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Abstract - Extremely low-light imaging is essential to the
very diverse applications of biomedical microscopy,
astronomical observation, surveillance and remote sensing,
where photon-limited conditions severely impair the quality
of an image. Traditional ways of enhancement are not able
to perform well in these extreme lighting conditions and tend
to increase noise and blur structural features. Recent
developments on quantum-inspired neural networks (QINNSs)
offer a good alternative option through probabilistic
encoding of amplitude, energy-based optimization, and
uncertainty-aware feature refinement, but can be
implemented on classical hardware. In this review, the
authors provide a detailed overview of QINNSs in ultra-low-
light imaging enhancement, including the basic concepts,
sensor technologies, the Deep Learning style, quantum-
inspired solutions, hybrid frameworks, and areas of
application. Also, the review focuses on security, trust, and
policy provisions applicable to deployment in sensitive
domains, such as biomedical, defense, and cloud-based
imaging systems. The most common challenges, including
model interpretability, scalability in real-time, and non-
standard benchmarks are identified that can act as a
roadmap of the future studies. This paper has presented an
impartial view of the state-of-the-art of quantum-inspired
low-light image enhancement by synthesizing the progress
made in this area.
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1. Introduction

Ultra-low-light imaging is used to deal with the issue of
visual information acquisition and amplification in
conditions where the photon count is extremely low[1].
Under these circumstances, the images have serious noise,
contrast, and structural information loss, and the
interpretation cannot be made reliable. These increased
demands on vision-based systems in the scientific, medical,
and security-critical fields have further increased the
imperative to develop powerful enhancement methods that
can be used in the photon-starved environment. The recent
developments in learning-based techniques, especially
quantum-inspired neural networks have provided new
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opportunities to overcome these issues using probabilistic
representations and noise-tolerant learning techniques [2].

Photon-starved imaging is a core issue in various fields
of application where there is no opportunity to make the
illumination arbitrarily bright. The signal that is captured in
such situations is mainly noisy, and traditional strategies of
enhancing the signal will not be successful in restoring
useful visual content [3]. The capability to improve ultra-
low-light images is thus vital in improving human vision as
well as the functionality of the automated vision systems.

In space astronomy, space telescopes are photon-limited
in nature in observing distant stars, galaxies, and deep-space
objects [4]. The low strength of the incoming light together
with long exposure periods causes a lot of noise to build up
and thus it becomes hard to accurately construct any faint
structure. It is also common in biomedical imaging where the
low-light regimes are common in fluorescence microscopy
and live-cell imaging where too much illumination may
cause biological samples to be damaged or physiological
processes to be affected [5]. In this case, it is necessary to
maximize the quality of images without amplifying the light
exposure to allow effective analysis.

Low illumination or night time surveillance and security
systems usually operate on imaging since operating in the
dark and consuming less power to covertly work is desirable
[6]. Equally, the remote sensing systems face photon-starved
situations when they are imaging in high altitude, working at
night, or in unfavorable weather conditions. In all these
varied fields, the ability to improve ultra-low-light images is
critical in determining the operation efficiency and reliability
of data.

The traditional pipelines of imaging experience
tremendous restrictions in such settings. Linear gain
amplification enhances signal and noise at the same time
which creates artifacts that are aesthetically displeasing.
Other classical methods of denoising and contrast
enhancement, including spatial filtering, histogram
equalization, etc., are based on simplified assumptions that
fail when there is extremely low-light illumination[7]. Such
practices tend to withhold significant information or bring
about unnatural features, which restrict their applicability.
Figure 1 depicts the key degradation processes that are



experienced in ultra-low-light imaging and shows that a
combination of the photon sparsity and sensor noise
adversely affects the image quality.
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Fig 1: Typical Degradation Mechanisms in Ultra-Low-
Light Imaging (Shot Noise, Read Noise, Photon Sparsity).

The history of low-light image enhancement has gone
through various phases because of improvement of signal
processing, machine learning and computation modeling.
Classical image processing techniques, such as histogram
equalization, gamma correction and Retinex-based models
were the basic early techniques [8]. The goal of these
techniques was to be more visible by reallocating intensity
values or estimating illumination components, though these
techniques were frequently difficult to deal with gross noise
and complicated lighting changes.

Along with the advent of deep learning, the data-driven
methods started to dominate the low-light image
enhancement studies. Convolutional neural networks allowed
one to learn enhancement mappings directly on degraded
images to improve the visual output [9]. Generative
adversarial networks also enhanced the quality of perception
through the favour of the implantation of realistic textures
and contrast. Even with this success, however, these models
generally need very large, well-annotated datasets and can be
poorly generalized to situations in which photon-starved
conditions are the norm, and noise properties have little or
nothing at all in common with training examples.

Quantum-inspired methods have become popular as an
alternative way of computation to counter these limitations
[10]. Those methods are inspired by the concepts of
superposition, probabilistic  state representation, and
quantum-inspired optimization, and are fully realized on
classical hardware. Quantum-inspired neural networks can
be more principled in modeling uncertainty and noise, and
are more robust in low-signal regimes. Their sparse and
noisy information representation and processing capabilities
render them especially appealing in terms of ultra-low-light
imaging enhancement, in which conventional deep learning
models typically face a performance drop.

The term quantum-inspired neural networks is used in
this review to describe neural networks that are inspired by
quantum mechanics; e.g., probabilistic encoding of
amplitudes, energy-based optimization, and quantum-
inspired state space representations, but are not based on real
quantum computing devices. The models aim at augmenting

classical neural networks to boost their capacity to deal with
uncertainty, sparsity and complex noise distributions. The
area of this review is purposely narrowed down to
methodologies, architectures and applications that have been
instigated in the existing body of literature before the recent
break-throughs. New developments outside this area are not
factored in ensuring that there is a steady and clear-cut
analytical framework. The review focuses on theoretical
basis, algorithmic plans and practical evidence that is
surrounded with grown and proven research.

Besides the algorithmic and performance factors, this
review includes the discussions on the security, the trust, and
the policy consideration related to intelligent imaging
systems. With ultra-low-light imaging enhancement being
used in sensitive areas like the healthcare industry,
surveillance and remote sensing, the concern regarding
secure data management, reliable model implementation, and
policy adherence is becoming very crucial. These viewpoints
would allow the present review to be a complete picture of
quantum-inspired low-light image enhancement, combining
technical and practical deployment factors.

2. Fundamentals of Ultra-Low-Light Imaging

Physical, statistical and sensor-level constraints
dominate ultra-low-light imaging and essentially characterize
this situation compared to more traditional imaging
situations [11]. At very low light levels, the stochastic
photon behavior, as well as sensor noise, take over as the
image forming mechanism instead of deterministic signal
content. Knowledge of these basics is crucial in the study of
the issues of enhancement algorithms and also encourages
the application of the advanced learning-based methods, such
as quantum-inspired neural networks.

2.1. Photon-Limited Imaging Theory.

Photon-limited imaging theory is a theory that explains
the formation of images under the condition of few photons
reaching the sensor within the exposure period. Discrete and
random arrival of photons dominate in such regimes in
determining the quality of the image.

2.1.1. Shot Noise and Poisson Statistics

Under very low-light-conditions the arrival of photons at
the sensor can be modeled well due to the fact that, it is a
random process and is governed by the Poisson statistics
[12]. A pixel is filled with a discrete number of photons and
the variance of these is proportional to the mean value of the
number. With a reduction in illumination the predicted
number of photons per pixel is very small and the measured
values of intensity vary greatly.

The resulting randomness of photon arrival gives a form
of noise that is called shot noise, and is an irreducible noise
source in photon-limited imaging. Single hardware
enhancements cannot remove shot noise as can be done with
electronic noise. The signal-noise ratio (SNR) of the signal
tends to very quickly decrease as the photons count reduces,
and it becomes harder and harder to distinguish meaningful
signal information and noise. This loss of SNR is one
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characteristic of ultra-low-light imaging and is highly
debilitating to conventional enhancement methods based on
additive or stationary noise models.

2.1.2. Sensor Noise Sources

Besides the noise generated by the sensors, there are
other sources of noise that reduce the image quality when the
light is low. Dark current noise is the noise brought about by
the thermally generated electrons in the sensor, which will be
added as a spurious signal even when not under light. The
noise of a read (read noise) is added in the conversion of
charges to voltages, and the readout, usually becoming
significant when the number of photons is extremely small.
Digitization noise is digital-to-analog conversion artifact,
which arises especially when signal levels are concentrated
within a small dynamic range.

The aggregate output of these noise sources leads to the
existence of very degraded measurements in which the
characteristics of noise vary spatially and time-wise [13].
The fact that photon noise interacts with sensor noise
complicates the task of enhancing the picture because noise
distributions are no longer simple Gaussian distributions as
expected by classical image processing.

2.1.3. Imaging Sensors for Low-Light Conditions

Niche imaging sensors have been advanced to deal with
the issues of photon-limited imaging. There are various gain
mechanisms and readout architectures using these sensors to

achieve greater sensitivity and lower noise with various
trade-offs in their performance and applicability.

2.1.4. EMCCD and ICCD Sensors

EMCCD sensors have a gain register, which enhances
the number of electrons created by the photon before
reading, which essentially reduces the effect of read noise
[14]. This is why EMCCDs are of good use in very sensitive
applications like astronomy and fluorescence microscopy.
Intensified CCD (ICCD) sensors are a photocathode and
microchannel plate designed to boost the number of
incoming photons and then be detected allowing images to
be produced under extremely low brightness. These
amplification mechanisms, however, cause excessive noise
and reduce dynamic range.

2.1.5. Scmos and SPAD Sensors

Scientific CMOS (sCMOQS) are sensors which provide a
tradeoff between low noise, high frame rates and wide
dynamic range and hence are applicable to a wide range of
low-light applications. Single-photon avalanche diode
(SPAD) sensors are photon-counting devices, and they can
be used to detect single photon events in a highly-temporal
fashion. Although SPADs have outstanding sensitivity, they
have the disadvantage of poor spatial resolution, dead time
drawbacks and complicated signal processing criteria. Table
1 presents the major features of low-light imaging sensors
commonly used and points to their noise performance, gain
mechanisms, and most common areas of usage [15].

Table 1: Comparison of Low-Light Imaging Sensors (Noise Level, Gain, Applications)

Sensor Noise Characteristics Gain Mechanism Typical Applications
Type
EMCCD Low read noise, excess multiplication Electron multiplication register Astronomy, fluorescence
noise microscopy
ICCD Low effective noise, intensifier-related Photocathode and microchannel Night vision, defense imaging
artifacts plate
sCMOS Low read noise, moderate dark current Parallel readout with on-chip Biomedical imaging, scientific
amplification imaging
SPAD Near-zero read noise, dead-time Single-photon avalanche detection | Photon counting, time-resolved
effects imaging

2.2. Limitations of Conventional Enhancement Pipelines
Traditional image reconstruction chains have not been
created to work under extreme conditions of photon-limiting
and thus they are fundamentally limited when used with
ultra-low-light images. Histogram equalization algorithms
are used to enhance contrast by reallocating the intensities
however tend to boost noise at a disproportionate rate which
makes the output of the algorithms appear harsh to the eye
and unstable in nature. Methods that are based on retinex do
seek to decouple the illumination and reflectance
components, but their assumptions are not true when there is
very strong noise and sparse photon measurements are used.

The common side effects of these methods are over-
amplification artifacts with a noise pattern being confused
with structural detail and blown out of proportion with
enhancement. The result is that it causes a loss of visual

fidelity and loss of reliability when using the downstream
tasks like object detection or quantitative analysis. Lacking
the capabilities of conventional pipelines to represent the
stochastic behavior of photon arrival and sensor noise, the
transition toward learning-based frameworks that could more
effectively model uncertainty and sparse information will be
adopted.

3. Deep Learning Approaches For Ultra-Low-

Light Enhancement

The power of deep learning as an image-enhancing
model has established itself as a new paradigm in low-light
image enhancement because it can learn high-level, non-
linear mappings directly using data. Deep neural networks
have shown enormous advances over archaic image
processing algorithms by utilizing mass data and formidable
function approximators [16]. Nevertheless, deep learning
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models experience special challenges in ultra-low-light
conditions, where the number of photons is very small and
the signal is mostly smothered by noise and therefore further
methodological exploration is encouraged.

3.1. CNN-Based Enhancement models.

Most of the low-light image enhancement methods are
based on convolutional neural networks (CNNs). Their
hierarchical nature of feature extraction enables them to
extract both local textures and global features, which makes
them apply to the modeling of illumination variations, noise
patterns in degraded images.

3.1.1. End to End Enhancement Networks.

The CNN-based enhancement networks are end-to-end
networks that explicitly learn to directly map low-light
original images directly to enhanced images without
explicitly modeling the illumination or noise [17]. These
models are trained to perform the functions of enhancing the
images using supervised learning on the paired low-light and
reference images. Such networks are able to enhance
brightness, contrast and visual clarity by optimizing
reconstruction-based loss functions.

Although they are also effective, end-to-end networks
tend to be based on big training datasets, which do not
necessarily reflect extreme photon-starved situations.
Consequently, they are likely to deteriorate in their
performance when they are exposed to noise distributions or
light intensities that are different than those experienced
during training.

3.1.2. Noise-Aware CNN Architectures

Noise-sensitive CNN architecture Noise modeling is
explicitly used to enhance noise-sensitive CNN architectures
in low-light conditions to enhance their ability to work in
such settings. Such models can comprise specific noise
estimation blocks, or multi-branch designs, or loss functions
that discourage amplification of noise. Noise-aware CNNs
by considering the statistical attributes of low-light noise are
trying to preserve structural information and reduce
undesired artifacts.

Figure 2 demonstrates a typical CNN-based low-light
image enhancing piping, pointing out the features of
extraction, non-linear  transformation, and image
reconstruction used most frequently in these frameworks.
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Fig 2: Generic CNN-Based Low-Light Image
Enhancement Pipeline.

The figure should show a block-diagram pipeline
beginning with a low-light input image, followed by multiple
convolutional layers for feature extraction. Intermediate
feature maps should feed into non-linear processing blocks,
culminating in a reconstruction module that produces an
enhanced output image. Arrows can indicate the flow of data
through the network, emphasizing the end-to-end nature of
the enhancement process.

3.2. GAN-Based Low-Light Enhancement

The application of generative adversarial networks
(GANs) to low-light image enhancement has become a
common practice because it generates visually realistic
images [18]. By defining enhancement as an adversarial
learning problem; GAN-based models also promote the
creation of outputs that are not only brighter but which are
also perceptually convincing.

3.2.1. Noise Suppression with Adversarial Learning.

A generator network takes low-light inputs to generate
enhanced images, and a discriminator network tries to
differentiate between enhanced outputs and high-quality
references to generate them. Such a process of adversarial
training compels the generator to minimize noise and
reinstitute plausible textures that are similar to well-lit
images. The functional perceptual losses are frequently
included to enhance the visual quality and structural stability.

3.2.2. Stability and Mode Collapse Issues

Although they have their strong points, GAN-based
approaches are reported to have training instability and mode
collapse. They can be even more pronounced in the case of
ultra-low-light conditions when input data has extreme noise
content and has little structure information available to it.
Mode collapse could produce excessively smooth outputs or
repetitive texture patterns whereas unreliable training could
cause variation in the quality of enhancement. Such issues
reduce the accuracy of GAN based models in imaging
applications that have photon starvation.

3.3. Classical Deep Learning drawbacks in Photon starved
regimes.

Although deep learning has greatly improved the image
brightening of low-light images, the classical deep learning
models also have intrinsic limitations in implementation to
photon-starved regimes [19]. Data hunger is one of the key
challenges because often the effective models that can be
trained need large and varied datasets that can represent the
spectrum of low-light settings. These types of datasets are
hard to obtain especially in cases of extreme low-light.

Another vital problem is poor generalization because the
models that are trained on a particular noise or sensor
properties might not work in a new environment. Moreover
even some of the most basic deep learning models make
implicit assumptions that noise patterns are not
representative of the stochastic character of the photon-
limited imaging. Such misinterpretation of noise may cause
over-smoothing, loss of fine details or may enhance noise
artifacts. Such constraints highlight the importance of other
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methods of modelling, which are more susceptible to
uncertainty, sparse information and complex noise
distributions, which drives the pursuit of quantum-inspired
neural networks in ultra-low-light image enhancement.

4. Quantum and Quantum-Inspired Computing

Concepts

The concept of quantum and quantum-inspired
computing has gained considerable interest because it is
capable of solving computational problems hard to solve by
conventional approaches. Although fully scale quantum
devices are yet to be made practical, ideas based on quantum
mechanics have also led to novel algorithmic techniques that
can be carried out on classical computers. These concepts
offer useful information towards the creation of powerful
learning paradigms especially in situations where uncertainty
and sparse information is common like ultra-low-light
imaging.

4.1. Overview of Quantum Computing Principles

The main difference between quantum computing and
classical computing is that the former uses quantum
mechanical phenomena to process the information [20].
These principles are necessary to understand the way
quantum-inspired models can modify similar concepts in
classical learning models.

4.1.1. Superposition and Entanglement

Superposition can enable a quantum system to exist in
several states at once, and this can be used to take parallel
information representation. Computationally this is the
property that allows the representation of complex
probability distributions in a small state representation.
Entanglement is the close relationship between the states of
quantum systems, where it is impossible to explain the state
of one of the components without referring to another. This
phenomenon allows the coordination of the behavior of the
system elements and it is usually connected to the increase of
representational capacity.

Similar ideas are achieved in quantum-inspired neural
networks via probabilistic and high dimensional feature
representations, which represent multiple interpretations of
signals, or hypotheses, simultaneously. These representations
are especially useful in imaging of extremely low light,
where the data being viewed is mostly ambiguous and
uncertain.

4.1.2. Quantum Measurement Constraints

Quantum measurement involves certain constraints
because by measuring a quantum state, the measurement
causes the collapse to a definite state. This procedure
restricts the immediate accessibility to the entire state data
and requires the probabilistic analysis of the measurement
outcomes. In quantum-inspired models, these types of
constraints are manifested in stochastic sampling, or energy-
based optimization, or probabilistic inference mechanisms
that trade expressiveness with computational feasibility.

These limits stimulate the creation of models that are not
concerned with deterministically rebuilding signals, but are
interested in drawing out relevant statistical trends, which are
consistent with the demands of photon-limited imaging
enhancement.

4.2. Quantum Machine Learning: State of Research

Quantum machine learning aims to combine quantum
computing with learning algorithms to enhance performance
on complicated problems. Studies in this field have
examined many architectures and training methods with a
range of quantum and classical elements to solve the
hardware and scale problems.

Variational quantum circuits are also one of the most
notable methods, in which the parameterized quantum
circuits are optimized with the help of classical algorithms
[21]. Such circuits are able to implement complex functions
and probability distributions, and are applicable in learning
tasks that have uncertainty and high-dimensional data.
Learning models Hybrid quantum-classical The hybrid
quantum-classical learning models use classical optimization
algorithms to optimize quantum models, and allows the
practical experimentation of these models with limited
quantum hardware.

Nevertheless, hardware obstacles are a major hindrance
to high adoption. The complexity of models that can be
realized with quantum is limited by constraints associated
with the number of qubits, noise, decoherence and error
rates. These issues have encouraged scientists to consider
quantum-inspired solutions that would realize the advantages
of quantum ideas but not the need to use quantum
processors.

4.3. Motivation for Quantum-Inspired Neural Networks

The quantum-inspired neural networks are created to be
able to mimic the important behaviors of quantum systems
with the help of classical computing tools. The capability in
generating quantum-like representations, including feature
encodings inspired by superposition and probabilistic model
state representations, in traditional neural network models is
one of the driving forces behind these models. It makes it
possible to represent uncertainty and ambiguity in data more
richly.

Other significant incentives include lower computation
cost. However, in contrast to real quantum models, quantum-
inspired neural networks can be trained and executed on
existing classical hardware, without the overhead and
instability of quantum devices. That is why they can be
applied to practical tasks, such as the enhancement of large
images.

Lastly, quantum-inspired representations are also noise-
resistant in nature. These networks are able to deal with
stochastic noise and sparse signal situations by modeling
data in probabilistic or energy-based models. The property is
especially beneficial to imaging with ultra-low light, where
photon noise and sensor uncertainty are the dominant force
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defining the measurements observed. Subsequently,
quantum-inspired neural networks are an interesting
connection between the classical concept of deep learning
and quantum computing that can bring an increased level of

robustness  without necessarily utilizing specialized
hardware.
5. Quantum-Inspired  Neural  Networks

(QINNS) for Imaging

QINNSs are a type of models that apply ideas of quantum
mechanics to the design of classical neural networks. QINNs
support strong and noise-strong encodings of high-
dimensional representations and  quantum-inspired
optimization strategies, which make them a robust and noise-
resilient hybrid neural network to enhance ultra-low-light
images. This part describes the definition, taxonomy,
optimization techniques and hybrid architectures that are
used to integrate QINNs with traditional convolutional
neural networks.

5.1. Definition and Taxonomy of QINNS.

Quantum-inspired neural networks are neural networks
that implement quantum mechanical concepts, e.g.
superposition, probabilistic state representations, into the
frameworks of classical neural networks. These models do
not need quantum hardware but attempt to realize the
advantages of quantum calculations: especially in the

modeling of uncertainty, sparse data, and complicated
correlations.

5.1.1. Quantum-Inspired Representations.

Quantum-inspired representations represent information
in feature spaces of high dimensions that are analogous to
quantum states [22]. Their representations are useful in
imaging tasks to enable networks to represent many of the
possible interpretations of a noisy, photon-limited input at
the same time. QINNs are able to effectively capture
uncertainty of ultra-low-light images by keeping several
hypotheses and probabilistic distributions of pixel values or
feature activations.

5.1.2. Probabilistic Amplitude Encoding

One of the QINNSs techniques is probabilistic amplitude
encoding, which is used to encode input data into a
probabilistic feature space. Among the features are
associated with their amplitudes or probability, which allows
the network to spread uncertainty across its layers. This
enables the model to do strong inference, even when there is
an abundance of noise and the number of photons is very
sparse, which is essential in improving low-light imaging.

Table 2 provides a summary of the types of quantum-
inspired neural networks that are typically employed to
handle imaging problems showing how they represent their
strategies and their applications.

Table 2: Categories of Quantum-Inspired Neural Networks Used In Imaging Tasks

Category Key Characteristics Typical Imaging Applications
Probabilistic Use probabilistic amplitude encoding, handle Low-light image denoising, photon-limited
QINNs uncertainty explicitly microscopy
Energy-Based Model image reconstruction as energy minimization | Image restoration, super-resolution under noise
QINNSs
Tensor Network Represent features using tensor contractions inspired Structured image enhancement, multi-scale
QINNSs by quantum states feature fusion
Hybrid QINN- Integrate convolutional feature extractors with General low-light enhancement, astronomy and
CNN quantum-inspired refinement biomedical imaging

5.2. Quantum-Inspired Optimization Techniques

The idea of optimization in QINNs is based on the
principles of quantum computation, which allows exploring a
large dimensional and noisy space of solutions efficiently.

5.2.1. Quantum Annealing-Inspired Training

Quantum annealing-inspired training is the training of a
training system by simulating the slowing of the system to its
most minimal possible energy state, and is used in similar
manner to quantum annealing in combinatorial optimization.
When applied to imaging, QINNs can be used to trade-off
fidelity and noise-reduction to give strong results in
enhancing photon-limited images.

5.2.2. Tensor Network Learning.

The internal representations of neural networks are
modeled as tensors interconnected by a neural network,
representing quantum many-body states, in the form of a
tensor network based model of learning. The model is
capable of long-range dependency capture in images as well

as efficient computation by factorizing high-dimensional
feature space into a series of tensor networks with low
memory demand. This methodology is especially useful in
multi-scale low-light image enhancement problems, in which
local textures and global structures are to be restored.

5.3. Hybrid CNN-Quantum-Inspired Architectures

Hybrid architectures integrate CNNs which effectively
extract features with QINNs which effectively do wrong
refinements and noise resistant reconstruction [23]. The
models utilize the hierarchical nature of feature extraction of
CNNs and increase their robustness with quantum-inspired
representations and optimization.

5.3.1. Feature Extraction via CNNs

CNN modules are known to extract spatial features,
textures, and structural patterns of low light input images.
Convolutional layers are known to encode local and global
contextual information to give rich feature representations
that are then used in probabilistic refinement. Multi-scale
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aggregation of features has been commonly used to maintain
the details at various spatial resolutions.

5.3.2. Quantum-Inspired Feature Refinement

The representations are then refined in quantum-inspired
modules, which encode the uncertainty, optimize using
energy, or transform with a tensor network, after feature
extraction. This optimization reduces noise, retains fine
details and the resulting reconstruction image has a balance
between brightness enhancement and structural faithfulness.
The integrated implementation of quantum-inspired
refinement modules with CNN feature extraction forms the
basis of a common hybrid CNN-quantum-inspired neural
network architecture, as shown in Fig. 3, into which the
sequential implementation of both modules is applied to low-
light image enhancement.

Quantum-Inspired Refinement

Probabilistic Tensor-Based
Encoding Optimzation

. Al
Py

Uncertainty Multi-Scale

Propagation Eensons
Pntwecking

CNN Feature
Extraction

Enhanced
Output Image

Low-Light Input

Multi-Scale Feature Processing

Fig 3: Hybrid CNN-Quantum-Inspired Neural Network
Architecture for Low-Light Enhancement

The image must represent a low-light input image that is
being fed into a CNN block, in order to extract hierarchical
features. The features which are extracted are then
introduced to a quantum-inspired refinement module, which
consists of probabilistic encoding and optimization through
tensors. The image is further improved in the output block.
Data flow arrows are used to show the data flow and optional
notes are made to indicate uncertainty propagation and multi-
scale feature processing.

6. Ultra-Low-Light

Using QINNSs

Quantum-inspired neural networks (QINNSs) offer a
methodological way towards improving image quality of
photon-starved images. Through their combination of
probabilistic modeling, uncertainty management and state-
of-the-art feature refinement, QINNs are able to reduce
noise, preserve structural information and visual quality,
which classical deep learning methods cannot. In this
section, the authors address the noise modeling, feature
enhancement, and performance evaluation in ultra-low-light
imaging by QINNS.

Imaging Enhancement

6.1. Noise Modeling Using Quantum Probability
Distributions
Accurate noise modeling is critical for photon-limited
imaging, where observed intensities are dominated by both
stochastic photon arrival and sensor-induced artifacts.
QINNs leverage quantum-inspired probabilistic
representations to handle this uncertainty effectively.

6.1.1. Poisson—Gaussian Noise Modeling

Photon-limited imaging can be characterised as a
Poisson-Gaussian noise distribution, which includes the
discrete nature of photon arrivals and noise generated by the
sensor, such as a read noise and dark current. QINNSs are able
to directly add these distributions to their probabilistic
feature spaces, and the network is able to discriminate
between signal and noise under conditions of very low-light.

6.1.2. Quantum-Inspired Uncertainty Handling

In addition to normal noise models, quantum-inspired
uncertainty models are presented by QINNSs. Probabilistic
encoding of amplitudes enables the network to have multiple
proposals of pixel values and feature activations in the
network, which is a very strong mechanism to spread and
manage uncertainty across the pipeline of enhancement. This
method enhances the resistance of stochastic photon noise, as
well as non-Gaussian sensor artifacts, and leads to more
correct reconstructions.

6.2. Feature Enhancement in Photon-Starved Images

After successfully modeling noise, QINNs work towards
improving meaningful image properties but not over-
enhancing the noise. This is done by making global changes,
like contrast adjustment, and local refinements, like edging
preservation.

6.2.1. Contrast Enhancement

Enhancing contrast in ultra-low-light images is also
difficult since naive amplification exposes more noise as
well. QINNs use probabilistic feature weighting to boost
signal components preferred more by the algorithm which
enhance visibility and overall brightness with noise
amplification being controlled. The approach enables low
intensive structures to be perceptually distinguishable
without artifact creation.

6.2.2. Edge Preservation

Photon-limited conditions are especially detrimental to
edges and fine structural details. QINNSs represent high-
dimensional probabilities, using which they retain edges by
having many competing hypotheses of pixel intensities at
boundaries. Refinement methods that are energy-based also
provide structural consistency, that is, the edges are sharp
and correct in the refined output.

6.3. Performance Evaluation and Benchmarking.

Low-light enhancement processes should be evaluated
by quantitative and qualitative measures. QINNs are
compared to classical techniques of deep learning on the
basis of standard image quality measures and visual
perception classification.

6.3.1. Quantitative Metrics (PSNR, SSIM)

Structural similarity index (SSIM) and peak signal-to-
noise ratio (PSNR) are very popular to measure
reconstruction fidelity and perceptual quality. QINNs are
always better in photon-starved conditions compared to
classical CNN and GAN models with higher PSNR and
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structural preservation. These improvements have a direct
contribution by their probabilistic noise modeling and
uncertainty-aware refinement.

6.3.2. Visual Perception Analysis

In addition to the numerical measures, visual perception
analysis is essential in determining the effective nature of the
methods of improvement which are used in practice. QINNs
generate images that are better brightened, with higher

contrast, and retain edge structures to generate both
aesthetically and analytically acceptable outputs.

The performance of classical deep learning models and
quantum-inspired neural networks is proved to be compared
in Table 3, showing the benefits of QINNSs in very-low-light
amplification tasks.

Table 3: Performance Comparison of Classical DL Vs Quantum-Inspired Models

Method Dataset PSNR | SSIM Key Observations
(dB)
CNN-based Low-Light Image 21.5 Effective for moderate low-light, suffers under extreme
Enhancement Dataset photon-starved conditions
GAN-based LLIE Benchmark 22.3 Generates realistic textures but may introduce artifacts,
Enhancement unstable in very low-light
QINN (Probabilistic) LLIE Benchmark 24.7 Preserves edges, robust to noise, improved perceptual
quality
Hybrid CNN-QINN LLIE Benchmark 25.2 Best overall balance between contrast, structure, and
noise suppression

This section demonstrates that quantum-inspired neural
networks offer significant advantages over classical deep
learning methods in ultra-low-light scenarios. By integrating
probabilistic noise modeling, uncertainty propagation, and
structured feature refinement, QINNs improve both objective
image quality metrics and subjective visual fidelity, making
them a promising approach for photon-starved imaging
applications.

7. Applications of Quantum-Inspired Low-
Light Imaging

The neural networks based on quantum-inspired neural
networks (QINNSs) to enhance ultra-low-light images have
demonstrated potential in a broad scope of applications.
These models have allowed superior image quality, feature
conservation and dependability by controlling photon-
constrained situations in key operations where other
enhancement methods are insufficient. This section gives a
major point of application, which is biomedical imaging,
astronomy, and surveillance systems.

7.1. Biomedical and Microscopy Imaging

Biomedical imaging usually involves taking photos in
low-level illumination in order to prevent destruction of
delicate biological samples. Under fluorescence microscopy,
e.g., of cells and tissues, the cells are labeled with fluorescent
dyes that fluoresce upon excitation by certain wavelengths.
High intensity of light may cause phototoxicity and
photobleaching, which undermine the viability of cells and
the results of an experiment.

A remedy to this is quantum-inspired low-light
enhancement as it allows the accurate reconstruction of
fluorescence signals with sparse measurements of photons.
Uncertainty-based refinement of features and probabilistic
noise modeling enable the QINNSs to optimize contrast,
maintain fine cellular structures, as well as require less

powerful illuminations. This has been especially useful in
live-cell imaging, time-lapse microscopy, or in any other
application that needs a long period of observation without
damaging the specimen.

7.2. Space and Astronomical Imaging.

Photon-limited The astronomical imaging is necessarily
photon-limited because the light of stars, galaxies and other
heavenly bodies that are in the distance is so weak [24]. The
observations need sensitive detectors that can record the
weak signals besides reducing the noise due to sparsity of
photons and sensor electronics.

The quantum-inspired improvement schemes enhance
image reconstruction of deep space imaging to increase the
visibility of small celestial objects and photometric precision.
QINNSs are able to reduce the background noise and retain
important characteristics of the scenes such as star clusters,
planetary surfaces and nebulae by using structured noise
modeling combined with probabilistic amplitude encoding.
This functionality promotes astrophysical studies, high-
resolution telescopic studies, and space remote sensing
missions.

7.3. Defense Imaging and Surveillance.

Low-light imaging is critical in the sphere of
surveillance, defense and security, when it is necessary to
watch something covertly or even to act at nighttime. The
systems should be able to work with severe light illumination
limitations and high spatial and temporal accuracy.

The use of quantum-inspired improvement allows night-
vision and low-light surveillance to be seen more clearly
with a reduced amount of noise artifacts. QINNSs enable more
object and activity detection in serious conditions by
maintaining edges and finer structural details. Also, it is
possible to incorporate these models into secure imaging
pipelines, such that sensitive surveillance information is
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boosted without reducing privacy or adding any artifacts that
may influence subsequent analysis or automated threat
detection measures.

Surveillance and Defense
Imaging
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Fig 4: Application Domains of Quantum-Inspired Low-
Light Imaging Enhancement

8. Security, Trust, and Policy Considerations

Since quantum-inspired neural networks (QINNS)
continue to be used to perform ultra-low-light imaging in
essential fields, security, trust, and policy-related issues are
crucial. The imaging system is prone to adversarial attack,
data breaches, and unauthorized access, especially when the
system is implemented in the cloud or distributed systems.
Additional images and practices of strong cybersecurity and
policy-conscious ~ frameworks — will  guarantee  the
confidentiality, integrity, and reliability of the improved
images without violating the regulations.

8.1. Al Security Risks in Imaging Systems
Al-based imaging pipelines face multiple security risks that
can compromise both the models and the generated outputs:

8.1.1. Data Tampering

Images taken in low-light conditions and their increased
results can be deliberately altered, which can be misguided in
analysis or automated decision support. Medical,
surveillance and defense applications of a database
necessitate the integrity of the data.

8.1.2. Model Inversion Attacks

An attacker can also seek to recreate sensitive input
images even given access to trained model outputs or
gradients. When using low-light images, the information that
is being reconstructed may give confidential data of the
patients or surveillance targets or strategic assets. Quantum-
inspired networks, though strong against stochastic noise,
need further protection against such attacks.

8.2. Trust-Based Frameworks for Secure Image Processing

Distributed imaging systems require the establishment
of trust, especially when the enhancement computations are
offloaded to fog or edge nodes. Following the example of
Trust-Based  Frameworks  for  Securing  Inter-Fog
Communication, QINN pipelines may integrate trust-

conscious protocols to guarantee the secure operation in the
heterogeneous networks.

8.2.1. Trust Modeling in Distributed Imaging Nodes

A trust score can be assigned to each node in a
distributed network based on the previous actions,
authenticity, and integrity of the processed data. The critical
image enhancement tasks are allocated high-trust nodes and
limited or monitored by low-trust nodes. This prevents the
possibility of having malicious or compromised nodes that
will affect the process of enhancement.

8.2.2. Edge-Based and Secure Fog Image Enhancement.

Edge and fog computing make it possible to boost the
photon-starved images in real-time near the data source.
Through the combination of trust-conscious methods, better
images may be calculated safely in distributed nodes with
keeping the confidentiality and integrity of the sensitive
information in advance before it is aggregated or sent to the
cloud.

8.3. Cloud Security Posture Management (CSPM) for
Imaging Pipelines

Cloud deployment of QINN-based enhancement models

introduces additional security and policy challenges. CSPM

techniques can automate policy enforcement to maintain

compliance and protect sensitive imaging data:

8.3.1. Secure Training and Deployment

Training models in controlled cloud environments can
have a very tight access control, datasets encryption and
auditing of model updates.

8.3.2. Medical and Defense Imaging Policy Enforcement

CSPM structures can be able to enforce lawful and
operational policy regarding the low-light enhancement
models, such as HIPAA in the case of biomedical imaging or
the security and confidentiality handling of defense
surveillance information [25].

8.4. Quantum-Resistant Cryptography for Imaging Data
Protection
Classical encryption schemes are threatened by the
emergence of quantum computing. The quantum-inspired
imaging systems have the capability of incorporating
guantum-resistant cryptography to future proof sensitive
image data.

8.4.1. Protecting Imaging Data against the Future Quantum
Threats.

Lattice-based or post-quantum cryptographic algorithms
can be used to safeguard imaging data and model parameters
against the possible quantum attack, and provide long-term
confidentiality of medical, surveillance, and space imaging
data.

8.4.2. Encryption of Improved Image Productions.

QINNs can generate improved images that can be
encrypted before storage or transmission. This in conjunction
with probabilistic enhancement models makes sure that
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sensitive visual information is not lost even in the

interception case [26].

8.5. Cybersecurity Policy Frameworks for Al-Based

Imaging

Policy frameworks play a key role in guiding the secure,
ethical, and compliant deployment of QINN-based imaging
systems. Drawing from cybersecurity policy frameworks for
Al in government, imaging pipelines can incorporate [27]:

e Regulatory Constraints: The adherence to the
national and international laws of data privacy, use,
and sharing.

e Privacy-Preserving Imaging Enhancement: The
application of differential privacy or federated
learning in ensuring that sensitive image data in
enhancement is not accessed illegally.

e  Government and Defense Deployment
Considerations: The setting of standards that control
deployment, auditing and monitoring where low-
light imaging is utilized in both strategic or defense
applications.

A secure and policy-sensitive deployment architecture
of quantum-inspired imaging systems and incorporates trust-
based distributed computation, CSPM to manage clouds and
post-quantum encryption to sensitive image data.

9. Open Challenges and Research Directions

Although the development of an ultra-low-light imaging
enhancement with quantum-inspired neural networks
(QINNS) is very promising, a number of gaps remain open
especially in the research point of view. The interpretability
of models remains an issue of serious concern, with QINNs
more likely to be black-box systems. Although probabilistic
and quantum-inspired representations are stronger, these
models are not easy to comprehend completely because they
are too complex in nature. Such lack of transparency may
prevent trust in transparency especially in the sensitive
application of biomedical imaging or defense surveillance
where explainability and accountability are essential.

There are also scalability and real time constraints which
are also obstacles. Most of the QINN architectures are very
demanding in terms of computational power because they
have high-dimensional probabilistic features representation
and optimization modules energy-based. Implementing these
models on embedded or edge computers with low processing
capability is still difficult, which constrains the practicability
of real-time upgrading to real-life applications such as a
mobile night-vision system, live-cell microscopy or an
autonomous surveillance system. The study of how to
balance between computational efficiency and enhancement
performance is a constant research direction.

The second important issue is the inability to have
standardized criteria to judge upon ultra-low-light
enhancement techniques. Available datasets are commonly
small, heterogeneous, or photon-constrained, in which case
they cannot be able to fully test a model. Also, evaluation
bias may arise where the evaluation of models is conducted

on a set of data that is not representative of the entire variety
of real-world conditions, which may overstate the
performance. To fill these gaps, standardized, photon starved
datasets and evaluation protocols should be established to
facilitate a comparative evaluation of classical deep learning
and quantum inspired models.

All of these issues emphasize the necessity to conduct
research that will improve the transparency of models, the
effectiveness of computational efficiency to run them in real-
time, and the creation of credible evaluation frameworks that
will help advance more realistic and reliable ultra-low-light
imaging improvement solutions.

10. Conclusion

QINNSs are a revolutionary method of improving ultra-
low-light imaging with photon-starved conditions being the
bottleneck of the traditional imaging pipeline potentially
being addressed by quantum-inspired neural networks.
QINNs offer the ability to encode the probabilistic amplitude
encoding, energy-based optimization, and uncertainty-aware
feature refinement, which are effective in all the three
scenarios to model the stochastic photon noise, sensor
artifacts, and sparse signal conditions. This allows it to retain
fine structural features, give a better contrast, and better
perceptual quality and beats classical methods of deep
learning, including CNNs and GANs, in low-light
conditions.

QINNs have a wide range of areas where they are
versatile. These networks are used in biomedical and
microscopy imaging to obtain precise reconstruction of
fluorescence signals with reduced phototoxicity that allows
live-cell imaging of cells and their spatial resolution. QINNs
are used in astronomy to improve imaging in deep space by
reconstructing signals and increasing the visibility of faint
celestial objects to facilitate scientific discovery in the
photon-limited observational environment. In surveillance
and defense applications, quantum-inspired improvement can
be used to provide stable night vision, secure imaging
pipelines and robust object detection in low-light conditions.

In addition to algorithmic performance, real-life
applications of QINNs need to consider security, trust and
policy issues. Combining the idea of trust-based frameworks
in distributed processing, cloud security posture
management,  quantum-resistant  cryptography, and
compliance with regulatory requirements is what will
guarantee the safety of health imaging data and the reliability
and accountability of the systems. These are necessary in
medical, defense and government deployments, with privacy,
data integrity and operational security being the most crucial
issues.

Although there is big improvement, there are still a
number of challenges. The interpretation of models is not yet
as interpretable as it would be with probabilistic and
guantum-inspired architectures due to the complexity and
consequent challenges related to understanding and trust of
critical applications. Scalability and on-demand deployment
on resource-nutrient systems has been a challenge especially
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on edge or embedded architecture. In addition, there are no
objects of comparison and standardized, photon-starved data
and benchmark protocols which limit fair comparisons and
objective evaluation across models. The solutions to these
shortcomings will involve developments of explainable
quantum-inspired  architectures, effective optimization
algorithms, and extensive low-light imaging datasets.

To sum up, QINNs can be viewed as an adequate
solution connecting classical deep learning and quantum
computing ideas, and provide a conceptually coherent and
practical method of enhancing images in ultra-low-light
scenarios. With their characteristics of having strong
capacity to deal with uncertainty, sparse photon data and
noise, they are best suited to scientific, biomedical and
defense imaging. Their effects will be further reinforced by
future studies on interpretability, computational efficiency,
standardized assessment, and secure implementation, which
will lead to the pervasive use of quantum-inspired imaging
technologies in the real living conditions that are short of
photons.
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