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Abstract - Extremely low-light imaging is essential to the 

very diverse applications of biomedical microscopy, 

astronomical observation, surveillance and remote sensing, 

where photon-limited conditions severely impair the quality 

of an image. Traditional ways of enhancement are not able 

to perform well in these extreme lighting conditions and tend 

to increase noise and blur structural features. Recent 

developments on quantum-inspired neural networks (QINNs) 

offer a good alternative option through probabilistic 

encoding of amplitude, energy-based optimization, and 

uncertainty-aware feature refinement, but can be 

implemented on classical hardware. In this review, the 

authors provide a detailed overview of QINNs in ultra-low-

light imaging enhancement, including the basic concepts, 

sensor technologies, the Deep Learning style, quantum-

inspired solutions, hybrid frameworks, and areas of 

application. Also, the review focuses on security, trust, and 

policy provisions applicable to deployment in sensitive 

domains, such as biomedical, defense, and cloud-based 

imaging systems. The most common challenges, including 

model interpretability, scalability in real-time, and non-

standard benchmarks are identified that can act as a 

roadmap of the future studies. This paper has presented an 

impartial view of the state-of-the-art of quantum-inspired 

low-light image enhancement by synthesizing the progress 

made in this area. 
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1. Introduction 
Ultra-low-light imaging is used to deal with the issue of 

visual information acquisition and amplification in 

conditions where the photon count is extremely low[1]. 

Under these circumstances, the images have serious noise, 

contrast, and structural information loss, and the 

interpretation cannot be made reliable. These increased 

demands on vision-based systems in the scientific, medical, 

and security-critical fields have further increased the 

imperative to develop powerful enhancement methods that 

can be used in the photon-starved environment. The recent 

developments in learning-based techniques, especially 

quantum-inspired neural networks have provided new 

opportunities to overcome these issues using probabilistic 

representations and noise-tolerant learning techniques [2]. 

 

Photon-starved imaging is a core issue in various fields 

of application where there is no opportunity to make the 

illumination arbitrarily bright. The signal that is captured in 

such situations is mainly noisy, and traditional strategies of 

enhancing the signal will not be successful in restoring 

useful visual content [3]. The capability to improve ultra-

low-light images is thus vital in improving human vision as 

well as the functionality of the automated vision systems. 

 

In space astronomy, space telescopes are photon-limited 

in nature in observing distant stars, galaxies, and deep-space 

objects [4]. The low strength of the incoming light together 

with long exposure periods causes a lot of noise to build up 

and thus it becomes hard to accurately construct any faint 

structure. It is also common in biomedical imaging where the 

low-light regimes are common in fluorescence microscopy 

and live-cell imaging where too much illumination may 

cause biological samples to be damaged or physiological 

processes to be affected [5]. In this case, it is necessary to 

maximize the quality of images without amplifying the light 

exposure to allow effective analysis. 

 

Low illumination or night time surveillance and security 

systems usually operate on imaging since operating in the 

dark and consuming less power to covertly work is desirable 

[6]. Equally, the remote sensing systems face photon-starved 

situations when they are imaging in high altitude, working at 

night, or in unfavorable weather conditions. In all these 

varied fields, the ability to improve ultra-low-light images is 

critical in determining the operation efficiency and reliability 

of data. 

 

The traditional pipelines of imaging experience 

tremendous restrictions in such settings. Linear gain 

amplification enhances signal and noise at the same time 

which creates artifacts that are aesthetically displeasing. 

Other classical methods of denoising and contrast 

enhancement, including spatial filtering, histogram 

equalization, etc., are based on simplified assumptions that 

fail when there is extremely low-light illumination[7]. Such 

practices tend to withhold significant information or bring 

about unnatural features, which restrict their applicability. 

Figure 1 depicts the key degradation processes that are 
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experienced in ultra-low-light imaging and shows that a 

combination of the photon sparsity and sensor noise 

adversely affects the image quality. 

 
Fig 1: Typical Degradation Mechanisms in Ultra-Low-

Light Imaging (Shot Noise, Read Noise, Photon Sparsity). 

 

The history of low-light image enhancement has gone 

through various phases because of improvement of signal 

processing, machine learning and computation modeling. 

Classical image processing techniques, such as histogram 

equalization, gamma correction and Retinex-based models 

were the basic early techniques [8]. The goal of these 

techniques was to be more visible by reallocating intensity 

values or estimating illumination components, though these 

techniques were frequently difficult to deal with gross noise 

and complicated lighting changes. 

 

Along with the advent of deep learning, the data-driven 

methods started to dominate the low-light image 

enhancement studies. Convolutional neural networks allowed 

one to learn enhancement mappings directly on degraded 

images to improve the visual output [9]. Generative 

adversarial networks also enhanced the quality of perception 

through the favour of the implantation of realistic textures 

and contrast. Even with this success, however, these models 

generally need very large, well-annotated datasets and can be 

poorly generalized to situations in which photon-starved 

conditions are the norm, and noise properties have little or 

nothing at all in common with training examples. 

 

Quantum-inspired methods have become popular as an 

alternative way of computation to counter these limitations 

[10]. Those methods are inspired by the concepts of 

superposition, probabilistic state representation, and 

quantum-inspired optimization, and are fully realized on 

classical hardware. Quantum-inspired neural networks can 

be more principled in modeling uncertainty and noise, and 

are more robust in low-signal regimes. Their sparse and 

noisy information representation and processing capabilities 

render them especially appealing in terms of ultra-low-light 

imaging enhancement, in which conventional deep learning 

models typically face a performance drop. 

 

The term quantum-inspired neural networks is used in 

this review to describe neural networks that are inspired by 

quantum mechanics; e.g., probabilistic encoding of 

amplitudes, energy-based optimization, and quantum-

inspired state space representations, but are not based on real 

quantum computing devices. The models aim at augmenting 

classical neural networks to boost their capacity to deal with 

uncertainty, sparsity and complex noise distributions. The 

area of this review is purposely narrowed down to 

methodologies, architectures and applications that have been 

instigated in the existing body of literature before the recent 

break-throughs. New developments outside this area are not 

factored in ensuring that there is a steady and clear-cut 

analytical framework. The review focuses on theoretical 

basis, algorithmic plans and practical evidence that is 

surrounded with grown and proven research. 

 

Besides the algorithmic and performance factors, this 

review includes the discussions on the security, the trust, and 

the policy consideration related to intelligent imaging 

systems. With ultra-low-light imaging enhancement being 

used in sensitive areas like the healthcare industry, 

surveillance and remote sensing, the concern regarding 

secure data management, reliable model implementation, and 

policy adherence is becoming very crucial. These viewpoints 

would allow the present review to be a complete picture of 

quantum-inspired low-light image enhancement, combining 

technical and practical deployment factors. 

 

2. Fundamentals of Ultra-Low-Light Imaging 
Physical, statistical and sensor-level constraints 

dominate ultra-low-light imaging and essentially characterize 

this situation compared to more traditional imaging 

situations [11]. At very low light levels, the stochastic 

photon behavior, as well as sensor noise, take over as the 

image forming mechanism instead of deterministic signal 

content. Knowledge of these basics is crucial in the study of 

the issues of enhancement algorithms and also encourages 

the application of the advanced learning-based methods, such 

as quantum-inspired neural networks. 

 

2.1. Photon-Limited Imaging Theory. 

Photon-limited imaging theory is a theory that explains 

the formation of images under the condition of few photons 

reaching the sensor within the exposure period. Discrete and 

random arrival of photons dominate in such regimes in 

determining the quality of the image. 

 

2.1.1. Shot Noise and Poisson Statistics 

Under very low-light-conditions the arrival of photons at 

the sensor can be modeled well due to the fact that, it is a 

random process and is governed by the Poisson statistics 

[12]. A pixel is filled with a discrete number of photons and 

the variance of these is proportional to the mean value of the 

number. With a reduction in illumination the predicted 

number of photons per pixel is very small and the measured 

values of intensity vary greatly. 

 

The resulting randomness of photon arrival gives a form 

of noise that is called shot noise, and is an irreducible noise 

source in photon-limited imaging. Single hardware 

enhancements cannot remove shot noise as can be done with 

electronic noise. The signal-noise ratio (SNR) of the signal 

tends to very quickly decrease as the photons count reduces, 

and it becomes harder and harder to distinguish meaningful 

signal information and noise. This loss of SNR is one 
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characteristic of ultra-low-light imaging and is highly 

debilitating to conventional enhancement methods based on 

additive or stationary noise models. 

 

2.1.2. Sensor Noise Sources 

Besides the noise generated by the sensors, there are 

other sources of noise that reduce the image quality when the 

light is low. Dark current noise is the noise brought about by 

the thermally generated electrons in the sensor, which will be 

added as a spurious signal even when not under light. The 

noise of a read (read noise) is added in the conversion of 

charges to voltages, and the readout, usually becoming 

significant when the number of photons is extremely small. 

Digitization noise is digital-to-analog conversion artifact, 

which arises especially when signal levels are concentrated 

within a small dynamic range. 

 

The aggregate output of these noise sources leads to the 

existence of very degraded measurements in which the 

characteristics of noise vary spatially and time-wise [13]. 

The fact that photon noise interacts with sensor noise 

complicates the task of enhancing the picture because noise 

distributions are no longer simple Gaussian distributions as 

expected by classical image processing. 

 

2.1.3. Imaging Sensors for Low-Light Conditions 

Niche imaging sensors have been advanced to deal with 

the issues of photon-limited imaging. There are various gain 

mechanisms and readout architectures using these sensors to 

achieve greater sensitivity and lower noise with various 

trade-offs in their performance and applicability. 

 

2.1.4. EMCCD and ICCD Sensors 

EMCCD sensors have a gain register, which enhances 

the number of electrons created by the photon before 

reading, which essentially reduces the effect of read noise 

[14]. This is why EMCCDs are of good use in very sensitive 

applications like astronomy and fluorescence microscopy. 

Intensified CCD (ICCD) sensors are a photocathode and 

microchannel plate designed to boost the number of 

incoming photons and then be detected allowing images to 

be produced under extremely low brightness. These 

amplification mechanisms, however, cause excessive noise 

and reduce dynamic range. 

 

2.1.5. Scmos and SPAD Sensors 

Scientific CMOS (sCMOS) are sensors which provide a 

tradeoff between low noise, high frame rates and wide 

dynamic range and hence are applicable to a wide range of 

low-light applications. Single-photon avalanche diode 

(SPAD) sensors are photon-counting devices, and they can 

be used to detect single photon events in a highly-temporal 

fashion. Although SPADs have outstanding sensitivity, they 

have the disadvantage of poor spatial resolution, dead time 

drawbacks and complicated signal processing criteria.Table 

1 presents the major features of low-light imaging sensors 

commonly used and points to their noise performance, gain 

mechanisms, and most common areas of usage [15]. 

 

 

Table 1: Comparison of Low-Light Imaging Sensors (Noise Level, Gain, Applications) 

Sensor 

Type 

Noise Characteristics Gain Mechanism Typical Applications 

EMCCD Low read noise, excess multiplication 

noise 

Electron multiplication register Astronomy, fluorescence 

microscopy 

ICCD Low effective noise, intensifier-related 

artifacts 

Photocathode and microchannel 

plate 

Night vision, defense imaging 

sCMOS Low read noise, moderate dark current Parallel readout with on-chip 

amplification 

Biomedical imaging, scientific 

imaging 

SPAD Near-zero read noise, dead-time 

effects 

Single-photon avalanche detection Photon counting, time-resolved 

imaging 

 

2.2. Limitations of Conventional Enhancement Pipelines 

Traditional image reconstruction chains have not been 

created to work under extreme conditions of photon-limiting 

and thus they are fundamentally limited when used with 

ultra-low-light images. Histogram equalization algorithms 

are used to enhance contrast by reallocating the intensities 

however tend to boost noise at a disproportionate rate which 

makes the output of the algorithms appear harsh to the eye 

and unstable in nature. Methods that are based on retinex do 

seek to decouple the illumination and reflectance 

components, but their assumptions are not true when there is 

very strong noise and sparse photon measurements are used. 

 

The common side effects of these methods are over-

amplification artifacts with a noise pattern being confused 

with structural detail and blown out of proportion with 

enhancement. The result is that it causes a loss of visual 

fidelity and loss of reliability when using the downstream 

tasks like object detection or quantitative analysis. Lacking 

the capabilities of conventional pipelines to represent the 

stochastic behavior of photon arrival and sensor noise, the 

transition toward learning-based frameworks that could more 

effectively model uncertainty and sparse information will be 

adopted. 

 

3. Deep Learning Approaches For Ultra-Low-

Light Enhancement 
The power of deep learning as an image-enhancing 

model has established itself as a new paradigm in low-light 

image enhancement because it can learn high-level, non-

linear mappings directly using data. Deep neural networks 

have shown enormous advances over archaic image 

processing algorithms by utilizing mass data and formidable 

function approximators [16]. Nevertheless, deep learning 
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models experience special challenges in ultra-low-light 

conditions, where the number of photons is very small and 

the signal is mostly smothered by noise and therefore further 

methodological exploration is encouraged. 

 

3.1. CNN-Based Enhancement models. 

Most of the low-light image enhancement methods are 

based on convolutional neural networks (CNNs). Their 

hierarchical nature of feature extraction enables them to 

extract both local textures and global features, which makes 

them apply to the modeling of illumination variations, noise 

patterns in degraded images. 

 

3.1.1. End to End Enhancement Networks. 

The CNN-based enhancement networks are end-to-end 

networks that explicitly learn to directly map low-light 

original images directly to enhanced images without 

explicitly modeling the illumination or noise [17].  These 

models are trained to perform the functions of enhancing the 

images using supervised learning on the paired low-light and 

reference images. Such networks are able to enhance 

brightness, contrast and visual clarity by optimizing 

reconstruction-based loss functions. 

 

Although they are also effective, end-to-end networks 

tend to be based on big training datasets, which do not 

necessarily reflect extreme photon-starved situations. 

Consequently, they are likely to deteriorate in their 

performance when they are exposed to noise distributions or 

light intensities that are different than those experienced 

during training. 

 

3.1.2. Noise-Aware CNN Architectures 

Noise-sensitive CNN architecture Noise modeling is 

explicitly used to enhance noise-sensitive CNN architectures 

in low-light conditions to enhance their ability to work in 

such settings. Such models can comprise specific noise 

estimation blocks, or multi-branch designs, or loss functions 

that discourage amplification of noise. Noise-aware CNNs 

by considering the statistical attributes of low-light noise are 

trying to preserve structural information and reduce 

undesired artifacts. 

 

Figure 2 demonstrates a typical CNN-based low-light 

image enhancing piping, pointing out the features of 

extraction, non-linear transformation, and image 

reconstruction used most frequently in these frameworks. 

 
Fig 2: Generic CNN-Based Low-Light Image 

Enhancement Pipeline. 

 

The figure should show a block-diagram pipeline 

beginning with a low-light input image, followed by multiple 

convolutional layers for feature extraction. Intermediate 

feature maps should feed into non-linear processing blocks, 

culminating in a reconstruction module that produces an 

enhanced output image. Arrows can indicate the flow of data 

through the network, emphasizing the end-to-end nature of 

the enhancement process. 

 

3.2. GAN-Based Low-Light Enhancement 

The application of generative adversarial networks 

(GANs) to low-light image enhancement has become a 

common practice because it generates visually realistic 

images [18]. By defining enhancement as an adversarial 

learning problem; GAN-based models also promote the 

creation of outputs that are not only brighter but which are 

also perceptually convincing. 

 

3.2.1. Noise Suppression with Adversarial Learning. 

A generator network takes low-light inputs to generate 

enhanced images, and a discriminator network tries to 

differentiate between enhanced outputs and high-quality 

references to generate them. Such a process of adversarial 

training compels the generator to minimize noise and 

reinstitute plausible textures that are similar to well-lit 

images. The functional perceptual losses are frequently 

included to enhance the visual quality and structural stability. 

 

3.2.2. Stability and Mode Collapse Issues 

Although they have their strong points, GAN-based 

approaches are reported to have training instability and mode 

collapse. They can be even more pronounced in the case of 

ultra-low-light conditions when input data has extreme noise 

content and has little structure information available to it. 

Mode collapse could produce excessively smooth outputs or 

repetitive texture patterns whereas unreliable training could 

cause variation in the quality of enhancement. Such issues 

reduce the accuracy of GAN based models in imaging 

applications that have photon starvation. 

 

3.3. Classical Deep Learning drawbacks in Photon starved 

regimes. 

Although deep learning has greatly improved the image 

brightening of low-light images, the classical deep learning 

models also have intrinsic limitations in implementation to 

photon-starved regimes [19]. Data hunger is one of the key 

challenges because often the effective models that can be 

trained need large and varied datasets that can represent the 

spectrum of low-light settings. These types of datasets are 

hard to obtain especially in cases of extreme low-light. 

 

Another vital problem is poor generalization because the 

models that are trained on a particular noise or sensor 

properties might not work in a new environment. Moreover 

even some of the most basic deep learning models make 

implicit assumptions that noise patterns are not 

representative of the stochastic character of the photon-

limited imaging. Such misinterpretation of noise may cause 

over-smoothing, loss of fine details or may enhance noise 

artifacts. Such constraints highlight the importance of other 
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methods of modelling, which are more susceptible to 

uncertainty, sparse information and complex noise 

distributions, which drives the pursuit of quantum-inspired 

neural networks in ultra-low-light image enhancement. 

 

4. Quantum and Quantum-Inspired Computing 

Concepts 
The concept of quantum and quantum-inspired 

computing has gained considerable interest because it is 

capable of solving computational problems hard to solve by 

conventional approaches. Although fully scale quantum 

devices are yet to be made practical, ideas based on quantum 

mechanics have also led to novel algorithmic techniques that 

can be carried out on classical computers. These concepts 

offer useful information towards the creation of powerful 

learning paradigms especially in situations where uncertainty 

and sparse information is common like ultra-low-light 

imaging. 

 

4.1. Overview of Quantum Computing Principles 

The main difference between quantum computing and 

classical computing is that the former uses quantum 

mechanical phenomena to process the information [20]. 

These principles are necessary to understand the way 

quantum-inspired models can modify similar concepts in 

classical learning models. 

 

4.1.1. Superposition and Entanglement 

Superposition can enable a quantum system to exist in 

several states at once, and this can be used to take parallel 

information representation. Computationally this is the 

property that allows the representation of complex 

probability distributions in a small state representation. 

Entanglement is the close relationship between the states of 

quantum systems, where it is impossible to explain the state 

of one of the components without referring to another. This 

phenomenon allows the coordination of the behavior of the 

system elements and it is usually connected to the increase of 

representational capacity. 

 

Similar ideas are achieved in quantum-inspired neural 

networks via probabilistic and high dimensional feature 

representations, which represent multiple interpretations of 

signals, or hypotheses, simultaneously. These representations 

are especially useful in imaging of extremely low light, 

where the data being viewed is mostly ambiguous and 

uncertain. 

 

4.1.2. Quantum Measurement Constraints 

Quantum measurement involves certain constraints 

because by measuring a quantum state, the measurement 

causes the collapse to a definite state. This procedure 

restricts the immediate accessibility to the entire state data 

and requires the probabilistic analysis of the measurement 

outcomes. In quantum-inspired models, these types of 

constraints are manifested in stochastic sampling, or energy-

based optimization, or probabilistic inference mechanisms 

that trade expressiveness with computational feasibility. 

  

These limits stimulate the creation of models that are not 

concerned with deterministically rebuilding signals, but are 

interested in drawing out relevant statistical trends, which are 

consistent with the demands of photon-limited imaging 

enhancement. 

 

4.2. Quantum Machine Learning: State of Research 

Quantum machine learning aims to combine quantum 

computing with learning algorithms to enhance performance 

on complicated problems. Studies in this field have 

examined many architectures and training methods with a 

range of quantum and classical elements to solve the 

hardware and scale problems. 

 

Variational quantum circuits are also one of the most 

notable methods, in which the parameterized quantum 

circuits are optimized with the help of classical algorithms 

[21]. Such circuits are able to implement complex functions 

and probability distributions, and are applicable in learning 

tasks that have uncertainty and high-dimensional data. 

Learning models Hybrid quantum-classical The hybrid 

quantum-classical learning models use classical optimization 

algorithms to optimize quantum models, and allows the 

practical experimentation of these models with limited 

quantum hardware. 

 

Nevertheless, hardware obstacles are a major hindrance 

to high adoption. The complexity of models that can be 

realized with quantum is limited by constraints associated 

with the number of qubits, noise, decoherence and error 

rates. These issues have encouraged scientists to consider 

quantum-inspired solutions that would realize the advantages 

of quantum ideas but not the need to use quantum 

processors. 

 

4.3. Motivation for Quantum-Inspired Neural Networks 

The quantum-inspired neural networks are created to be 

able to mimic the important behaviors of quantum systems 

with the help of classical computing tools. The capability in 

generating quantum-like representations, including feature 

encodings inspired by superposition and probabilistic model 

state representations, in traditional neural network models is 

one of the driving forces behind these models. It makes it 

possible to represent uncertainty and ambiguity in data more 

richly. 

 

Other significant incentives include lower computation 

cost. However, in contrast to real quantum models, quantum-

inspired neural networks can be trained and executed on 

existing classical hardware, without the overhead and 

instability of quantum devices. That is why they can be 

applied to practical tasks, such as the enhancement of large 

images. 

 

Lastly, quantum-inspired representations are also noise-

resistant in nature. These networks are able to deal with 

stochastic noise and sparse signal situations by modeling 

data in probabilistic or energy-based models. The property is 

especially beneficial to imaging with ultra-low light, where 

photon noise and sensor uncertainty are the dominant force 
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defining the measurements observed. Subsequently, 

quantum-inspired neural networks are an interesting 

connection between the classical concept of deep learning 

and quantum computing that can bring an increased level of 

robustness without necessarily utilizing specialized 

hardware. 

 

5. Quantum-Inspired Neural Networks 

(QINNs) for Imaging 
QINNs are a type of models that apply ideas of quantum 

mechanics to the design of classical neural networks. QINNs 

support strong and noise-strong encodings of high-

dimensional representations and quantum-inspired 

optimization strategies, which make them a robust and noise-

resilient hybrid neural network to enhance ultra-low-light 

images. This part describes the definition, taxonomy, 

optimization techniques and hybrid architectures that are 

used to integrate QINNs with traditional convolutional 

neural networks. 

 

5.1. Definition and Taxonomy of QINNs. 

Quantum-inspired neural networks are neural networks 

that implement quantum mechanical concepts, e.g. 

superposition, probabilistic state representations, into the 

frameworks of classical neural networks. These models do 

not need quantum hardware but attempt to realize the 

advantages of quantum calculations: especially in the 

modeling of uncertainty, sparse data, and complicated 

correlations. 

 

5.1.1. Quantum-Inspired Representations. 

Quantum-inspired representations represent information 

in feature spaces of high dimensions that are analogous to 

quantum states [22]. Their representations are useful in 

imaging tasks to enable networks to represent many of the 

possible interpretations of a noisy, photon-limited input at 

the same time. QINNs are able to effectively capture 

uncertainty of ultra-low-light images by keeping several 

hypotheses and probabilistic distributions of pixel values or 

feature activations. 

 

5.1.2. Probabilistic Amplitude Encoding 

One of the QINNs techniques is probabilistic amplitude 

encoding, which is used to encode input data into a 

probabilistic feature space. Among the features are 

associated with their amplitudes or probability, which allows 

the network to spread uncertainty across its layers. This 

enables the model to do strong inference, even when there is 

an abundance of noise and the number of photons is very 

sparse, which is essential in improving low-light imaging. 

 

Table 2 provides a summary of the types of quantum-

inspired neural networks that are typically employed to 

handle imaging problems showing how they represent their 

strategies and their applications. 

 

Table 2: Categories of Quantum-Inspired Neural Networks Used In Imaging Tasks 

Category Key Characteristics Typical Imaging Applications 

Probabilistic 

QINNs 

Use probabilistic amplitude encoding, handle 

uncertainty explicitly 

Low-light image denoising, photon-limited 

microscopy 

Energy-Based 

QINNs 

Model image reconstruction as energy minimization Image restoration, super-resolution under noise 

Tensor Network 

QINNs 

Represent features using tensor contractions inspired 

by quantum states 

Structured image enhancement, multi-scale 

feature fusion 

Hybrid QINN-

CNN 

Integrate convolutional feature extractors with 

quantum-inspired refinement 

General low-light enhancement, astronomy and 

biomedical imaging 

 

5.2. Quantum-Inspired Optimization Techniques 

The idea of optimization in QINNs is based on the 

principles of quantum computation, which allows exploring a 

large dimensional and noisy space of solutions efficiently. 

 

5.2.1. Quantum Annealing-Inspired Training 

Quantum annealing-inspired training is the training of a 

training system by simulating the slowing of the system to its 

most minimal possible energy state, and is used in similar 

manner to quantum annealing in combinatorial optimization. 

When applied to imaging, QINNs can be used to trade-off 

fidelity and noise-reduction to give strong results in 

enhancing photon-limited images. 

 

5.2.2. Tensor Network Learning. 

The internal representations of neural networks are 

modeled as tensors interconnected by a neural network, 

representing quantum many-body states, in the form of a 

tensor network based model of learning. The model is 

capable of long-range dependency capture in images as well 

as efficient computation by factorizing high-dimensional 

feature space into a series of tensor networks with low 

memory demand. This methodology is especially useful in 

multi-scale low-light image enhancement problems, in which 

local textures and global structures are to be restored. 

 

5.3. Hybrid CNN–Quantum-Inspired Architectures 

Hybrid architectures integrate CNNs which effectively 

extract features with QINNs which effectively do wrong 

refinements and noise resistant reconstruction [23]. The 

models utilize the hierarchical nature of feature extraction of 

CNNs and increase their robustness with quantum-inspired 

representations and optimization. 

 

5.3.1. Feature Extraction via CNNs 

CNN modules are known to extract spatial features, 

textures, and structural patterns of low light input images. 

Convolutional layers are known to encode local and global 

contextual information to give rich feature representations 

that are then used in probabilistic refinement. Multi-scale 
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aggregation of features has been commonly used to maintain 

the details at various spatial resolutions. 

 

5.3.2. Quantum-Inspired Feature Refinement 

The representations are then refined in quantum-inspired 

modules, which encode the uncertainty, optimize using 

energy, or transform with a tensor network, after feature 

extraction. This optimization reduces noise, retains fine 

details and the resulting reconstruction image has a balance 

between brightness enhancement and structural faithfulness. 

The integrated implementation of quantum-inspired 

refinement modules with CNN feature extraction forms the 

basis of a common hybrid CNN-quantum-inspired neural 

network architecture, as shown in Fig. 3, into which the 

sequential implementation of both modules is applied to low-

light image enhancement. 

 
Fig 3: Hybrid CNN–Quantum-Inspired Neural Network 

Architecture for Low-Light Enhancement 

 

The image must represent a low-light input image that is 

being fed into a CNN block, in order to extract hierarchical 

features. The features which are extracted are then 

introduced to a quantum-inspired refinement module, which 

consists of probabilistic encoding and optimization through 

tensors. The image is further improved in the output block. 

Data flow arrows are used to show the data flow and optional 

notes are made to indicate uncertainty propagation and multi-

scale feature processing. 

 

6. Ultra-Low-Light Imaging Enhancement 

Using QINNs 
Quantum-inspired neural networks (QINNs) offer a 

methodological way towards improving image quality of 

photon-starved images. Through their combination of 

probabilistic modeling, uncertainty management and state-

of-the-art feature refinement, QINNs are able to reduce 

noise, preserve structural information and visual quality, 

which classical deep learning methods cannot. In this 

section, the authors address the noise modeling, feature 

enhancement, and performance evaluation in ultra-low-light 

imaging by QINNs. 

 

6.1. Noise Modeling Using Quantum Probability 

Distributions 

Accurate noise modeling is critical for photon-limited 

imaging, where observed intensities are dominated by both 

stochastic photon arrival and sensor-induced artifacts. 

QINNs leverage quantum-inspired probabilistic 

representations to handle this uncertainty effectively. 

6.1.1. Poisson–Gaussian Noise Modeling 

Photon-limited imaging can be characterised as a 

Poisson-Gaussian noise distribution, which includes the 

discrete nature of photon arrivals and noise generated by the 

sensor, such as a read noise and dark current. QINNs are able 

to directly add these distributions to their probabilistic 

feature spaces, and the network is able to discriminate 

between signal and noise under conditions of very low-light. 

 

6.1.2. Quantum-Inspired Uncertainty Handling 

In addition to normal noise models, quantum-inspired 

uncertainty models are presented by QINNs. Probabilistic 

encoding of amplitudes enables the network to have multiple 

proposals of pixel values and feature activations in the 

network, which is a very strong mechanism to spread and 

manage uncertainty across the pipeline of enhancement. This 

method enhances the resistance of stochastic photon noise, as 

well as non-Gaussian sensor artifacts, and leads to more 

correct reconstructions. 

 

6.2. Feature Enhancement in Photon-Starved Images 

After successfully modeling noise, QINNs work towards 

improving meaningful image properties but not over-

enhancing the noise. This is done by making global changes, 

like contrast adjustment, and local refinements, like edging 

preservation. 

 

6.2.1. Contrast Enhancement 

Enhancing contrast in ultra-low-light images is also 

difficult since naive amplification exposes more noise as 

well. QINNs use probabilistic feature weighting to boost 

signal components preferred more by the algorithm which 

enhance visibility and overall brightness with noise 

amplification being controlled. The approach enables low 

intensive structures to be perceptually distinguishable 

without artifact creation. 

 

6.2.2. Edge Preservation 

Photon-limited conditions are especially detrimental to 

edges and fine structural details. QINNs represent high-

dimensional probabilities, using which they retain edges by 

having many competing hypotheses of pixel intensities at 

boundaries. Refinement methods that are energy-based also 

provide structural consistency, that is, the edges are sharp 

and correct in the refined output. 

 

 

6.3. Performance Evaluation and Benchmarking. 

Low-light enhancement processes should be evaluated 

by quantitative and qualitative measures. QINNs are 

compared to classical techniques of deep learning on the 

basis of standard image quality measures and visual 

perception classification. 

 

6.3.1. Quantitative Metrics (PSNR, SSIM) 

Structural similarity index (SSIM) and peak signal-to-

noise ratio (PSNR) are very popular to measure 

reconstruction fidelity and perceptual quality. QINNs are 

always better in photon-starved conditions compared to 

classical CNN and GAN models with higher PSNR and 



Sajud Hamza Elinjulliparambil / IJERET, 6(2), 111-121, 2025 

118 

structural preservation. These improvements have a direct 

contribution by their probabilistic noise modeling and 

uncertainty-aware refinement. 

 

6.3.2. Visual Perception Analysis 

In addition to the numerical measures, visual perception 

analysis is essential in determining the effective nature of the 

methods of improvement which are used in practice. QINNs 

generate images that are better brightened, with higher 

contrast, and retain edge structures to generate both 

aesthetically and analytically acceptable outputs. 

 

The performance of classical deep learning models and 

quantum-inspired neural networks is proved to be compared 

in Table 3, showing the benefits of QINNs in very-low-light 

amplification tasks. 

 

 

Table 3: Performance Comparison of Classical DL Vs Quantum-Inspired Models 

Method Dataset PSNR 

(dB) 

SSIM Key Observations 

CNN-based 

Enhancement 

Low-Light Image 

Dataset 

21.5 0.78 Effective for moderate low-light, suffers under extreme 

photon-starved conditions 

GAN-based 

Enhancement 

LLIE Benchmark 22.3 0.80 Generates realistic textures but may introduce artifacts, 

unstable in very low-light 

QINN (Probabilistic) LLIE Benchmark 24.7 0.85 Preserves edges, robust to noise, improved perceptual 

quality 

Hybrid CNN–QINN LLIE Benchmark 25.2 0.87 Best overall balance between contrast, structure, and 

noise suppression 

 

This section demonstrates that quantum-inspired neural 

networks offer significant advantages over classical deep 

learning methods in ultra-low-light scenarios. By integrating 

probabilistic noise modeling, uncertainty propagation, and 

structured feature refinement, QINNs improve both objective 

image quality metrics and subjective visual fidelity, making 

them a promising approach for photon-starved imaging 

applications. 

 

7. Applications of Quantum-Inspired Low-

Light Imaging 
The neural networks based on quantum-inspired neural 

networks (QINNs) to enhance ultra-low-light images have 

demonstrated potential in a broad scope of applications. 

These models have allowed superior image quality, feature 

conservation and dependability by controlling photon-

constrained situations in key operations where other 

enhancement methods are insufficient. This section gives a 

major point of application, which is biomedical imaging, 

astronomy, and surveillance systems. 

 

7.1. Biomedical and Microscopy Imaging 

Biomedical imaging usually involves taking photos in 

low-level illumination in order to prevent destruction of 

delicate biological samples. Under fluorescence microscopy, 

e.g., of cells and tissues, the cells are labeled with fluorescent 

dyes that fluoresce upon excitation by certain wavelengths. 

High intensity of light may cause phototoxicity and 

photobleaching, which undermine the viability of cells and 

the results of an experiment. 

 

A remedy to this is quantum-inspired low-light 

enhancement as it allows the accurate reconstruction of 

fluorescence signals with sparse measurements of photons. 

Uncertainty-based refinement of features and probabilistic 

noise modeling enable the QINNs to optimize contrast, 

maintain fine cellular structures, as well as require less 

powerful illuminations. This has been especially useful in 

live-cell imaging, time-lapse microscopy, or in any other 

application that needs a long period of observation without 

damaging the specimen. 

 

7.2. Space and Astronomical Imaging. 

Photon-limited The astronomical imaging is necessarily 

photon-limited because the light of stars, galaxies and other 

heavenly bodies that are in the distance is so weak [24]. The 

observations need sensitive detectors that can record the 

weak signals besides reducing the noise due to sparsity of 

photons and sensor electronics. 

 

The quantum-inspired improvement schemes enhance 

image reconstruction of deep space imaging to increase the 

visibility of small celestial objects and photometric precision. 

QINNs are able to reduce the background noise and retain 

important characteristics of the scenes such as star clusters, 

planetary surfaces and nebulae by using structured noise 

modeling combined with probabilistic amplitude encoding. 

This functionality promotes astrophysical studies, high-

resolution telescopic studies, and space remote sensing 

missions. 

 

7.3. Defense Imaging and Surveillance. 

Low-light imaging is critical in the sphere of 

surveillance, defense and security, when it is necessary to 

watch something covertly or even to act at nighttime. The 

systems should be able to work with severe light illumination 

limitations and high spatial and temporal accuracy. 

 

The use of quantum-inspired improvement allows night-

vision and low-light surveillance to be seen more clearly 

with a reduced amount of noise artifacts. QINNs enable more 

object and activity detection in serious conditions by 

maintaining edges and finer structural details. Also, it is 

possible to incorporate these models into secure imaging 

pipelines, such that sensitive surveillance information is 



Sajud Hamza Elinjulliparambil / IJERET, 6(2), 111-121, 2025 

119 

boosted without reducing privacy or adding any artifacts that 

may influence subsequent analysis or automated threat 

detection measures. 

 
Fig 4: Application Domains of Quantum-Inspired Low-

Light Imaging Enhancement 

 

8. Security, Trust, and Policy Considerations 
Since quantum-inspired neural networks (QINNs) 

continue to be used to perform ultra-low-light imaging in 

essential fields, security, trust, and policy-related issues are 

crucial. The imaging system is prone to adversarial attack, 

data breaches, and unauthorized access, especially when the 

system is implemented in the cloud or distributed systems. 

Additional images and practices of strong cybersecurity and 

policy-conscious frameworks will guarantee the 

confidentiality, integrity, and reliability of the improved 

images without violating the regulations. 

 

8.1. AI Security Risks in Imaging Systems 

AI-based imaging pipelines face multiple security risks that 

can compromise both the models and the generated outputs: 

 

8.1.1. Data Tampering 

Images taken in low-light conditions and their increased 

results can be deliberately altered, which can be misguided in 

analysis or automated decision support. Medical, 

surveillance and defense applications of a database 

necessitate the integrity of the data. 

 

8.1.2. Model Inversion Attacks 

An attacker can also seek to recreate sensitive input 

images even given access to trained model outputs or 

gradients. When using low-light images, the information that 

is being reconstructed may give confidential data of the 

patients or surveillance targets or strategic assets. Quantum-

inspired networks, though strong against stochastic noise, 

need further protection against such attacks. 

 

8.2. Trust-Based Frameworks for Secure Image Processing 

Distributed imaging systems require the establishment 

of trust, especially when the enhancement computations are 

offloaded to fog or edge nodes. Following the example of 

Trust-Based Frameworks for Securing Inter-Fog 

Communication, QINN pipelines may integrate trust-

conscious protocols to guarantee the secure operation in the 

heterogeneous networks. 

 

8.2.1. Trust Modeling in Distributed Imaging Nodes 

A trust score can be assigned to each node in a 

distributed network based on the previous actions, 

authenticity, and integrity of the processed data. The critical 

image enhancement tasks are allocated high-trust nodes and 

limited or monitored by low-trust nodes. This prevents the 

possibility of having malicious or compromised nodes that 

will affect the process of enhancement. 

 

8.2.2. Edge-Based and Secure Fog Image Enhancement. 

Edge and fog computing make it possible to boost the 

photon-starved images in real-time near the data source. 

Through the combination of trust-conscious methods, better 

images may be calculated safely in distributed nodes with 

keeping the confidentiality and integrity of the sensitive 

information in advance before it is aggregated or sent to the 

cloud. 

 

8.3. Cloud Security Posture Management (CSPM) for 

Imaging Pipelines 

Cloud deployment of QINN-based enhancement models 

introduces additional security and policy challenges. CSPM 

techniques can automate policy enforcement to maintain 

compliance and protect sensitive imaging data: 

 

8.3.1. Secure Training and Deployment 

Training models in controlled cloud environments can 

have a very tight access control, datasets encryption and 

auditing of model updates. 

 

8.3.2. Medical and Defense Imaging Policy Enforcement 

CSPM structures can be able to enforce lawful and 

operational policy regarding the low-light enhancement 

models, such as HIPAA in the case of biomedical imaging or 

the security and confidentiality handling of defense 

surveillance information [25]. 

 

8.4. Quantum-Resistant Cryptography for Imaging Data 

Protection 

Classical encryption schemes are threatened by the 

emergence of quantum computing. The quantum-inspired 

imaging systems have the capability of incorporating 

quantum-resistant cryptography to future proof sensitive 

image data. 

 

8.4.1. Protecting Imaging Data against the Future Quantum 

Threats. 

Lattice-based or post-quantum cryptographic algorithms 

can be used to safeguard imaging data and model parameters 

against the possible quantum attack, and provide long-term 

confidentiality of medical, surveillance, and space imaging 

data. 

 

8.4.2. Encryption of Improved Image Productions. 

QINNs can generate improved images that can be 

encrypted before storage or transmission. This in conjunction 

with probabilistic enhancement models makes sure that 
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sensitive visual information is not lost even in the 

interception case [26]. 

 

8.5. Cybersecurity Policy Frameworks for AI-Based 

Imaging 

Policy frameworks play a key role in guiding the secure, 

ethical, and compliant deployment of QINN-based imaging 

systems. Drawing from cybersecurity policy frameworks for 

AI in government, imaging pipelines can incorporate [27]: 

 Regulatory Constraints: The adherence to the 

national and international laws of data privacy, use, 

and sharing. 

 Privacy-Preserving Imaging Enhancement: The 

application of differential privacy or federated 

learning in ensuring that sensitive image data in 

enhancement is not accessed illegally. 

 Government and Defense Deployment 

Considerations: The setting of standards that control 

deployment, auditing and monitoring where low-

light imaging is utilized in both strategic or defense 

applications. 

 

A secure and policy-sensitive deployment architecture 

of quantum-inspired imaging systems and incorporates trust-

based distributed computation, CSPM to manage clouds and 

post-quantum encryption to sensitive image data. 

 

9. Open Challenges and Research Directions 
Although the development of an ultra-low-light imaging 

enhancement with quantum-inspired neural networks 

(QINNs) is very promising, a number of gaps remain open 

especially in the research point of view. The interpretability 

of models remains an issue of serious concern, with QINNs 

more likely to be black-box systems. Although probabilistic 

and quantum-inspired representations are stronger, these 

models are not easy to comprehend completely because they 

are too complex in nature. Such lack of transparency may 

prevent trust in transparency especially in the sensitive 

application of biomedical imaging or defense surveillance 

where explainability and accountability are essential. 

 

There are also scalability and real time constraints which 

are also obstacles. Most of the QINN architectures are very 

demanding in terms of computational power because they 

have high-dimensional probabilistic features representation 

and optimization modules energy-based. Implementing these 

models on embedded or edge computers with low processing 

capability is still difficult, which constrains the practicability 

of real-time upgrading to real-life applications such as a 

mobile night-vision system, live-cell microscopy or an 

autonomous surveillance system. The study of how to 

balance between computational efficiency and enhancement 

performance is a constant research direction. 

 

The second important issue is the inability to have 

standardized criteria to judge upon ultra-low-light 

enhancement techniques. Available datasets are commonly 

small, heterogeneous, or photon-constrained, in which case 

they cannot be able to fully test a model. Also, evaluation 

bias may arise where the evaluation of models is conducted 

on a set of data that is not representative of the entire variety 

of real-world conditions, which may overstate the 

performance. To fill these gaps, standardized, photon starved 

datasets and evaluation protocols should be established to 

facilitate a comparative evaluation of classical deep learning 

and quantum inspired models. 

 

All of these issues emphasize the necessity to conduct 

research that will improve the transparency of models, the 

effectiveness of computational efficiency to run them in real-

time, and the creation of credible evaluation frameworks that 

will help advance more realistic and reliable ultra-low-light 

imaging improvement solutions. 

 

10. Conclusion 
QINNs are a revolutionary method of improving ultra-

low-light imaging with photon-starved conditions being the 

bottleneck of the traditional imaging pipeline potentially 

being addressed by quantum-inspired neural networks. 

QINNs offer the ability to encode the probabilistic amplitude 

encoding, energy-based optimization, and uncertainty-aware 

feature refinement, which are effective in all the three 

scenarios to model the stochastic photon noise, sensor 

artifacts, and sparse signal conditions. This allows it to retain 

fine structural features, give a better contrast, and better 

perceptual quality and beats classical methods of deep 

learning, including CNNs and GANs, in low-light 

conditions. 
 

QINNs have a wide range of areas where they are 

versatile. These networks are used in biomedical and 

microscopy imaging to obtain precise reconstruction of 

fluorescence signals with reduced phototoxicity that allows 

live-cell imaging of cells and their spatial resolution. QINNs 

are used in astronomy to improve imaging in deep space by 

reconstructing signals and increasing the visibility of faint 

celestial objects to facilitate scientific discovery in the 

photon-limited observational environment. In surveillance 

and defense applications, quantum-inspired improvement can 

be used to provide stable night vision, secure imaging 

pipelines and robust object detection in low-light conditions. 
 

In addition to algorithmic performance, real-life 

applications of QINNs need to consider security, trust and 

policy issues. Combining the idea of trust-based frameworks 

in distributed processing, cloud security posture 

management, quantum-resistant cryptography, and 

compliance with regulatory requirements is what will 

guarantee the safety of health imaging data and the reliability 

and accountability of the systems. These are necessary in 

medical, defense and government deployments, with privacy, 

data integrity and operational security being the most crucial 

issues. 
 

Although there is big improvement, there are still a 

number of challenges. The interpretation of models is not yet 

as interpretable as it would be with probabilistic and 

quantum-inspired architectures due to the complexity and 

consequent challenges related to understanding and trust of 

critical applications. Scalability and on-demand deployment 

on resource-nutrient systems has been a challenge especially 
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on edge or embedded architecture. In addition, there are no 

objects of comparison and standardized, photon-starved data 

and benchmark protocols which limit fair comparisons and 

objective evaluation across models. The solutions to these 

shortcomings will involve developments of explainable 

quantum-inspired architectures, effective optimization 

algorithms, and extensive low-light imaging datasets. 
 

To sum up, QINNs can be viewed as an adequate 

solution connecting classical deep learning and quantum 

computing ideas, and provide a conceptually coherent and 

practical method of enhancing images in ultra-low-light 

scenarios. With their characteristics of having strong 

capacity to deal with uncertainty, sparse photon data and 

noise, they are best suited to scientific, biomedical and 

defense imaging. Their effects will be further reinforced by 

future studies on interpretability, computational efficiency, 

standardized assessment, and secure implementation, which 

will lead to the pervasive use of quantum-inspired imaging 

technologies in the real living conditions that are short of 

photons. 
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