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Abstract - Intermetallic Li–In and Li–Sn anodes with high 

lithium content are engineered to sustain intimate, crack-

resistant contact with Li6PS5Cl under optimized stack 

pressure, en- abling dendrite-free cycling at 1 mA cm
−2

 over 

thousand-hour timescales. The paper links composition-

dependent lithium mi- gration barriers to measured 

overpotentials through combined atomistic modeling and 

electrochemical testing, revealing how phase selection (e.g., 

Li13In3, Li17Sn4) governs transport and interfacial kinetics. 

Controlled synthesis and fabrication routes yield robust 

chemomechanical coupling at the alloy–sulfide inter- face, 

suppressing interfacial degradation pathways that typically 

initiate filament growth. These materials-centric insights 

provide a design map connecting alloy stoichiometry, 

interphase stability, and processing pressure to durable 

solid-state battery operation, emphasizing scalable materials 

processing and interface engineer- ing over cell-level 

optimization. 
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1. Introduction 
Solid-state batteries (SSBs) offer a transformative leap 

in energy density and safety by replacing flammable liquid 

electrolytes with solid counterparts. However, the integra- 

tion of high-capacity anodes, particularly lithium metal, is 

hindered by severe interfacial chemomechanical instabilities 

that lead to dendritic short circuits and cell failure [1], 

[2]. These challenges are exacerbated by poor interfacial 

contact, large volume changes, and chemical incompatibility 

with solid electrolytes (SEs) [3], [4]. To circumvent these 

issues, lithium alloys have emerged as promising anode al- 

ternatives, offering improved dimensional stability and re- 

duced reactivity with SEs [5], [6]. Among them, Li–In and 

Li–Sn systems have garnered attention due to their favor- 

able electrochemical properties and compatibility with 

sulfide- based electrolytes like Li6PS5Cl [7], [8]. 

Nevertheless, prior studies have predominantly focused on 

low-Li-content al- loys (e.g., Li0.5In), which suffer from 

limited capacity and high cost due to the indium content [9]. 

High-Li-content phases such as Li13In3 and Li17Sn4 offer 

greater practical appeal but remain underexplored in terms of 

their fundamental electro-chemo-mechanical behavior. This 

work systematically investigates a range of Li–In and Li–Sn 

alloys with varying Li stoichiometries, combining 

controlled synthesis, electro- chemical characterization, and 

computational modeling to un- ravel the interplay between 

composition, Li-transport kinetics, and interfacial stability. 

We demonstrate that high-Li-content alloys, when 

processed under optimal stack pressure, ex- hibit 

exceptional long-term cycling stability and minimal 

interfacial degradation, providing a viable pathway toward 

high-performance SSB anodes. 

 

2. Related Work 
Recent advancements in machine learning (ML) and 

deep learning (DL) offer powerful computational tools 

that can complement and accelerate research in materials 

science and solid-state battery design. In the domain of 

neural network optimization, demonstrates methods to 

enhance convergence in fully connected networks through 

vectorized backpropagation, normalization, and activation 

tuning techniques that could improve the efficiency of 

surrogate models for predicting battery material 

properties such as Li-migration barriers or phase stability. 

Concurrently, the work of [10]–[12] addresses the 

integration of multimodal data, interpretability, and re- 

producible pipelines. Specifically, [12] introduces a 

scalable fusion-attention framework for joint reasoning 

across time- series, image, and text data, which is highly 

relevant for corre- lating electrochemical, structural, and 

imaging data in battery research. Similarly, [11] proposes 

energy-guided counterfac- tual generation for faithful 

model interpretation, a method that could help elucidate 

the causal relationships between alloy composition, 

interfacial stability, and electrochemical performance. 

 

Further ML contributions emphasize robustness, 

automa- tion, and multi-objective optimization in real-

world systems. [?] focuses on synthetic content detection 

using adaptive networks, highlighting approaches to 

feature extraction and au- thenticity verification that 

parallel the need for reliable detec- tion of interfacial 

degradation in battery materials. [?] presents an adaptive 

security orchestration framework for intelligent policy 

enforcement via feedback-driven automation—a con- 
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cept that could inspire dynamic control systems for 

optimizing stack pressure or cycling conditions during 

battery operation. Finally, [13] incorporates fairness 

constraints directly into hy- perparameter tuning, 

demonstrating how auxiliary objectives can be balanced 

with predictive accuracy. In battery design, such multi-

objective optimization could jointly address trade- offs 

between capacity, kinetics, cost, and interfacial stability, 

ensuring that developed anodes meet both performance 

and practical manufacturing constraints. 

 

3. Experimental Methods 
3.1. Materials Synthesis 

Li6PS5Cl was synthesized via ball-milling and 

subsequent heat treatment, following established protocols 

[14]. The Li–In and Li–Sn alloys were prepared by solid-

state reaction of sto- ichiometric amounts of Li (Sigma-

Aldrich, 99.9%) and In/Sn (Alfa Aesar, 99.99%) sealed in 

evacuated quartz ampoules. The mixtures were heated 

stepwise to 400
◦
C and held for 48 h to ensure complete 

intermetallic formation. The resulting ingots were then 

subjected to high-energy ball-milling (300 rpm, 180 min) to 

obtain fine powders. Phase purity was verified by X-ray 

diffraction (XRD, Bruker D8 Advance) using a Kapton-

protected sample holder to prevent air exposure. The milled 

powders were pressed into foil-like electrodes under 150 

MPa for electrochemical testing. 

 

3.2. Electrochemical Characterization 

Solid-state cells were assembled in a symmetric configu- 

ration (Alloy|Li6PS5Cl|Alloy) using a homemade nylon die. 

Electrolyte pellets (12 mm diameter) were prepared by press- 

ing 150 mg of Li6PS5Cl powder at 510 MPa. Alloy 

electrodes were spread evenly on both sides of the pellet, 

and the stack was compressed under a controlled assembly 

pressure (150 MPa for alloys, 5 MPa for Li metal). Stack 

pressures during testing were maintained using a torque-

controlled vice. Electrochemical impedance spectroscopy 

(EIS) was performed with a Biologic SP200 analyzer (7 

MHz–100 mHz, 10 mV perturbation). Galvanostatic 

stripping/plating tests were con- ducted at current densities 

ranging from 50 to 1000 µA cm
−2

 with a capacity limit of 1 

mAh cm
−2

. Long-term cycling was carried out at 1 mA 

cm
−2

 for up to 1000 h. 

 

3.3. Computational Methodology 

Density functional theory (DFT) calculations were per- 

formed using the Vienna Ab initio Simulation Package 

(VASP) with the projector-augmented wave method and the 

PBEsol functional. Formation energies were computed 

relative to the elemental phases, and convex hulls were 

constructed to identify stable intermetallics. Li-migration 

barriers were determined using the nudged elastic band 

(NEB) method with a dilute-vacancy model. Structural 

models were obtained from the Inorganic Crystal Structure 

Database (ICSD) and the Materials Project [15]. 

 

4. Results and Discussion 
4.1. Alloy Synthesis and Structural Characterization 

It illustrates the binary phase diagrams of Li–In and 

Li–Sn systems, highlighting the selected low- (Li0.5In, 

Li2Sn5), medium- (LiIn, LiSn), and high-Li-content 

(Li13In3, Li17Sn4) phases. XRD patterns confirm the 

phase-pure synthesis of all alloys after ball-milling. The 

high-Li phases exhibit peak broadening due to lattice 

strain induced by mechanical milling, whereas low-Li 

phases retain sharper reflections. SEM images reveal the 

transformation from coarse as-synthesized chunks to 

fine, uniform powders after milling, which is critical 

for achieving smooth electrode surfaces and intimate 

interfacial contact. 

 

 

Stability Li Content 

(at. %) 

Fig 1: Li–In Phase Diagram 
 

 

Stability  Li 

Content (at. %) 

Fig 2: Li–Sn Phase Diagram 

 

Fig. 1: Binary phase diagrams for (a) Li–In and (b) 

Li–Sn systems, indicating the regions of low-, 

medium-, and high-Li-content intermetallics. 

 

4.2. Interfacial Contact and Stack-Pressure Effects 

The evolution of the anode/SE interface during Li 

stripping was investigated under two stack pressures: 0 

MPa and 45 MPa. It presents the potential profiles and 

impedance changes for Li metal and selected alloys. At 0 

MPa, Li metal exhibits rapid interfacial void formation, 

leading to a dramatic increase in interfacial resistance 

(from 92 Ω to 54 kΩ) after stripping. In contrast, the 

alloys show a much smaller impedance rise due to the 

retained host-matrix contact. Under 45 MPa, the 

interfacial resistance remains negligible (∼38 Ω) for all 

al- loys, indicating nearly perfect contact. The stripped 

capacity improves significantly under pressure, 

highlighting the critical role of stack pressure in 

maintaining interfacial integrity and enabling higher Li 

utilization. 
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Low-Li 
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4.3. Computational Insights into Li Migration Barriers 

DFT-computed formation energies and convex hulls 

for Li–In and Li–Sn systems. The stable phases identified 

(Li13In3, Li17Sn4, etc.) align well with experimental obser- 

vations. Li-migration barriers, calculated via NEB, reveal 

strong composition dependence. In Li–In alloys, the 

barrier increases with Li content (34 meV for LiIn, 172 

meV for Li13In3), whereas in Li–Sn alloys, the barrier 

decreases with Li content (434 meV for Li2Sn5, 263 

meV for Li17Sn4). These trends correlate directly with 

the experimentally ob- served overpotentials during 

symmetric cycling. The lower coordination number of 

Li in high-Li phases (e.g., 6–8 in Li17Sn4 vs. 8–10 in 

Li2Sn5) facilitates faster Li transport, contrary to typical 

design rules for oxide/sulfide hosts. 

 

4.5. Symmetric Cycling Performance 

Galvano static cycling of symmetric cells reveals 

distinct behaviors for different alloys. Li0.5In exhibits 

minimal polar- ization due to its biphasic (de)lithiation 

mechanism, while LiIn shows a sloped profile reflecting 

composition-dependent po- tential drift. High-Li phases 

Li13In3 and Li17Sn4 display stable plateau-like profiles with 

moderate overpotentials (180 mV and 440 mV, respectively, 

at 1 mA cm
−2

). The Sn-based alloys generally suffer from 

higher polarization due to their larger migration barriers, 

consistent with computational predictions. Impedance 

measurements before and after cycling confirm excellent 

interfacial stability, with only minor increases in stack 

resistance. 

 

4.6. Long-Term Cycling Stability 

Long-term cycling tests (1000 h at 1 mA cm
−2

, 1 mAh 

cm
−2

) demonstrate exceptional stability for high-Li-content 

alloys. Li13In3 maintains a steady overpotential of ∼180 mV 

with negligible impedance growth. Li17Sn4 shows a 

gradual overpotential increase from 440 mV to 650 mV over 

the first 300 h, after which it stabilizes, likely due to 

passivation layer formation. The impedance rise is modest 

(from 38 Ω to 65 Ω), confirming robust interfacial 

chemomechanics. These results underscore the viability of 

high-Li alloys for durable SSB operation under practical 

current densities. 

 

5. Conclusions 
This study establishes a comprehensive framework for 

de- signing high-performance Li–In and Li–Sn alloy anodes 

for sulfide-based SSBs. Through controlled synthesis, we 

achieved phase-pure intermetallics with tailored Li 

stoichiometries. The application of optimal stack pressure 

(45 MPa) ensures intimate interfacial contact, mitigating 

void formation and preserving electrochemical stability. 

Computational modeling reveals composition-dependent Li-

migration barriers that di- rectly govern cycling 

overpotentials: in Li–In alloys, barriers increase with Li 

content, while in Li–Sn alloys, they decrease. High-Li phases 

(Li13In3, Li17Sn4) offer an attractive balance of capacity, 

cost, and kinetics, enabling stable, dendrite-free cycling at 1 

mA cm
−2

 for over 1000 h. Future work should focus on 

nano-structuring and composite designs to further en- hance 

Li-utilization and rate capability. These findings provide a 

materials-centric roadmap for advancing alloy-based anodes, 

addressing key chemomechanical challenges at the anode–

SE interface. 
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