under controlled assumptions

and predefined scenarios. This limits their ability to uncover

unexpected behaviors in complex distributed systems.

Unit testing verifies the correctness of isolated

components. It ensures that individual functions or modules

behave as expected based on specific inputs. While useful for

catching logic errors, unit tests do not consider interactions

across services or the effect of changes in the environment.

Integration testing focuses on checking that multiple

components work together. It examines data flow, API

contracts, and service orchestration. Yet it often assumes that

dependencies are stable and available. This overlooks how

systems react when those assumptions fail. Performance testing

assesses system behavior under load. It measures throughput,

latency, and resource use, usually in controlled settings. While

it identifies bottlenecks, it does not replicate unpredictable

failures or cascading issues. Chaos engineering addresses this

gap by targeting unknown failure modes. It intentionally

introduces faults, such as service crashes, network delays, or

dependency timeouts, to see how the system reacts under

stress. Unlike traditional tests, chaos experiments do not

validate correctness but resilience. They reveal hidden

dependencies, fragile fallback mechanisms, and systemic

weaknesses that only appear in real-world situations. In

distributed architectures, especially those driven by API

middleware, the complexity of service interactions makes it

impossible to predict every failure through static testing. Chaos

engineering embraces this uncertainty, helping teams build

confidence in their systems' ability to handle and recover from

unexpected disruptions.

3. Integration across the Software Development

Lifecycle (SDLC)
3.1. Planning and Design Phase

Integrating chaos engineering during the planning and

design phase creates a strong foundation for resilient systems.

It brings a sense of failure-awareness into architectural choices.

These early actions help teams spot and reduce risks before

they happen in production.

3.1.1. Benefits

 Early identification of architectural weaknesses, such

as single points of failure, tight coupling, or unreliable

fallback systems.

 Clear mapping of dependencies across services, APIs,

and outside integrations.

 Defined resilience needs, including service-level

objectives (SLOs), recovery paths, and expectations

for fault tolerance.

3.1.2. Integration approach

Conduct Architecture Review Sessions

 Gather a diverse group of stakeholders, including

architects, developers, site reliability engineers

(SREs), and product owners.

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

100

 Outline service boundaries, API flows, and external

dependencies.

 Identify critical paths and single points of failure in

middleware orchestration.

 Record assumptions about availability, latency, and

fault tolerance.

3.1.3. Perform Threat Modeling with Chaos Scenarios

 Use threat modeling frameworks like STRIDE or

DREAD to examine failure points.

 Add scenarios such as service outages, network splits,

or degraded third-party APIs.

 Assess how these scenarios could affect important

business processes like checkout, payment, or telecom

signaling.

 Rank risks based on their likelihood and potential

impact.

Two widely used models—STRIDE and DREAD—can be

adapted to identify chaos scenarios

STRIDE: Categorizing Failure Vectors

STRIDE helps classify potential threats by type. This makes it

easier to design chaos experiments that simulate disruptions.

Here's how each category relates to chaos engineering:

Table 1: Categorization of Potential Threats

Category Chaos Engineering Application

Spoofing Simulate identity misrepresentation. For example, inject invalid tokens or impersonate services to test how

well authentication holds up.

Tampering Introduce corrupted payloads or changed API responses to test data integrity checks and error handling.

Repudiation Test logging and audit trails by simulating actions that do not have traceability, such as dropped requests or

silent failures.

Information

Disclosure

Inject faults that reveal sensitive data, such as misconfigured error messages or fallback paths that expose

internal details.

Denial of Service

(DoS)

Simulate resource exhaustion, rate limiting, or service unavailability to test system performance and

recovery.

Elevation of

Privilege

Validate access control boundaries by testing for privilege escalation attempts or bypass scenarios.

Mapping chaos experiments to STRIDE categories helps teams

cover security, reliability, and observability aspects effectively.

DREAD: Prioritizing Chaos Scenarios

DREAD provides a scoring model to evaluate the risk level of

each threat. It helps teams decide which chaos experiments to

run first. Each scenario is rated across five dimensions:

Table 2: Evaluation of Risk Level based on Threats

Factor Chaos Engineering Interpretation

Damage

Potential

What is the worst-case impact of this failure? Could it disrupt vital processes like checkout or telecom

signaling?

Reproducibility Can we reliably trigger a failure in a controlled experiment? Is it predictable or does it happen randomly?

Exploitability How easy is it to simulate or inject this fault? Does it need special tools or permission?

Affected Users How many users or services would be affected? Is the blast radius limited to a specific component, or does it

apply to the entire application?

Discoverability How likely is it that this failure would go unnoticed without chaos testing? Are there gaps in observability?

Each factor is scored, typically on a scale from 1 to 10.

The total score ranks chaos experiments based on urgency and

risk exposure. For instance, a payment gateway timeout that

could cause significant damage, affect many users, and is hard

to detect would score high. This situation would require early

testing.

3.1.4. Apply Design-for-Failure Principles

 Design systems with redundancy, graceful

degradation, and fallback mechanisms.

 Include circuit breakers, bulkheads, and timeouts in

your API middleware design.

 Ensure visibility with distributed tracing, structured

logging, and real-time metrics.

 Prepare for automated recovery and alerting

workflows.

3.1.5. Formulate Hypotheses and Define Steady-State Behavior

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

101

 Establish baseline metrics for normal system

behavior, such as response time, error rate, and

throughput.

 Create hypotheses about how the system should act

during certain failure conditions.

 For example, ―If the inventory API times out, the

checkout flow should retry once and show a fallback

message.‖

3.1.6. Design Chaos Experiments Aligned with Architecture

 Define the experiment scope, target components, and

failure injection methods.

 Choose suitable tools, such as Gremlin, Litmus, or

AWS FIS, depending on your tech stack and

environment.

 Document the expected outcomes and success criteria

for each experiment.

 Plan for safety controls to reduce impact during

execution.

3.1.7. Capabilities

 Formulate ideas about how the system behaves during

certain failure conditions. This will guide future chaos

experiments.

 Define steady-state metrics that show normal system

behavior. This will help in assessing the impact

meaningfully.

 Create focused experiments that mimic realistic

failure modes. These should fit with key business

processes and technical limits.

3.2. Development Phase

Integrating chaos engineering in the development phase

helps engineers create resilience in the system from the start.

By showing developers failure scenarios early, teams can move

from fixing problems as they arise to preventing them in the

first place.

3.2.1. Benefits

 Improves developer understanding of real-world

failure modes, such as transient network issues,

downstream timeouts, or malformed responses.

 Promotes the use of resilient coding patterns,

including retries with backoff, graceful degradation,

and fallback logic.

 Allows local testing of failure scenarios without

waiting for staging or production environments,

speeding up feedback loops.

3.2.2. Integration Approach

The following steps outline how to enable chaos practices

during active development:

3.2.2.1. Set Up Local Chaos Testing Environment

 Equip development environments with fault injection

tools like Topology, Filibuster, or Chaos Monkey for

Spring Boot.

 Set up service mocks and stubs to mimic downstream

APIs, databases, or third-party integrations.

 Make sure observability tools, such as logs, metrics,

and traces, are running locally to capture system

behavior during chaos experiments.

3.2.2.2. Implement Fault Injection Libraries in Codebase

 Integrate fault injection libraries into middleware

components to simulate latency, dropped connections,

or malformed responses.

 Use feature flags or environment toggles to control

when and how faults are injected during development.

 Check that injected faults activate the expected

fallback logic, retries, or circuit breakers.

3.2.2.3. Practice Chaos-Driven Development

 Encourage developers to write code while thinking

about potential failures. Design for graceful

degradation and recovery.

 Include chaos conditions in unit and integration tests

to check both resilience and functionality.

 Adopt a ―failure-first‖ mindset. This way, developers

can anticipate and address edge cases before they

become issues.

3.2.2.4. Mock APIs with Chaos Modes

 Use mocking tools like WireMock or Mountebank to

simulate unreliable dependencies, such as timeouts,

500 errors, or slow responses.

 Set up mock servers to randomly inject faults or

follow predefined chaos scripts.

 Test how middleware components respond to

degraded or inconsistent API behavior.

3.2.2.5. Run Local Chaos Experiments

 Design small-scale experiments for individual

services or flows, for example, simulate an inventory

API timeout during checkout.

 Observe system behavior with local telemetry and

check it against expected outcomes.

 Iterate quickly to improve fallback logic, error

messaging, and retry strategies.

3.2.2.6. Validate Circuit Breaker Behavior

 Test circuit breaker configurations under fault

conditions. Ensure they trip correctly and reset after

recovery.

 Simulate burst failures to check thresholds and

cooldown periods.

 Confirm that circuit breakers prevent cascading

failures and isolate faulty components.

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

102

3.2.3. Capabilities

 Use API mocking tools with chaos modes, such as

WireMock or Mountebank, to simulate unreliable or

misbehaving dependencies.

 Run local chaos experiments to see how middleware

components react to faults that you inject in isolation.

 Test circuit breaker settings and fallback logic under

controlled failure conditions to make sure they trigger

as expected and recover smoothly.

3.3. Testing Phase

The testing phase is a vital point for confirming how well

the system holds up under realistic conditions. By

incorporating chaos engineering into this phase, teams can

simulate various failure scenarios, stress-test middleware

interactions, and check that fallback mechanisms work as

expected throughout the test pyramid.

3.3.1. Benefits

 Achieves thorough coverage of failure scenarios

beyond functional correctness.

 Allows integration testing under stress. This reveals

weak service interactions and hidden dependencies.

 Confirms resilience features like retries, circuit

breakers, and graceful degradation in realistic

conditions.

3.3.2. Integration Approach: Process-Driven Steps

To implement chaos engineering during testing, teams

should integrate fault scenarios into automated pipelines and

testing layers.

3.3.2.1. Integrate Chaos Experiments into CI/CD Pipelines

 Add chaos experiments to build and deployment

workflows using tools like Gremlin, Litmus, or AWS

Fault Injection Simulator.

 Define fault scenarios as code, like latency injection,

service crash, or CPU exhaustion. Trigger these

scenarios after deployment in test environments.

 Use pipeline stages to check system behavior under

fault conditions before moving to staging or

production.

 Monitor key metrics such as latency, error rate, and

recovery time. Set thresholds to determine pass/fail

criteria.

3.3.2.2. Apply Chaos Testing Across the Test Pyramid

 Unit Tests: Simulate edge cases and exception

handling using fault injection libraries, like Filibuster

or Toxiproxy.

 Integration Tests: Validate service-to-service

interactions under poor conditions using mock APIs

with chaos modes, such as WireMock or Mountebank.

 End-to-End Tests: Conduct full-stack chaos

experiments to observe overall system behavior. For

example, simulate a payment gateway failure during

checkout or network issues in telecom signaling.

 Ensure that resilience checks, like triggered fallbacks

or attempted retries, are included in test validations.

3.3.2.3. Use Chaos Testing Frameworks and Tools

 Gremlin provides targeted fault injection, like latency,

shutdown, or DNS failure, with safety controls and

management for blast radius.

 LitmusChaos is a Kubernetes-based chaos framework

that uses CRD for experiment definitions and includes

observability features.

 Filibuster, made for microservice testing, injects faults

across RPC boundaries and checks fallback logic.

 Toxiproxy simulates network conditions such as

latency, bandwidth throttling, and dropped

connections between services.

 AWS Fault Injection Simulator is suitable for cloud-

native systems and allows controlled chaos in EC2,

ECS, and Lambda environments.

3.3.3. Capabilities Enabled

Chaos engineering during the testing phase unlocks powerful

validation techniques:

 Network Latency Injection: Simulate slow API

responses or degraded network links to test timeout

handling and retry logic.

 Service Failure Simulation: Crash or disable services

to validate circuit breakers, fallback paths, and error

messaging.

 Resource Exhaustion Testing: Induce CPU, memory,

or disk pressure to observe system behavior under

load and validate autoscaling or throttling

mechanisms.

By including chaos in the testing phase, teams shift from

simply checking correctness to building confidence. This

ensures that middleware systems can handle real-world

challenges before they go into production.

3.4. Deployment Phase

The deployment phase is a crucial time to test system

resilience in near-production conditions. Using chaos

engineering at this stage makes sure that new releases are not

just functionally correct but also strong enough to handle real-

world failures before they are fully deployed.

3.4.1. Benefits

 It allows for pre-production validation of resilience

methods under realistic traffic and infrastructure

conditions.

 It improves the resilience of the deployment pipeline

by examining how systems act during and after

rollout.

 It checks rollback methods and failover strategies to

ensure quick recovery from faulty deployments.

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

103

3.4.2. Integration Approach: Process-Driven Steps

To incorporate chaos engineering into the deployment

phase, teams can add fault injection and resilience checks to

their progressive delivery strategies. Here are the steps for a

structured approach.

3.4.2.1. Use Chaos Experiments as Deployment Gates

 Define resilience criteria, such as error rate limits,

latency ranges, and fallback success, as requirements

for promoting deployments.

 Automate chaos experiments to run after staging

deployments or during pre-production smoke tests.

 Prevent promotion to production if resilience metrics

drop below acceptable levels. This ensures that only

strong builds are released.

3.4.2.2. Conduct Canary Testing with Fault Injection

 Deploy new versions to a small group of users or

traffic, known as the canary group.

 Introduce targeted faults, such as dependency

timeouts, increased latency, or service outages, in the

canary environment.

 Keep an eye on system behavior, user experience, and

observability signals to spot regressions or resilience

failures.

 Only expand the rollout if the system shows stability

under fault conditions.

3.4.2.3. Validate Blue-Green Deployments with Chaos

Scenarios

 In blue-green setups, send some traffic to the new

(green) environment while keeping the old (blue)

version running.

 Conduct chaos experiments in the green environment

to simulate failures and check the system's behavior in

isolation.

 Make sure the rollback methods, such as switching

traffic back and database versioning, work properly

under stress.

 Use this validation to confidently promote the green

environment to full production.

3.4.3. Capabilities Enabled

Chaos engineering during deployment provides essential

safeguards and boosts confidence.

 Automated Experiment Execution: Run chaos tests as

part of deployment pipelines using tools like Gremlin,

Litmus, or custom scripts.

 Deployment Safety Validation: Confirm that new

releases do not create resilience problems or increase

the risk during failures.

 Gradual Rollout Testing: Pair chaos with progressive

delivery strategies, such as canary, blue-green, or

feature flags, to check system behavior step by step.

By adding chaos engineering to the deployment phase,

teams shift from ―deploy and observe‖ to ―validate and

deploy.‖ This ensures that every release is not just functional

but also resilient.

3.5. Production Monitoring and Operations

Chaos engineering is most effective when used in live

environments. By incorporating it into production monitoring

and operations, teams can confirm resilience in real-world

conditions, get ready for incidents in advance, and promote a

culture of ongoing improvement.

3.5.1. Benefits

 Validates system behavior with real traffic, changing

infrastructure, and user interactions

 Improves incident readiness by revealing failure

modes before they turn into outages

 Encourages continuous improvement through post-

experiment analysis and resilience assessment

3.5.2. Integration Approach: Process-Driven Steps

Operationalizing chaos engineering in production requires

careful planning, safety measures, and a good level of

observability. Here are the steps for a structured approach.

3.5.2.1. Schedule GameDays for Controlled Chaos

 Organize GameDays where teams can simulate failure

scenarios in production.

 Define clear objectives, roles, and safety protocols for

each exercise.

 Target critical flows—such as checkout, payment, and

5G signaling—and introduce faults like service

crashes or latency spikes.

 Debrief after each experiment to capture lessons

learned, update runbooks, and improve incident

response playbooks.

3.5.2.2. Automate Chaos Experiments in Production

 Use tools like Gremlin, LitmusChaos, or AWS Fault

Injection Simulator to schedule and run experiments

safely.

 Limit experiments to specific services or

environments using blast radius controls and traffic

segmentation.

 Integrate chaos workflows into production pipelines

or observability dashboards for ongoing validation.

 Monitor system health and stop experiments if

thresholds are exceeded.

3.5.2.3. Practice Observability-Driven Chaos Engineering

 Use real-time telemetry, logs, metrics, traces, to guide

fault injection and observe the impact.

 Utilize anomaly detection and alert systems to check

experiment outcomes and spot unexpected behaviors.

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

104

 Connect chaos events with user experience metrics—

such as error rates, latency, and conversion drops—to

evaluate business impact.

 Incorporate insights into resilience scorecards and

SLO reviews for continuous improvement.

3.5.3. Capabilities Enabled

Chaos engineering in production provides operational

safeguards and learning opportunities:

 Production Chaos Experiments: Safely simulate real-

world failures in live environments with guardrails

and rollback plans.

 Real-Time Monitoring and Alerting: Monitor system

behavior during experiments using dashboards, alerts,

and distributed tracing.

 Automated Rollback Mechanisms: Ensure that

rollback strategies—like traffic redirection and

version reverts—work properly under fault

conditions.

By incorporating chaos engineering into production

operations, teams move from reactive problem-solving to

proactive resilience engineering, making sure that API

middleware can handle the unpredictable nature of real-world

systems.

4. Maintenance and Continuous Improvement
Chaos engineering is not a one-time exercise. It’s a

continuous practice that evolves with the system. Including it

in the maintenance phase keeps resilience as an active quality,

not a fixed goal. As systems become more complex, regular

chaos validation helps prevent issues, strengthen reliability,

and build shared knowledge.

4.1. Benefits

 Maintains long-term reliability by continuously

checking system behavior under changing conditions.

 Stops resilience issues caused by code changes,

dependency updates, or infrastructure changes.

 Creates a shared knowledge base of failure types,

recovery patterns, and solutions across teams.

4.2. Integration Approach: Process-Driven Steps

To integrate chaos engineering into everyday operations,

teams should establish a routine of experimentation, broaden

their scenario coverage, and use incidents as chances to learn.

Here are some clear steps to follow:

4.2.1. Establish a Regular Chaos Experiment Cadence

 Schedule regular chaos experiments, such as weekly,

bi-weekly, or monthly sessions that target different

services and failure modes.

 Rotate the ownership of these experiments among

teams to spread the responsibility for resilience and

promote learning across different groups.

 Use a calendar to plan experiments that coincide with

release cycles, infrastructure upgrades, or seasonal

traffic changes.

4.2.2. Expand the Chaos Experiment Library

 Keep a centralized collection of validated chaos

scenarios, which should include fault types, target

components, and expected results.

 Continuously add new experiments based on changes

in architecture, lessons learned from incidents, or new

threats.

 Organize experiments by their relevance to specific

domains, such as ecommerce checkout failures,

telecom signaling issues, or API rate limit problems.

4.2.3. Conduct Post-Incident Chaos Validation

 After experiencing a major incident, design chaos

experiments that mimic the failure conditions in a

controlled setting.

 Test whether fixes, mitigations, or architectural

changes are effective under simulated stress.

 Use these experiments to create a feedback loop

between incident response and resilience engineering.

4.3. Capabilities Enabled

Ongoing chaos engineering enhances operational maturity and

resilience intelligence:

 Experiment Automation: Combine chaos workflows

with scheduled tasks or CI/CD pipelines for consistent

execution.

 Metrics Trending: Monitor resilience metrics over

time, like recovery time, error rates during faults, and

fallback success rates, to identify any degradation or

improvement.

 Knowledge Base Maintenance: Record experiment

results, insights, and system behaviors in a searchable

database accessible to engineering, SRE, and incident

response teams.

By incorporating chaos engineering into maintenance and

ongoing improvement, organizations can ensure that resilience

is built, sustained, measured, and refined.

5. Domain-Specific Applications
5.1. Chaos Engineering for Ecommerce Systems

Ecommerce platforms rely on efficient, high-performance

API middleware to provide personalized, secure, and

responsive customer experiences. From browsing to payment,

each interaction depends on a complex network of services,

including catalog APIs, authentication layers, inventory

systems, recommendation engines, and third-party payment

gateways. Chaos engineering helps test the resilience of these

systems under real-world stress and failure.

5.1.1. Critical Ecommerce Workflows

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

105

 Homepage Load: Check the resilience of content

delivery, personalization APIs, and caching systems

during traffic spikes.

 Search Functionality: Test search indexing services,

query routing, and autosuggest APIs during delays or

partial failures.

 Product Catalog Browsing: Simulate delays or failures

in catalog APIs to evaluate fallback options and

pagination behavior.

 Cart Operations: Introduce faults into cart service

APIs to test session persistence, item validation, and

error messages.

 Checkout Flow: Examine coordination among address

verification, shipping calculation, and inventory

reservation services.

 Payment Processing: Simulate payment gateway

timeouts, retries, and failures in fraud detection APIs

to ensure smooth degradation and user feedback.

 High-Impact Failure Scenarios

5.1.2. High-Impact Failure Scenarios

 Database Failures During Checkout: Simulate

read/write failures in order or inventory databases to

test transaction rollbacks and customer notifications.

 API Throttling During Flash Sales: Introduce artificial

rate limits or simulate traffic spikes to validate

autoscaling and queuing systems.

 Cache Invalidation Events: Test how the system

behaves when product or pricing caches are

unexpectedly cleared, ensuring fallback to source-of-

truth APIs.

 Payment Gateway Timeouts: Simulate slow or failed

responses from third-party payment providers to

check retry logic and user messaging.

5.1.3. Authentication Service Degradation

Introduce latency or simulate partial outages in login and

token validation services. Watch the impact on session

management, cart persistence, and personalized content

delivery. Check fallback to guest mode or cached user profiles.

5.1.3.1. Recommendation Engine Failures

Simulate service unavailability or corrupted data from

recommendation APIs. Assess the impact on the homepage,

product detail pages, and cross-sell modules. Verify UI fallback

strategies and error handling mechanisms.

5.1.3.2 Inventory Synchronization Issues

Create delays or missed updates in inventory

synchronization between front and back-end systems. Test

checkout flow behavior when stock levels are outdated or

inconsistent. Validate alerts, customer messaging, and order

cancellation processes.

6. Chaos Engineering for Telecommunications

Systems
Telecommunications systems are changing dramatically

with the adoption of 5G Standalone (SA) architectures,

virtualized network functions (VNFs), and edge computing.

These systems depend on API middleware to control user

functions, manage mobility, and provide ultra-reliable low-

latency services. Because these networks are crucial, chaos

engineering is vital to check resilience, ensure service

continuity, and avoid cascading failures.

6.1. Critical Components to Target

Chaos experiments in telecom environments should target the

following key components:

 5G Standalone Cores: These are the core of modern

telecom networks and include control plane functions

like AMF, SMF, and UPF. They must maintain session

continuity, enforce quality of service (QoS), and

support seamless handovers under pressure.

 Access and Mobility Management Functions (AMF):

These functions handle user registration,

authentication, and mobility management. Any

disruption can result in dropped calls or failed session

starts.

 Network Slicing Infrastructure: This allows for logical

partitioning of network resources to support different

services, such as IoT, URLLC, and eMBB. Chaos

testing helps ensure slice isolation and fault

containment.

 Edge Computing Nodes: These are set up near users

to reduce latency and lessen the load on core traffic.

They need to be tested for resilience in case of local

failures or loss of connectivity to the central cloud.

6.2. High-Impact Failure Scenarios

Telecom systems can experience complex, high-risk failures

that can spread quickly if not controlled. Important scenarios to

simulate include:

 Signaling Storms: Sudden increases in control plane

messages, possibly due to device errors or DDoS

attacks, can overwhelm AMF or SMF components.

Chaos experiments can mimic these storms to test

rate-limiting, queuing, and auto-scaling methods.

 Partial Network Partitions: Simulate the loss of

connectivity between regional data centers or edge

nodes to check failover routing and service continuity.

 Latency Spikes in the Control Plane: Introduce

artificial delays in signaling paths, such as between

AMF and SMF, to see how timeout handling,

retransmission logic, and user experience are affected.

 Cascading Failures across Network Functions: Induce

failures in one network function, like a UPF crash,

and observe how dependent services react. This will

validate circuit breakers, fallback paths, and isolation

strategies.

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

106

6.3. Targeted Chaos Experiments

To uncover weaknesses and validate operational safeguards,

the following chaos experiments are suggested:

 CDN Node Failures: Simulate the unavailability of

edge CDN nodes that provide video, firmware

updates, or control plane data. Validate content

rerouting, cache fallback strategies, and user

experience in degraded delivery conditions. Assess

the impact on latency-sensitive services like VoNR

and real-time gaming.

 API Gateway Overload: Inject an artificial load or

simulate throttling at the API gateway layer, which

connects network functions and external systems.

Observe the behavior of service meshes, retries, and

rate-limiters under stress. Validate alerting and

autoscaling triggers to avoid gateway bottlenecks.

 Inter-Service Communication Degradation: Introduce

packet loss, jitter, or latency between critical network

functions, such as AMF and SMF or SMF and UPF.

Test the reliability of gRPC or REST-based

communication in tough conditions. Validate timeout

handling, retry backoff strategies, and service health

reports.

 By focusing on these specific components and

scenarios, telecom operators can confirm that their

API middleware and network functions are strong,

responsive, and prepared for real-world challenges.

7. Implementation Framework
Successfully implementing chaos engineering involves

more than just tools. It requires cultural buy-in, organized

experimentation, and smooth integration into delivery

pipelines.

7.1. Organizational Adoption Strategy

7.1.1. Building the Business Case for Chaos Engineering

To gain support from executives, present chaos

engineering as a smart investment in resilience, customer trust,

and operational efficiency. Highlight potential cost savings

from reduced downtime, faster incident resolution, and

increased deployment confidence. Use industry examples like

Netflix and LinkedIn. Also, mention regulatory pressures such

as SLAs in telecom to stress the need for urgency.

7.1.2. Establishing a Chaos Engineering Culture and Mindset

Adoption starts with the mindset. Encourage teams to see

failure as an opportunity to learn rather than a setback. Create

an environment where engineers feel safe to explore failure

modes without the fear of blame. Use internal forums,

retrospectives, and knowledge-sharing platforms (like Reddit-

style AMAs or internal wikis) to make chaos practices

standard.

7.1.3. Team Structure and Responsibilities

 SRE Teams: Manage chaos tools, experiment design,

and observability integration.

 DevOps Teams: Include chaos in CI/CD pipelines and

ensure the infrastructure is prepared.

 Development Teams: Design for failure, write solid

code, and participate in GameDays.

 Security and Compliance: Review blast radius, data

exposure, and rollback plans.

7.1.4. Stakeholder Communication and Buy-In Strategies

 Hold resilience workshops with product, engineering,

and business leaders.

 Share postmortems and success stories to demonstrate

value.

 Use visual dashboards and resilience scorecards to

show progress.

 Link chaos goals with business KPIs, such as

checkout success rate and call drop reduction.

7.2. GameDays and Experimentation

7.2.1. GameDay Planning and Execution Methodology

 Define a clear goal, such as validating checkout

fallback or testing AMF failover.

 Choose a target system, fault type, and expected

results.

 Set up observability dashboards and alert thresholds.

 Schedule during periods of low risk, ensuring rollback

plans are in place.

7.2.2. Stakeholder Roles and Approvals

 GameDay Coordinator: Manages planning, execution,

and communication.

 Service Owners: Approve the scope, confirm

hypotheses, and monitor impact

 SRE/DevOps: Handle experiments and manage tools.

 Business Stakeholders: Observe outcomes and think

about user impact.

7.2.3. Prerequisites Validation and Readiness Checks

 Ensure steady-state metrics are clearly defined and

observable.

 Check blast radius controls, rollback plans, and alert

coverage.

 Run dry runs in staging to test tools and experiment

scripts.

7.2.4. Experiment Execution and Observation

 Use tools like Gremlin, Litmus, or AWS FIS to

introduce faults.

 Monitor system behavior in real time, including

latency, error rates, and fallback triggers.

 Pause or stop if thresholds are exceeded or

unexpected issues arise.

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

107

7.2.5. Post-GameDay Analysis and Action Items

 Hold a blameless retrospective to review outcomes.

 Document insights, gaps, and improvements in

resilience.

 Update runbooks, experiment libraries, and incident

response guides.

 Share findings across teams to broaden organizational

knowledge.

7.3. Automation and CI/CD Integration

7.3.1. Pipeline Integration Strategies

 Add chaos stages into CI/CD pipelines

 Trigger experiments after deployment in staging or

pre-production environments.

 Use feature flags to isolate chaos impact during

gradual delivery.

7.3.2. Automated Experiment Scheduling

 Utilize platforms like Harness or Gremlin Scheduler

to run recurring experiments.

 Align schedules with release cycles, infrastructure

changes, or important business events like flash sales

or network upgrades.

7.3.3. Continuous Chaos Validation

 Include chaos tests in regression suites and resilience

gates.

 Enforce pass/fail criteria based on resilience metrics.

 Automate rollback if chaos tests reveal critical

regressions.

7.3.4. Results Analysis and Reporting Automation

 Stream results into observability platforms like

Datadog, New Relic, or Prometheus.

 Create automated reports with experiment details,

impact analysis, and remediation status.

 Maintain a resilience dashboard to track trends,

coverage, and progress over time.

This framework ensures that chaos engineering is not just

a one-time effort, but a scalable, repeatable, and measurable

practice integrated into the software lifecycle.

8. Tool Selection Criteria
Choosing the right chaos engineering tool is essential for

successful implementation throughout the software

development lifecycle. The best platform should fit your

infrastructure, support various failure types, and work well

with your existing tools. Below are important criteria to help

evaluate tools:

8.1. Platform Compatibility

 Kubernetes Support: Direct integration with

Kubernetes clusters, including support for CRDs,

namespaces, and targeting specific pods

 Cloud Provider Integration: Works with AWS, Azure,

GCP, and hybrid cloud setups for injecting faults into

managed services (e.g., EC2, RDS, Lambda)

 On-Premise Deployments: Can operate in air-gapped

or private data centers with few external dependencies

 Multi-Environment Support: Able to function across

development, staging, and production environments

with specific configurations for each

8.2. Fault Injection Capabilities and Experiment Types

 Network Faults: Latency, packet loss, DNS failures,

connection resets

 System Resource Stress: CPU, memory, disk I/O, and

process exhaustion

 Service-Level Failures: API timeouts, dependency

crashes, unresponsive services

 Platform-Specific Faults: Kubernetes pod eviction,

node failures, container restarts, cloud-related

disruptions (e.g., AZ outages)

 Custom Faults: Ability to script or extend fault types

to mimic specific scenarios

8.3. Automation and CI/CD Integration Support

 Pipeline Integration: Native plugins or APIs for tools

like Jenkins, GitHub Actions, GitLab CI, CircleCI,

and Harness

 Experiment-as-Code: YAML or JSON-based

definitions for experiments, making version control

and repeatability easier

 Triggering Mechanisms: Support for scheduled,

event-driven, or manual execution of experiments

 Rollback Hooks: Works with deployment tools to

trigger rollbacks or alerts when failing to meet

thresholds

8.4. Observability and Monitoring Integration

 Metrics and Logs: Built-in support for Prometheus,

Grafana, Datadog, New Relic, or Open Telemetry

 Distributed Tracing: Compatible with tracing tools

(e.g., Jaeger, Zipkin) to link chaos events with service

behavior

 Real-Time Dashboards: Visual displays for

monitoring experiment progress, system impact, and

recovery behavior

 Alerting Integration: Integrates with PagerDuty,

Opsgenie, or Slack for real-time updates during

experiments

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

108

8.5. Safety Controls and Blast Radius Management

 Scoped Experiments: Can target specific services,

pods, or regions to reduce risk

 Abort Conditions: Predefined thresholds for latency,

error rates, or resource use to automatically stop

experiments

 Dry Run Mode: Allows simulation of experiments

without actual fault injection to check configurations

 Audit Logging: Keeps detailed logs of experiment

execution, results, and user actions for compliance

and tracking

8.6. Cost and Licensing Models

 Pricing Transparency: Clear breakdown of pricing

tiers based on usage, environments, or number of

nodes

 Free Tiers or Trials: Offers community editions or

trial periods for assessment

 Enterprise Features: Role-based access control

(RBAC), SSO integration, SLA-backed support, and

multi-tenant management

 Total Cost of Ownership: Considers operational

overhead, training needs, and support requirements

This criteria matrix helps teams make informed decisions

when choosing chaos engineering tools that fit their technical

setup, organizational readiness, and business objectives.

9. Challenges and Mitigation Strategies
While chaos engineering provides significant benefits in

resilience and reliability, its adoption often faces technical,

cultural, and operational challenges. Addressing these issues

with structured strategies is crucial for ongoing success.

9.1. Common Challenges

 Fear of Production Chaos and Blast Radius Concerns:

Teams often hesitate to run chaos experiments in

production due to fears of causing outages or affecting

customers. This concern is heightened in systems with

strict uptime requirements or limited rollback options.

 Lack of Monitoring Infrastructure: Without strong

monitoring—metrics, logs, traces—teams cannot

reliably detect normal behavior or evaluate the impact

of introduced faults. This uncertainty makes chaos

experiments risky and unclear.

 Organizational Resistance and Cultural Barriers:

Chaos engineering goes against traditional ideas of

stability and control. Teams may resist it due to fears

of blame, lack of incentives, or misalignment with

business goals.

 Tool Complexity and Learning Curve: Chaos

platforms usually need a deep understanding of

infrastructure, fault domains, and experiment design.

Teams may find it hard to set up, configure, and

execute experiments safely without specific training.

 Balancing Chaos Testing with Business Operations:

Injecting faults during peak hours, critical

deployments, or seasonal events can disrupt business

continuity. Teams must balance experiments with

stable operations and customer satisfaction.

9.2. Mitigation Approaches

 Start in Pre-Production Environments: Begin chaos

engineering in staging or testing environments that

closely resemble production. This lets teams build

confidence, test ideas, and check tools without

affecting customers.

 Implement Comprehensive Safety Controls: Use blast

radius controls, abort conditions, and dry-run modes

to limit risk. Define clear rollback procedures, alert

thresholds, and experiment time limits to ensure safe

execution.

 Gradual Scope Expansion Strategy: Use a crawl-walk-

run approach. Start with low-risk services, then

expand to critical paths, and eventually introduce

controlled chaos in production. Use canary

deployments and feature flags to reduce exposure.

 Education and Stakeholder Communication: Hold

workshops, informal sessions, and GameDays to

explain chaos engineering. Share success stories,

reviews, and resilience metrics to build trust and show

value across engineering, product, and leadership

teams.

 Automated Rollback Mechanisms: Add automated

rollback triggers to chaos workflows. If error rates,

latency, or resource use go beyond set limits, the

system should automatically revert to a safe state or

redirect traffic.

 Metrics and Success Measurement: Measuring the

effectiveness of chaos engineering requires a broad

approach that includes system performance, fault

tolerance, user experience, and operational efficiency.

These metrics not only confirm the success of

experiments but also help in continuous improvement

and keep stakeholders informed.

9.2.1. Performance Metrics

These metrics evaluate how the system functions under normal

and degraded conditions. They assist teams in finding

bottlenecks and confirming optimization methods.

 Response Time: Average and percentile-based latency

for critical APIs and services.

 Throughput: Number of successful transactions or

requests per second under different loads.

 Latency Percentiles: P95 and P99 latency capture

performance drops during chaos experiments.

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

109

9.2.2. Availability Metrics

Availability metrics check system uptime and reliability,

especially during fault injection and recovery scenarios.

 Uptime: Percentage of time services are available and

responsive.

 Error Rates: Frequency of 4xx/5xx responses during

normal and chaos conditions.

 SLA Compliance: Meeting service-level agreements

for availability, latency, and recovery.

9.2.3. Fault Tolerance Metrics

These metrics measure the system’s ability to handle and

recover from failed components.

 Recovery Time: Time taken to return to normal

behavior after fault injection.

 Failover Success Rate: Percentage of successful

switches to backup systems or alternative paths.

 Graceful Degradation: Ability to keep the core

functionality or user experience during service

disruptions.

9.2.4. User Experience Metrics

Chaos engineering should ultimately protect and improve user

experience. These metrics link technical resilience with

customer impact.

 Transaction Success Rates: Percentage of completed

checkouts, calls, or form submissions during

experiments.

 Customer Engagement: Session duration, bounce rate,

and conversion metrics under fault conditions.

 Error Messaging Quality: Clarity and helpfulness of

fallback messages shown to users during failures.

9.2.5. Operational Metrics

These metrics show the overall impact of chaos engineering on

incident management and team efficiency.

 Incident Reduction: Decrease in the number of

unexpected outages or service disruptions over time.

 MTTR (Mean Time to Recovery): Average time to

restore service after an incident.

 MTTD (Mean Time to Detection): Time taken to

discover anomalies or failures.

 On-Call Load: Frequency and duration of alerts

triggered during chaos experiments and real incidents.

10. Future Directions and Emerging Trends
As systems become more distributed, intelligent, and

decentralized, chaos engineering is evolving to tackle new

challenges. The next focus is on automation, security, edge

resilience, and fault modeling specific to domains. These new

trends mark a move from manual testing to more intelligent,

adaptable resilience engineering.

10.1. AI and Machine Learning Integration for Automated

Hypothesis Generation

Chaos engineering is increasingly using AI and machine

learning to improve experiment design and impact analysis:

 Automated Hypothesis Generation: Machine learning

models trained on historical data can suggest potential

failure modes and affected components.

 Anomaly Detection: AI-driven monitoring tools can

spot deviations from normal behavior in real time.

 Experiment Prioritization: Reinforcement learning can

decide which chaos scenarios to run based on risk

profiles and business impact.

10.2. Security Chaos Engineering

Security chaos engineering adds fault injection into security

controls to test detection, prevention, and response

mechanisms.

 Simulated Credential Leaks: Test identity and access

systems under compromised conditions.

 Firewall Rule Tampering: Validate network

segmentation and intrusion detection under

misconfigured policies.

 Zero Trust Validation: Inject faults into trust

boundaries to examine authentication, authorization,

and session isolation.

10.3. Edge Computing and Serverless Chaos Testing

As workloads move to edge nodes and serverless platforms,

chaos engineering needs to adjust to temporary, location-

sensitive environments:

 Edge Node Failures: Simulate connectivity loss,

resource exhaustion, or node isolation to test local

failover and cloud fallback.

 Serverless Timeout and Cold Start Scenarios:

Introduce latency and concurrency stress into

functions to test scalability and responsiveness.

 Geo-Distributed Chaos: Ensure consistency and

availability across edge regions under partitioned

conditions.

10.4. Event-Driven Architecture Resilience

Modern systems often rely on asynchronous, event-driven

processes. Chaos engineering must evaluate message brokers,

event consumers, and stream processors:

 Message Loss and Duplication: Simulate lost or

repeated events to test idempotency and state

reconciliation.

 Consumer Lag and Backpressure: Introduce delays

into event consumers to test throughput limits and

retry logic.

 Broker Failures: Simulate Kafka, RabbitMQ, or

cloud-native broker outages to validate failover and

message durability.

Priyadarshini Jayakumar / IJERET, 6(2), 98-110, 2025

110

10.5. Chaos Engineering for Blockchain and Web3 Systems

Decentralized systems bring unique fault domains, including

consensus mechanisms, smart contracts, and peer-to-peer

networks:

 Consensus Disruption: Simulate node failures or

network partitions to check consensus stability and

fork resolution.

 Smart Contract Fault Injection: Test contract behavior

under gas exhaustion, reentrancy, or malformed

inputs.

 Oracles and Bridge Failures: Test the resilience of

external data feeds and communication between

chains under degraded conditions.

These new trends indicate a shift toward autonomous,

domain-aware chaos engineering, where testing is continuous,

intelligent, and woven into the structure of modern systems.

References
[1] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L.

Kosewski, J. Reynolds, and C. Rosenthal, ―Chaos

Engineering,‖ IEEE Software, vol. 33, no. 3, pp. 35–41,

2016.

[2] J. Owotogbe, I. Kumara, W. van den Heuvel, and D.

Tamburri, ―Chaos Engineering: A Multi-Vocal Literature

Review,‖ arXiv preprint, arXiv:2412.01416, 2024.

[3] H. Jernberg, P. Runeson, and E. Engström, ―Getting

Started with Chaos Engineering: Design of an

Implementation Framework in Practice,‖ Proc. ACM/IEEE

Int. Symp. Empirical Software Engineering and

Measurement (ESEM), pp. 1–10, 2020.

[4] D. Dedousis et al., ―Chaos Engineering for Microservices

Architectures and Fault Tolerance,‖ arXiv preprint, 2023.

[5] D. Cotroneo et al., ―Chaos Engineering Implementation

for Distributed Systems Resilience,‖ arXiv preprint, 2022.

[6] F. Fogli et al., ―Advanced Chaos Engineering Techniques

for Cloud-Native Applications,‖ arXiv preprint, 2023.

[7] Y. Zhang et al., ―Chaos Engineering Platforms and

Tooling: A Series of Studies,‖ arXiv preprints, 2019, 2021,

2023.

[8] C. Frank et al., ―Chaos Engineering Tools Comparison and

Evaluation,‖ arXiv preprints, 2021, 2023.

[9] J. Simonsson et al., ―Chaos Engineering Tooling and Best

Practices,‖ arXiv preprint, 2021.

[10] K. Torkura et al., ―Security-Focused Chaos Engineering,‖

IEEE Conf. Proc., 2020, 2021.

[11] Gremlin Inc., ―Chaos Engineering: Finding Failures

Before They Become Outages,‖ Industry Whitepaper,

2023.

[12] LTIMindtree, ―Adopting Chaos Engineering – Part II,‖

Technical Report, 2023.

[13] Amazon Web Services, ―Chaos Engineering in the Cloud,‖

AWS Technical Guide, 2022.

[14] S. Palani and R. Gupta, ―Chaos Engineering Frameworks:

A Technical Overview,‖ arXiv preprint, 2023.

[15] R. Rivera et al., ―Measuring Resiliency of Systems Using

Chaos Engineering Experiments,‖ Riverside Research

Technical Report, 2023.

[16] I. Konstantinou et al., ―Chaos Engineering for Kubernetes

and Container Orchestration,‖ arXiv preprint, 2021.

[17] O. Bedoya et al., ―Chaos Engineering Evaluation

Methodologies,‖ arXiv preprint, 2023.

