
International Journal of Emerging Research in Engineering and Technology

Pearl Blue Research Group | Volume 7 Issue 1 PP 101-108, 2026

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X.IJERET-V7I1P115

Original Article

Survey of Java Security Practices in Large-Scale Applications

Abhijit Roy

Associate Consultant, Independent Researcher, India.

Received On: 21/12/2025 Revised On: 22/01/2026 Accepted On: 01/02/2026 Published On: 05/02/2026

Abstract - Java is still one of the most popular programming

languages to develop large-scale enterprise applications

because of its platform independence, scale, robustness and

well-established ecosystem. With more organizations

depending on Java based systems to drive their mission

critical processes, the security of these applications has

become a major focus. The increasing complexity of

enterprise architectures and the rapid pace of cyber threats

have brought Java applications under the risk of data

breaches, unauthorized access, service disruption and

compliance and violation. The security vulnerabilities

usually relate to poor or insecure coding, misconfigurations,

third-party dependencies, and a lack of integration with

security controls during the lifecycle of the application. The

paper is a survey of Java security practices in large-scale

applications with a particular focus on the underlying

security mechanisms of the Java Virtual Machine, such as

class loading, bytecode verification, and sandboxing. It also

looks at the security functionality of the major enterprise

platforms like the Spring and Jakarta EE which offer

intrinsic security support features to authentication,

authorization, session management and safeguards against

typical web vulnerabilities. This work will inform developers,

architects and security professionals on how to design,

deploy and maintain secure, enterprise-tier Java

applications by clarifying their significance on layered

security models, framework-based protective measures, and

vulnerability management before they develop.

Keywords - Java Security, Enterprise Applications, Large-

Scale Systems, JVM Security, Secure Coding Practices,

Spring Security, Jakarta EE.

1. Introduction
The large-scale development of enterprise web

applications has greatly increased the number of attackable

points to exploit by malicious attackers, and application

security has become a research and practice focus of

importance in the contemporary field of software engineering

[1][2]. With organizations steadily moving business

processes, data management, and customer interactions to

web-based tools, the confidentiality, integrity, and availability

of web-based systems have become the most important [3].

The enterprise applications have had long-standing

vulnerabilities despite significant progress in web

technologies, security frameworks and standardized

protocols. These vulnerabilities could be as a result of

changing the methods of attack, complicated architecture of

the system, insecure code writing, and lack of adequate

security testing during the software development cycle [4][5].

In the modern digital age of computing, the Java

application has become the foundation of enterprise

computing and supports mission-critical applications in

finance, healthcare, e-commerce, telecommunications, and

government services, among others. Java is a popular

platform in the development of large and distributed

applications, and high availability due to its platform

independence, scalability, rich ecosystem, and mature tooling.

Nevertheless, even those features that predispose Java to

enterprise usage like modular structures, third-party libraries,

microservices, and cloud-native deployments, create serious

security concerns. The complex nature of the current Java

applications makes it more likely to have configuration errors,

dependency vulnerabilities and inconsistent security

enforcement between system components.[6]

Moreover, the modern threat is no longer the classical

attack but advanced exploits that have occurred as remote

code execution, supply chain attacks, insecure API usage, and

privilege escalation in distributed environments [7].

Enterprise Java applications are increasingly becoming the

target of attackers as they are widely used and have access to

confidential organizational data. This has led to the fact that

traditional perimeter security methods are no longer adequate.

Rather, the organizations are required to implement layered,

framework, and comprehensive security measures that cut

across the Java Virtual Machine (JVM), applicational

frameworks, development systems, and deployment systems

[8].

It is in this context that a systematic knowledge of Java

security practices in large-scale applications is necessary.

Although several studies and industry practices focus on one

of the elements of Java security like framework-level

security, secure-coding approaches, and authentication

systems, there is no unified survey that integrates underlying

security models, framework features, secure-development

practices, and deployment issues. The objective of this paper

is to fill this gap, through a detailed survey of Java security

practices in large-scale applications. It explores the security

background of Java, assesses the security features of popular

frameworks, draws attention to secure programming, and

provides a synthesis of the literature to discern the existing

trends, constraints, and future research.

https://doi.org/10.63282/3050-922X.IJERET-V7I1P115

Abhijit Roy / IJERET, 7(1), 101-108, 2026

102

1.1. Structure of the paper

This paper is structured as follows: Section II outlines the

principles of Java security. Section III is the security

capabilities of the major Java frameworks. Section IV is

devoted to secure coding practices and Java application

mitigation of general vulnerabilities. Section V is a summary

of related literature. Lastly, Section VI provides a conclusion

of the paper and the future research directions.

2. Java Security Foundations
Java is an object programming language that was

developed by Sun microsystems in 1995 and eventually

purchased by Oracle Corporation. It is operating on the

principle of Write Once, Run Anywhere (WORA) facilitated

by the Java Virtual Machine (JVM) that ensures that Java

programs can be run on different platforms without any code

modification and implements runtime security measures [9].

Java has undergone a series of releases that have

enhanced performance, security and efficiency in

development by developers. Java 8 (2014) introduced features

of functional programming, including lambda expressions,

functional interfaces, and the Java Stream API, and Java 17

(2021) added more features in the security and performance

areas and introduced features of modern languages, including

sealed classes and improved pattern matching. These

developments enhanced the security, large and distributed

applications of Java [10].

The security model of Java is based on the controlled

code execution on the basis of the level of trust. Nevertheless,

local code is usually viewed as trusted whereas remote code

is viewed as possibly untrusted. This difference is

implemented in the JVM through the use of class loaders,

bytecode verification, digital signatures and run time access

control.

Fig 1: Overview of Java Security Architecture [11]

Figure 1 illustrates the concept of Java security

architecture. It shows the way local code, trusted remote code

(verified through digital signatures) as well as untrusted

remote code are treated by the JVM. It also brings out the role

of the Security Manager which provides a centralized

authority that regulates access to the system resources

including file system, communication channels, and other

vital services. A trusted code is provided with wider access

and an untrusted code is highly limited. In addition to

securing the system, Java uses a sandbox security model to

isolate the untrusted remote code and limit its access to

sensitive resources.

Fig 2: JVM Sandbox Model

The Figure 2 illustrates that local code has more

interactions with the valuable system resources, whereas

remote code is implemented within a sandbox in the JVM.

This sandbox serves as a shield against attack, which means

that the untrusted code is unable to disrupt the integrity,

confidentiality, and availability of systems.

2.1. Importance of Securing Java Applications

Java application security is of paramount importance due to a

number of critical reasons that are given:

• Protection of Sensitive Data: Java applications often

handle sensitive user data including personal

information, financial account and authentication

information. Poor security measures may result in

information leakages, which may cause enormous

damages to people and institutions [12].

• Mitigation of Cyberattacks: Applications of Java

have been targeted in cross-site scripting (XSS),

SQL injection, and remote code execution attacks

and ransomware. Making strong security

mechanisms can be used to overcome these threats

and minimize the attack surface [13].

• Prevention of Data Breaches: Efficient security

measures will decrease unauthorized access to

applications and databases, as a result of which the

chances of data breaches that may cause losses and

legal liability are reduced.

• Cost Reduction: Proactive security is far cheaper

than reacting to security breaches after the fact.

Prevention at an early stage will reduce the cost of

recovery, downtime of the system, and any fines.

• Data Integrity Assurance: Secure Java applications

provide data integrity by obstructing unauthorized

modification, deletion or manipulation of important

information.

Abhijit Roy / IJERET, 7(1), 101-108, 2026

103

3. Security Capabilities of Java Frameworks
Java framework security capabilities are important in the

protection of enterprise applications because they are in-built

to facilitate authentication, authorization, data protection, and

threat mitigation. These platforms facilitate uniform

protection of security, compatibility with enterprise identity

systems and scalable protection against popular vulnerability

in multifaceted, distributed Java environments.

3.1. Spring Framework

Spring Framework refers to a lightweight and modular

Java framework that has found wide usage in the

development of scalable and secure enterprise applications.

Spring facilitates the use of loose coupling, simplicity of

maintenance and enhancing testability using Inversion of

Control (IoC) and Dependency Injection (DI). Its

combination with Spring boot makes it easier to configure

applications and has fast development cycles, which makes it

a favorite option to production-ready Java applications [14].

One of the main components of the framework is Spring

Security, which offers powerful and configurable security

features to safeguard applications against the current threats.

3.1.1. Comprehensive Authentication Support

Spring Security enables developers to adopt diverse

strategies of authentication to suit enterprise requirements. It

also has support of form-based login, HTTP Basic and Digest

authentication, JWT (JSON Web Tokens), OAuth 2.0 and

OpenID Connect and LDAP integration. This scalability also

allows applications to be connected with innovative identity

providers, cloud authentication systems, and multi-factor

authentication configurations [15].

3.1.2. Granular Authorization and Access Control

Spring Security has the ability to offer fine-grained

authorization, so developers can specify access controls at the

URL, method and service levels. Applications can apply rigid

policies of permission to the users of various roles through

the role-based access control (RBAC) [16], and attribute-

based access control (ABAC).

3.1.3. Built-in Threat Mitigation and Session Management

Spring Security has built-in safeguards against diverse

internet application insecurities, such as CSRF (Cross-Site

Request Forgery), session fixation, and clickjacking

penetrations. It has secure session management options such

as HTTP only cookies, cookies are secure, invalidation of

session when user logs out and it has session timeouts.

3.2. Java EE

Java EE is an enterprise Java standard specification. Different

application servers are constructed in order to execute this

specification. A Java EE application comprises of

components that are deployed into different containers.

According to the Java EE security specification, containers

are used to protect the components in a secured manner

wizards features such as authentication and authorization.

Specifically, authentication determines how communicating

parties, e.g. a client and a server, establish themselves to one

another as who they are [17]. A credential is issued to an

authenticated user and it contains user information such as

usernames/ passwords or tokens. Authentication is whereby

permission to carry out operations or access data is granted to

the user. In the access to some resource, the user can be

approved when he/she can be identified by the server as a

security role authorized to access the resource. Java EE

applications security can be achieved through the following

two methods:

• Declarative Security represents the security

requirements of application component in either

deployment descriptors or annotations. Deployment

descriptor is a non-application XML file. This is an

XML file that conveys the security structure of an

application encompassing the security roles, access

control and the authentication requirements. Security

information in a class file is specified by making

annotations. Deployment descriptors can either use

them or override them.

3.3. Enterprise Framework and Application Server Security

Capabilities

Enterprise frameworks and application servers provide

platform-level security as it brings together applications and

centralized applications and policies management

infrastructure as well as compliance infrastructure. Such

capabilities provide a structured security governance,

integration and regulatory compliance on top of large-scale

enterprise systems.

• Centralized Identity and Access Management:

Provides the ability to have enterprise-wide

authentication and authorization of applications via

centralized IAM systems and directory services [18].

• Policy-Based Security Enforcement: This enables

security policies to be defined and implemented on the

platform or server level which alleviates complexity at

the application level.

• Security Monitoring and Audit Logging: Supports

continuous monitoring, detailed audit trails, and

compliance reporting to meet regulatory and enterprise

security requirements.

Table I compares authentication, authorization and

security management between Spring, Jakarta EE and

enterprise frameworks with a more centralized and governed

security management in large systems

Table 1: Comparison of Security Capabilities in Enterprise Java Frameworks

Security Aspect Spring Framework Java EE Enterprise Frameworks

Authentication

Mechanisms

Supports flexible authentication

models including JWT, OAuth

2.0, OpenID Connect, and

LDAP integration.

Uses container-managed

authentication with standardized

mechanisms such as BASIC,

FORM, and certificate-based

Integrates with centralized

identity and access

management systems for

organization-wide

Abhijit Roy / IJERET, 7(1), 101-108, 2026

104

login. authentication.

Authorization

Control

Provides fine-grained

authorization using role-based

and method-level security

enforcement.

Enforces role-based access control

through declarative security and

container-managed role mapping.

Implements centralized, policy-

driven authorization across

applications and enterprise

resources.

Security

Management and

Monitoring

Offers application-level security

configuration with built-in

protection against common web

vulnerabilities.

Provides standardized security

enforcement and consistent

security context propagation

within the container.

Enables centralized monitoring,

audit logging, and compliance-

oriented security governance.

4. Secure Coding Practices for Java

Applications
Even though Java is a strong programming language with

extensive use in business programs, it is prone to security

threats that can pose a serious threat to the systems, unless

well dealt with. The use of the secure code standards can help

developers to secure their Java apps against the most frequent

vulnerabilities, including the authentication weaknesses,

cross-site scripting (XSS), and SQL injections.

4.1. Secure Handling of User Input

Attackers often use applications through injecting

malicious input [19]. Sound validation and sanitization of

user input can go a long way in minimizing security threats as

well as curb injection based attacks.

4.1..1. Prevention of SQL Injection Attacks

SQL injection is a procedure that takes place when the

attackers place harmful SQL code in inputs fields, which are

then interpreted by the database [20]. The best counter

measures include prepared statements/ Object- relational

mapping (ORM) like hibernate instead of dynamically joining

user input in SQL statements. SQL statements are compiled

into binary form and separated into SQL and user input, so

that the database does not interpret input based on its syntax

as a form of executable code. ORM systems also minimize

risk by moving the interactions with the database to an

abstract level and ensuring that manipulation of queries is

minimized [21][22]. Consequently despite any attacker trying

to pass malicious SQL instructions, prepared statements

automatically reverse the input thus barring unauthorized

execution of queries.

4.1.2. Mitigation of Cross-Site Scripting (XSS) Attacks

Cross-site scripting (XSS) attacks can be defined as a failure

of web applications by malicious codes that are accessed and

injected by users in the form of comment boxes, forms or

even as messages [23]. Such scripts can run on the browsers

of other users so that the attacker can tamper with the content

of the website or send off session cookies. The best practices

to be used in order to reduce XSS vulnerabilities include:

• Input sanitization and output encoding: Encode user-

generated content before rendering it in the browser

using libraries such as OWASP Java Encoder.

• Content Security Policy (CSP): Enforce CSP headers

to restrict the execution of unauthorized scripts.

• Avoid direct insertion of user input into HTML: Use

secure templating engines that automatically escape

output.

For example, if an attacker submits

<script>alert('Hacked!')</script>, proper output encoding

ensures that the browser treats it as plain text rather than

executable code.

4.2. Secure Authentication and Authorization Mechanisms

Authentication is the process of ensuring the identity of

the user and authorization is the process of controlling access

to resources that are controlled [24]. Poor applications of

either of the mechanisms may result in unauthorized access

and theft of credentials.

4.2.1. Secure Password Storage

Passwords are not to be stored in plaintext. Rather secure

hash algorithms ought to be used:

• BCrypt: It is a computationally complex, salting-

based algorithm that is resistant to brute-force attack.

• Argon2: This has better protection against current

attacks of the modern GPUs.

Hashing is such that even when attackers get access to

the database, they cannot get original passwords, which is

computationally infeasible. The hash of each password must

be calculated with a unique and a powerful salt to add more

safety.

4.2.2. Effective Session Management

Session management allows tracking of authenticated users

but due to poor management of sessions, vulnerabilities such

as session hijacking can be experienced. It is recommended

that:

• Block access based on JavaScript access, with the

help of HTTP-only cookies [25].

• Regenerating session identifiers after successful

login to prevent session fixation.

• Enforcing session timeouts to automatically log out

inactive users.

Attackers could impersonate legitimate users in case they

acquire a valid session identifier. Such risks are highly

addressed by secure session handling techniques.

4.3. Secure Error Handling and Logging

The error handling mechanisms must also aid in debugging

and must not expose sensitive information about the system.

Abhijit Roy / IJERET, 7(1), 101-108, 2026

105

4.3.1. Preventing Information Leakage Through Error

Messages

Detailed error messages can accidentally divulge to external

users internal system information, like stack traces or

database structures, or configuration. Best practices include:

• Showing generic error messages to the user (e.g. An

error has occurred, Please try again later”).

• Recording comprehensive data about errors within

the system to debug it.

• Neither exposing SQL queries nor path to system.

As an example, disclosing database error messages,

including “Table ‘users’ does not exist” can provide attackers

with good reconnaissance data.

4.4. Secure Dependency Management

Java applications today are mainly dependent on third-

party libraries. Applications may expose themselves to

previously known security exploits through old or weak

dependencies [26].

4.4.1. Maintaining Up-to-Date Dependencies

The libraries which are out of date might have known

vulnerabilities which can be used by attackers. Developers

should:

• Regularly track and update dependency versions.

• Use build tools such as Maven or Gradle for

automated dependency management.

• Monitor vendor security advisories for timely patch

updates.

Neglecting dependency updates can leave applications

exposed to avoidable security risks.

4.4.2. Vulnerability Detection Using Security Tools

Security tools have the capacity to detect known

vulnerabilities in project dependencies and they include:

• OWASP Dependency-Check: Scans project

dependencies against known vulnerability databases.

• Snyk and Dependabot: Automatically detect

vulnerabilities and suggest fixes during CI/CD

pipelines.

By incorporating the tools into the development lifecycle,

vulnerabilities can be identified early enough before

deployment.

5. Literature Review
The literature focuses on particular Java security methods

like the frameworks, APIs, performance, and AI-assisted code

generation, though it lacks a comprehensive, large scale, end-

to-end survey of the practices, techniques of evaluation,

deployment issues.

Ishu Anand Jaiswal (2025) examines how enterprise

grade security is put in place in large scale Java applications.

It is also concerned with the ways to prevent threats by using

sophisticated authentication, role-based access control,

encryption, and safe coding at the development lifecycle. The

paper highlights the importance of using multi-layered

defenses against vulnerabilities, automation of the security

policy, and the advantages of constant monitoring. Through

the analysis of case studies, it elucidates the criticality of

scalable security solutions and proactive security culture,

meant to advise future practice and solve cyber problems

within enterprise settings [27].

Isreal (2025) examines why secured messaging systems

should be optimized in high traffic enterprise settings. It

shows how Java-based frameworks, although being strong in

cryptographic and authentication capabilities, may have

performance problems at large loads due to elements like

encryption overheads and network delays. The study applies

strategies such as asynchronous processing, tuning thread

pools, connection management and lightweight cryptographic

settings with the aim of establishing bottlenecks in the context

of throughput and latency. The benchmarking findings show

that these optimizations could improve message delivery rates

by up to 40%, which can give developers and system

architects useful clues to optimize the performance without

compromising security in demanding messaging scenarios

[28].

Chaganti (2024) explains that Java is widely used in

business applications, and high levels of security are essential

since it can be attacked by cybercrimes. The paper provides

an extensive security strategy on Java applications, safe

coding techniques, as well as vulnerabilities that are described

in the OWASP Top 10. It underscores the need to incorporate

security mechanisms like Spring Security and Jakarta EE to

provide security measures like encryption and authentication.

As presented in the case study, the security principles are

applied to Java microservices in financial sectors, which

presents a hierarchy of security that improves client

information and financial operation security. Through a

proactive security approach, organizations would be able to

minimize threats and abide by industry rules [29].

Mousavi et al. (2024) analyse the credibility of the Large

Language Models (LLMs) or the in producing secure code to

the Application Programming Interfaces (APIs). Their paper

identifies the major problem of developers with integrating

security APIs, which results in inappropriate usage and

computer vulnerability. Evaluating 48 programming tasks that

used five security APIs, the authors ended up with shocking

results that about 70% of the generated code had security API

misuse, and a few tasks has a misuse rate of 100%. This

means that there are significant constraints to the existing

dependability of ChatGPT in regard to safe coding practices

[30].

George (2023) focuses on the value of a secure API

communication in web programs to protect the data and to

verify the identity of the user. It also talks about Java HTTP

Client which was added to Java 11 and it supports secure

HTTP communication using TLS and OAuth authentication.

The paper identifies best practices relating to the process of

securing API communication within Java applications based

on OAuth 2.0 authentication, TLS encryption, handling of

Abhijit Roy / IJERET, 7(1), 101-108, 2026

106

access-tokens, and the handling of secure connections. It also

points to practical uses in the financial and healthcare data

exchanges and discusses future trends in API security,

including zero-trust architecture and AI-based monitoring

[31].

Manne (2023) reviews Spring Security, which is a

flexible Java architecture that can be adapted to authentication

and access control in a web application. The paper explains

the structure, elements, and functionalities such as session

management, role based access, and CSRF protection in

addition to the OAuth2 and JWT integration. It demonstrates

the ways of addressing typical threats of the OWASP Top 10,

contrasts the use of Spring Security with other Java

implementations such as Apache Shiro, and best practices

when configuring a system security, including cloud-native

security and Zero Trust concepts of Java applications. The

intended viewers encompass developers, architects and

security practitioners [32].

The Table II is a systematic comparison of available

literature on Java security practices with emphasis areas,

technologies, findings, methods, and limitations to

demonstrate a fragmented coverage of a large-scale

application security research

Table 2: Comparative Analysis of Existing Literature on Java Security Practices in Large-Scale Applications

Reference Focus Area Java

Technology

Security

Practices

Approach Key Findings Limitations

Observed

Ishu

Anand

Jaiswal,

(2025)

Enterprise Java

Security

Architecture

Enterprise-

grade Java

applications

Authentication,

RBAC,

encryption,

secure coding,

monitoring

Conceptual

analysis with

case studies

Layered security

frameworks

significantly

improve

resilience against

complex cyber

threats

Lacks empirical

benchmarking

and cross-

organization

comparative

analysis

Isreal

(2025)

Secure

Messaging

Performance

Java secure

messaging

frameworks

Cryptography,

authentication,

performance

optimization

Experimental

benchmarking

Optimized

asynchronous

processing

improves

throughput by up

to 40% without

weakening

security

Focuses on

messaging

systems only;

ignores broader

application

security

practices

Chaganti

(2024)

Secure Java

Development

Practices

Spring

Security,

Jakarta EE,

Java

microservices

OWASP Top 10

mitigation, API

security,

encryption,

monitoring

Case study-

based

evaluation

Proactive secure

coding and

integrated

frameworks

reduce enterprise

security risks

Findings are

limited to

financial-

domain

microservices

Mousavi et

al. (2024)

LLM-Assisted

Secure Coding

Java security

APIs with

ChatGPT

Security API

usage

correctness

Automated

and manual

code analysis

Approximately

70% of AI-

generated Java

code misuses

security APIs

Does not

propose

mitigation

techniques or

enterprise

adoption

guidelines

George

(2023)

Secure API

Communication

Java

HttpClient

(Java 11)

OAuth 2.0, TLS,

token and

certificate

management

Best-practice

driven analysis

Proper OAuth and

TLS

configuration

ensures secure

API data

exchange

Concentrates

only on external

API security

layers

Manne

(2023)

Java Security

Framework

Review

Spring

Security,

Shiro, JAAS

Authentication,

authorization,

CSRF, OAuth2,

JWT

Comparative

framework

analysis

Spring Security

provides more

comprehensive

protection than

traditional Java

security models

Limited real-

world validation

in distributed

large-scale

systems

Abhijit Roy / IJERET, 7(1), 101-108, 2026

107

6. Conclusion & Futurework
The security of large-scale Java applications is now an

essential concern as enterprise applications keep growing in

size, complexity, and vulnerability to cyber threats. The

argument presented in this paper highlights the fact that Java

security is not a domain of language-level functionality, but it

is the product of the concerted efforts in the JVM, application

frameworks, and application development. Enterprise

architecture frameworks like Spring and Jakarta EE are

crucial as they provide a standard and extensible security

implementation, but as time goes on, there are still

unaddressed vulnerabilities that indicate that secure

configurations, dependency management, and awareness

among the developers continue to be a persistent issue. The

analyzed literature also reveals that the current research is

inclined to cover isolated security issues, leaving blank areas

in end-to-end security assessment. Future research must focus

on creating some model of integrated security assessment,

combining runtime monitoring, automated testing, and

configuration analysis of enterprise Java systems. The

research of the safe adoption of AI-assisted development

tools is also of high scope, especially in verifying the

security-critical code and API use. In addition, integrating the

zero-trust architectures and context-sensitive security policies

in cloud-native and microservice-based Java applications can

be used to better mitigate novel and advanced attack vectors.

References
[1] G. Maddali, “Efficient Machine Learning Approach

Based Bug Prediction for Enhancing Reliability of

Software and Estimation,” SSRN Electron. J., vol. 8, no.

6, 2025, doi: 10.2139/ssrn.5367652.

[2] V. Thangaraju, “Enhancing Web Application

Performance and Security Using AI-Driven Anomaly

Detection and Optimization Techniques,” Int. Res. J.

Innov. Eng. Technol., vol. 9, no. 3, 2025, doi:

47001/IRJIET/2025.903027.

[3] S. Devalla, “Adaptive security frameworks for Java EE

8 and JSF: Automating threat detection and mitigation in

enterprise web applications,” J. Sci. Eng. Res., vol. 6,

no. 10, pp. 326–334, 2019.

[4] S. Barman, P. Gupta, and S. Kashiramka, “Project

Management Survey: A Review of Software Project

Management Methodologies,” 2024 IEEE 11th Uttar

Pradesh Sect. Int. Conf. Electr. Electron. Comput. Eng.

UPCON 2024, 2024, doi:

10.1109/UPCON62832.2024.10983518.

[5] S. P. Kalava, “Enhancing Software Development with

AI-Driven Code Reviews,” North Am. J. Eng. Res., vol.

5, no. 2, pp. 1–7, 2024.

[6] P. Chandrashekar and M. Kari, “A Study on Artificial

Intelligence in Software Engineering with

Methodologies , Applications , and Effects on SDLC,”

TIJER – Int. Res. J., vol. 11, no. 12, pp. 932–937, 2024.

[7] V. Prajapati, “Enhancing Threat Intelligence and Cyber

Defense through Big Data Analytics: A Review Study,”

J. Glob. Res. Math. Arch., vol. 12, no. 4, 2025.

[8] H. He, R. He, H. Gu, and M. Zhou, “A large-scale

empirical study on Java library migrations: prevalence,

trends, and rationales,” in Proceedings of the 29th ACM

joint meeting on European software engineering

conference and symposium on the foundations of

software engineering, 2021, pp. 478–490. doi:

10.5281/zenodo.5091384.

[9] T. A. K. Manne, “Serverless Java Applications: Security

and Performance Considerations,” J. Sci. Eng. Res., vol.

10, no. 10, pp. 207–213, 2023, doi:

10.5281/zenodo.17062349.

[10] S. C. G. Varma, “The Role of Java in Modern Software

Development: A Comparative Analysis with Emerging

Programming Languages,” Int. J. Emerg. Res. Eng.

Technol., vol. 1, no. 2, pp. 28–36, 2020, doi:

10.63282/3050-922X/IJERET-V1I2P104.

[11] I. Ion, B. Dragovic, and B. Crispo, “Extending the Java

Virtual Machine to Enforce Fine-Grained Security

Policies in Mobile Devices,” in Twenty-Third Annual

Computer Security Applications Conference (ACSAC

2007), IEEE, Dec. 2007, pp. 233–242. doi:

10.1109/ACSAC.2007.36.

[12] B. Vyas, “Security challenges and solutions in java

application development,” Eduzone Int. Peer Rev.

Multidiscip. J., vol. 12, no. 2, pp. 268–275, 2023.

[13] N. K. Prajapati, “Federated Learning for Privacy-

Preserving Cybersecurity: A Review on Secure Threat

Detection,” Int. J. Adv. Res. Sci. Commun. Technol., vol.

5, no. 4, pp. 520–528, Apr. 2025, doi:

10.48175/IJARSCT-25168.

[14] E. Kuzmina, S. P. Chattha, S. E. Hosseini, M. Shahbaz,

and A. Akhunzada, “Spring Framework Benchmarking

Utility for Static Application Security Testing (SAST)

Tools,” IEEE Internet Things J., vol. 12, no. 22, pp.

46863–46877, Nov. 2025, doi:

10.1109/JIOT.2025.3598235.

[15] N. Dimitrijević, N. Zdravković, M. Bogdanović, and A.

Mesterovic, “Advanced Security Mechanisms in the

Spring Framework: JWT, OAuth, LDAP and Keycloak,”

in Proceedings of the 14th International Conference on

Business Information Security (BISEC 2023), 2024, pp.

64–70.

[16] H. P. Kapadia, “Role-Based Access Control (RBAC)

for Banking Web Platforms : Compliance Implications,”

vol. 1, no. 3, pp. 11–15, 2023.

[17] N. Meng, S. Nagy, D. (Daphne) Yao, W. Zhuang, and

G. A. Argoty, “Secure coding practices in Java,” in

Proceedings of the 40th International Conference on

Software Engineering, New York, NY, USA: ACM,

May 2018, pp. 372–383. doi:

10.1145/3180155.3180201.

[18] S. Matcha and S. Kumar, “Java/J2EE Development:

Best Practices and Performance Optimization in

Enterprise Applications,” Int. J. Sci. Dev. Res., vol. 10,

no. 1, pp. b123–b138, 2025.

[19] K. C. Chaganti, “Securing Enterprise Java Applications:

A Comprehensive Approach,” EPH - Int. J. Sci. Eng.,

vol. 10, no. 02, pp. 18–27, 2024, doi:

10.53555/ephijse.v10i2.286.

[20] A. R. Bilipelli, “Visual Intelligence Framework for

Business Analytics Using SQL Server and Dashboards,”

ESP J. Eng. Technol. Adv., vol. 3, no. 3, pp. 144–153,

2023, doi: 10.56472/25832646/JETA-V3I7P118.

Abhijit Roy / IJERET, 7(1), 101-108, 2026

108

[21] V. Nerella, “Architecting secure, automated multi-cloud

database platforms strategies for scalable compliance,”

Int. J. Intell. Syst. Appl. Eng., vol. 9, no. 1, pp. 128–138,

2021.

[22] D. Patel, “Leveraging Database Technologies for

Efficient Data Modeling and Storage in Web

Applications,” Int. J. Sci. Res. Comput. Sci. Eng. Inf.

Technol., vol. 10, no. 4, pp. 357–369, 2024, doi:

10.32628/cseit25113374.

[23] M. Menghnani, “Advancing PWA Accessibility : The

Impact of Modern Frameworks and Development

Tools,” vol. 12, no. 3, pp. 465–471, 2025.

[24] R. Carvalho, S. A. Pushkala, and R. Saxena, “Systems

and methods for rapid processing of file data,”

US9594817B2, 2017

[25] A.-D. Tran, M.-Q. Nguyen, G.-H. Phan, and M.-T. Tran,

“Security Issues in Android Application Development

and Plug-in for Android Studio to Support Secure

Programming,” in International Conference on Future

Data and Security Engineering, 2021, pp. 105–122. doi:

10.1007/978-981-16-8062-5_7.

[26] V. S. Thokala, S. Pillai, and S. Gupta, “Testing and

Optimizing Web Applications with Continuous

Integration/Continuous Deployment in Cloud

Environments,” in 2025 IEEE International Conference

on Emerging Technologies and Applications (MPSec

ICETA), 2025, pp. 1–6. doi:

10.1109/MPSecICETA64837.2025.11118842.

[27] I. A. Jaiswal and R. K. Singh, “Implementing

Enterprise-Grade Security in Large-Scale Java

Applications,” Int. J. Res. Mod. Eng. Emerg. Technol.,

vol. 13, no. 3, pp. 424–433, 2025, doi:

10.63345/ijrmeet.org.v13.i3.28.

[28] O. Isreal, “Performance Optimization of Java Secure

Messaging for High Traffic,” 2025.

[29] K. C. Chaganti, “Securing Enterprise Java Applications:

A Comprehensive Approach,” EPH - Int. J. Sci. Eng.,

2024, doi: 10.53555/ephijse.v10i2.286.

[30] Z. Mousavi, C. Islam, K. Moore, A. Abuadbba, and M.

A. Babar, “An investigation into misuse of java security

apis by large language models,” in Proceedings of the

19th ACM Asia Conference on Computer and

Communications Security, 2024, pp. 1299–1315.

[31] J. George, “Secure API Communication in Java Web

Applications: Implementing OAuth and TLS with Java

HttpClient,” 2023.

[32] T. A. K. Manne, “Enhancing Web Security in Java

Applications: A Deep Dive into Spring Security

Framework,” ESP J. Eng. Technol. Adv., vol. 3, pp.

179–185, 2023, doi: 10.56472/25832646/JETA-

V3I6P115.

