i
-

&
Y, >
X

International Journal of Emerging Research in Engineering and Technology

Pearl Blue Research Group | Volume 7 Issue 1 PP 101-108, 2026

ISSN: 3050-922X | https://doi.org/10.63282/3050-922X IJERET-V7I1P115

Original Article

Survey of Java Security Practices in Large-Scale Applications

Abhijit Roy
Associate Consultant, Independent Researcher, India.

Received On: 21/12/2025 Revised On: 22/01/2026
Abstract - Java is still one of the most popular programming
languages to develop large-scale enterprise applications
because of its platform independence, scale, robustness and
well-established ecosystem. With more organizations
depending on Java based systems to drive their mission
critical processes, the security of these applications has
become a major focus. The increasing complexity of
enterprise architectures and the rapid pace of cyber threats
have brought Java applications under the risk of data
breaches, unauthorized access, service disruption and
compliance and violation. The security vulnerabilities
usually relate to poor or insecure coding, misconfigurations,
third-party dependencies, and a lack of integration with
security controls during the lifecycle of the application. The
paper is a survey of Java security practices in large-scale
applications with a particular focus on the underlying
security mechanisms of the Java Virtual Machine, such as
class loading, bytecode verification, and sandboxing. It also
looks at the security functionality of the major enterprise
platforms like the Spring and Jakarta EE which offer
intrinsic security support features to authentication,
authorization, session management and safeguards against
typical web vulnerabilities. This work will inform developers,
architects and security professionals on how to design,
deploy and maintain secure, enterprise-tier Java
applications by clarifying their significance on layered
security models, framework-based protective measures, and
vulnerability management before they develop.

Keywords - Java Security, Enterprise Applications, Large-
Scale Systems, JVM Security, Secure Coding Practices,
Spring Security, Jakarta EE.

1. Introduction

The large-scale development of enterprise web
applications has greatly increased the number of attackable
points to exploit by malicious attackers, and application
security has become a research and practice focus of
importance in the contemporary field of software engineering
[1][2]. With organizations steadily moving business
processes, data management, and customer interactions to
web-based tools, the confidentiality, integrity, and availability
of web-based systems have become the most important [3].

The enterprise applications have had long-standing
vulnerabilities despite significant progress in web
technologies, security frameworks and standardized

protocols. These vulnerabilities could be as a result of
changing the methods of attack, complicated architecture of

Accepted On: 01/02/2026 Published On: 05/02/2026
the system, insecure code writing, and lack of adequate
security testing during the software development cycle [4][5].

In the modern digital age of computing, the Java
application has become the foundation of enterprise
computing and supports mission-critical applications in
finance, healthcare, e-commerce, telecommunications, and
government services, among others. Java is a popular
platform in the development of large and distributed
applications, and high availability due to its platform
independence, scalability, rich ecosystem, and mature tooling.
Nevertheless, even those features that predispose Java to
enterprise usage like modular structures, third-party libraries,
microservices, and cloud-native deployments, create serious
security concerns. The complex nature of the current Java
applications makes it more likely to have configuration errors,
dependency vulnerabilities and inconsistent security
enforcement between system components.[6]

Moreover, the modern threat is no longer the classical
attack but advanced exploits that have occurred as remote
code execution, supply chain attacks, insecure API usage, and
privilege escalation in distributed environments [7].
Enterprise Java applications are increasingly becoming the
target of attackers as they are widely used and have access to
confidential organizational data. This has led to the fact that
traditional perimeter security methods are no longer adequate.
Rather, the organizations are required to implement layered,
framework, and comprehensive security measures that cut
across the Java Virtual Machine (JVM), applicational
frameworks, development systems, and deployment systems

(8].

It is in this context that a systematic knowledge of Java
security practices in large-scale applications is necessary.
Although several studies and industry practices focus on one
of the elements of Java security like framework-level
security, secure-coding approaches, and authentication
systems, there is no unified survey that integrates underlying
security models, framework features, secure-development
practices, and deployment issues. The objective of this paper
is to fill this gap, through a detailed survey of Java security
practices in large-scale applications. It explores the security
background of Java, assesses the security features of popular
frameworks, draws attention to secure programming, and
provides a synthesis of the literature to discern the existing
trends, constraints, and future research.

https://doi.org/10.63282/3050-922X.IJERET-V7I1P115

1.1. Structure of the paper

This paper is structured as follows: Section II outlines the
principles of Java security. Section III is the security
capabilities of the major Java frameworks. Section IV is
devoted to secure coding practices and Java application
mitigation of general vulnerabilities. Section V is a summary
of related literature. Lastly, Section VI provides a conclusion
of the paper and the future research directions.

2. Java Security Foundations

Java is an object programming language that was
developed by Sun microsystems in 1995 and eventually
purchased by Oracle Corporation. It is operating on the
principle of Write Once, Run Anywhere (WORA) facilitated
by the Java Virtual Machine (JVM) that ensures that Java
programs can be run on different platforms without any code
modification and implements runtime security measures [9].

Java has undergone a series of releases that have
enhanced performance, security and efficiency in
development by developers. Java 8 (2014) introduced features
of functional programming, including lambda expressions,
functional interfaces, and the Java Stream API, and Java 17
(2021) added more features in the security and performance
areas and introduced features of modern languages, including
sealed classes and improved pattern matching. These
developments enhanced the security, large and distributed
applications of Java [10].

The security model of Java is based on the controlled
code execution on the basis of the level of trust. Nevertheless,
local code is usually viewed as trusted whereas remote code
is viewed as possibly untrusted. This difference is
implemented in the JVM through the use of class loaders,
bytecode verification, digital signatures and run time access
control.

Trusled
| signaure —]| Remote code
A AT W
Local Trusted Sandboxed
application remote application
application
JYM full access to resources Sandbox restnicted access

Security Manager

System resources (e.g. File system, comm. Channels, etc)

Fig 1: Overview of Java Security Architecture [11]

Figure 1 illustrates the concept of Java security
architecture. It shows the way local code, trusted remote code
(verified through digital signatures) as well as untrusted
remote code are treated by the JVM. It also brings out the role
of the Security Manager which provides a centralized
authority that regulates access to the system resources

including file system, communication channels, and other
vital services. A trusted code is provided with wider access
and an untrusted code is highly limited. In addition to
securing the system, Java uses a sandbox security model to
isolate the untrusted remote code and limit its access to

sensitive resources.

remote code

local code

sandbox

valuable resources
(files, etc.)

Fig 2: JVM Sandbox Model

The Figure 2 illustrates that local code has more
interactions with the valuable system resources, whereas
remote code is implemented within a sandbox in the JVM.
This sandbox serves as a shield against attack, which means
that the untrusted code is unable to disrupt the integrity,
confidentiality, and availability of systems.

2.1. Importance of Securing Java Applications
Java application security is of paramount importance due to a
number of critical reasons that are given:

e Protection of Sensitive Data: Java applications often
handle sensitive user data including personal
information, financial account and authentication
information. Poor security measures may result in
information leakages, which may cause enormous
damages to people and institutions [12].

e Mitigation of Cyberattacks: Applications of Java
have been targeted in cross-site scripting (XSS),
SQL injection, and remote code execution attacks
and ransomware. Making strong security
mechanisms can be used to overcome these threats
and minimize the attack surface [13].

e Prevention of Data Breaches: Efficient security
measures will decrease unauthorized access to
applications and databases, as a result of which the
chances of data breaches that may cause losses and
legal liability are reduced.

e Cost Reduction: Proactive security is far cheaper
than reacting to security breaches after the fact.
Prevention at an early stage will reduce the cost of
recovery, downtime of the system, and any fines.

e Data Integrity Assurance: Secure Java applications
provide data integrity by obstructing unauthorized
modification, deletion or manipulation of important
information.

102

3. Security Capabilities of Java Frameworks

Java framework security capabilities are important in the
protection of enterprise applications because they are in-built
to facilitate authentication, authorization, data protection, and
threat mitigation. These platforms facilitate uniform
protection of security, compatibility with enterprise identity
systems and scalable protection against popular vulnerability
in multifaceted, distributed Java environments.

3.1. Spring Framework

Spring Framework refers to a lightweight and modular
Java framework that has found wide usage in the
development of scalable and secure enterprise applications.
Spring facilitates the use of loose coupling, simplicity of
maintenance and enhancing testability using Inversion of
Control (IoC) and Dependency Injection (DI). Its
combination with Spring boot makes it easier to configure
applications and has fast development cycles, which makes it
a favorite option to production-ready Java applications [14].
One of the main components of the framework is Spring
Security, which offers powerful and configurable security
features to safeguard applications against the current threats.

3.1.1. Comprehensive Authentication Support

Spring Security enables developers to adopt diverse
strategies of authentication to suit enterprise requirements. It
also has support of form-based login, HTTP Basic and Digest
authentication, JWT (JSON Web Tokens), OAuth 2.0 and
OpenlID Connect and LDAP integration. This scalability also
allows applications to be connected with innovative identity
providers, cloud authentication systems, and multi-factor
authentication configurations [15].

3.1.2. Granular Authorization and Access Control

Spring Security has the ability to offer fine-grained
authorization, so developers can specify access controls at the
URL, method and service levels. Applications can apply rigid
policies of permission to the users of various roles through
the role-based access control (RBAC) [16], and attribute-
based access control (ABAC).

3.1.3. Built-in Threat Mitigation and Session Management

Spring Security has built-in safeguards against diverse
internet application insecurities, such as CSRF (Cross-Site
Request Forgery), session fixation, and clickjacking
penetrations. It has secure session management options such
as HTTP only cookies, cookies are secure, invalidation of
session when user logs out and it has session timeouts.

3.2. Java EE

Java EE is an enterprise Java standard specification. Different
application servers are constructed in order to execute this
specification. A Java EE application comprises of

components that are deployed into different containers.
According to the Java EE security specification, containers
are used to protect the components in a secured manner
wizards features such as authentication and authorization.
Specifically, authentication determines how communicating
parties, e.g. a client and a server, establish themselves to one
another as who they are [17]. A credential is issued to an
authenticated user and it contains user information such as
usernames/ passwords or tokens. Authentication is whereby
permission to carry out operations or access data is granted to
the user. In the access to some resource, the user can be
approved when he/she can be identified by the server as a
security role authorized to access the resource. Java EE
applications security can be achieved through the following
two methods:

e Declarative Security represents the security
requirements of application component in either
deployment descriptors or annotations. Deployment
descriptor is a non-application XML file. This is an
XML file that conveys the security structure of an
application encompassing the security roles, access
control and the authentication requirements. Security
information in a class file is specified by making
annotations. Deployment descriptors can either use
them or override them.

3.3. Enterprise Framework and Application Server Security

Capabilities

Enterprise frameworks and application servers provide

platform-level security as it brings together applications and
centralized applications and policies management
infrastructure as well as compliance infrastructure. Such
capabilities provide a structured security governance,
integration and regulatory compliance on top of large-scale
enterprise systems.

o Centralized Identity and Access Management:
Provides the ability to have enterprise-wide
authentication and authorization of applications via
centralized IAM systems and directory services [18].

e Policy-Based Security Enforcement: This enables
security policies to be defined and implemented on the
platform or server level which alleviates complexity at
the application level.

e Security Monitoring and Audit Logging: Supports
continuous monitoring, detailed audit trails, and
compliance reporting to meet regulatory and enterprise
security requirements.

Table 1 compares authentication, authorization and
security management between Spring, Jakarta EE and
enterprise frameworks with a more centralized and governed
security management in large systems

Table 1: Comparison of Security Capabilities in Enterprise Java Frameworks

Security Aspect Spring Framework Java EE Enterprise Frameworks
Authentication Supports flexible authentication | Uses container-managed | Integrates with centralized
Mechanisms models including JWT, OAuth | authentication with standardized | identity and access
2.0, OpenlD Connect, and | mechanisms such as BASIC, | management systems for
LDAP integration. FORM, and certificate-based | organization-wide

103

login. authentication.
Authorization Provides fine-grained | Enforces role-based access control | Implements centralized, policy-
Control authorization using role-based | through declarative security and | driven authorization across
and method-level security | container-managed role mapping. | applications and enterprise
enforcement. resources.

Security Offers application-level security | Provides standardized security | Enables centralized monitoring,
Management and | configuration with built-in | enforcement and consistent | audit logging, and compliance-
Monitoring protection against common web | security = context propagation | oriented security governance.

vulnerabilities. within the container.
4. Secure Coding Practices for Java For ~ example, if an attacker submits

Applications

Even though Java is a strong programming language with
extensive use in business programs, it is prone to security
threats that can pose a serious threat to the systems, unless
well dealt with. The use of the secure code standards can help
developers to secure their Java apps against the most frequent
vulnerabilities, including the authentication weaknesses,
cross-site scripting (XSS), and SQL injections.

4.1. Secure Handling of User Input

Attackers often use applications through injecting
malicious input [19]. Sound validation and sanitization of
user input can go a long way in minimizing security threats as
well as curb injection based attacks.

4.1..1. Prevention of SQL Injection Attacks

SQL injection is a procedure that takes place when the
attackers place harmful SQL code in inputs fields, which are
then interpreted by the database [20]. The best counter
measures include prepared statements/ Object- relational
mapping (ORM) like hibernate instead of dynamically joining
user input in SQL statements. SQL statements are compiled
into binary form and separated into SQL and user input, so
that the database does not interpret input based on its syntax
as a form of executable code. ORM systems also minimize
risk by moving the interactions with the database to an
abstract level and ensuring that manipulation of queries is
minimized [21][22]. Consequently despite any attacker trying
to pass malicious SQL instructions, prepared statements
automatically reverse the input thus barring unauthorized
execution of queries.

4.1.2. Mitigation of Cross-Site Scripting (XSS) Attacks
Cross-site scripting (XSS) attacks can be defined as a failure
of web applications by malicious codes that are accessed and
injected by users in the form of comment boxes, forms or
even as messages [23]. Such scripts can run on the browsers
of other users so that the attacker can tamper with the content
of the website or send off session cookies. The best practices
to be used in order to reduce XSS vulnerabilities include:

e Input sanitization and output encoding: Encode user-
generated content before rendering it in the browser
using libraries such as OWASP Java Encoder.

e Content Security Policy (CSP): Enforce CSP headers
to restrict the execution of unauthorized scripts.

e Avoid direct insertion of user input into HTML: Use
secure templating engines that automatically escape
output.

<script>alert('Hacked!")</script>, proper output encoding
ensures that the browser treats it as plain text rather than
executable code.

4.2. Secure Authentication and Authorization Mechanisms

Authentication is the process of ensuring the identity of
the user and authorization is the process of controlling access
to resources that are controlled [24]. Poor applications of
either of the mechanisms may result in unauthorized access
and theft of credentials.

4.2.1. Secure Password Storage
Passwords are not to be stored in plaintext. Rather secure
hash algorithms ought to be used:
e BCrypt: It is a computationally complex, salting-
based algorithm that is resistant to brute-force attack.
e Argon2: This has better protection against current
attacks of the modern GPUs.

Hashing is such that even when attackers get access to
the database, they cannot get original passwords, which is
computationally infeasible. The hash of each password must
be calculated with a unique and a powerful salt to add more
safety.

4.2.2. Effective Session Management
Session management allows tracking of authenticated users
but due to poor management of sessions, vulnerabilities such
as session hijacking can be experienced. It is recommended
that:
e Block access based on JavaScript access, with the
help of HTTP-only cookies [25].
e Regenerating session identifiers after successful
login to prevent session fixation.
e Enforcing session timeouts to automatically log out
inactive users.

Attackers could impersonate legitimate users in case they
acquire a valid session identifier. Such risks are highly
addressed by secure session handling techniques.

4.3. Secure Error Handling and Logging

The error handling mechanisms must also aid in debugging
and must not expose sensitive information about the system.

104

4.3.1. Preventing Information Leakage Through Error
Messages
Detailed error messages can accidentally divulge to external
users internal system information, like stack traces or
database structures, or configuration. Best practices include:
e Showing generic error messages to the user (e.g. An
error has occurred, Please try again later”).
e Recording comprehensive data about errors within
the system to debug it.
e Neither exposing SQL queries nor path to system.

As an example, disclosing database error messages,
including “Table ‘users’ does not exist” can provide attackers
with good reconnaissance data.

4.4. Secure Dependency Management

Java applications today are mainly dependent on third-
party libraries. Applications may expose themselves to
previously known security exploits through old or weak
dependencies [26].

4.4.1. Maintaining Up-to-Date Dependencies
The libraries which are out of date might have known
vulnerabilities which can be used by attackers. Developers
should:
e Regularly track and update dependency versions.
e Use build tools such as Maven or Gradle for
automated dependency management.
e Monitor vendor security advisories for timely patch
updates.

Neglecting dependency updates can leave applications
exposed to avoidable security risks.

4.4.2. Vulnerability Detection Using Security Tools
Security tools have the capacity to detect known
vulnerabilities in project dependencies and they include:
e OWASP Dependency-Check: Scans project
dependencies against known vulnerability databases.
e Snyk and Dependabot: Automatically detect
vulnerabilities and suggest fixes during CI/CD
pipelines.

By incorporating the tools into the development lifecycle,
vulnerabilities can be identified early enough before
deployment.

5. Literature Review

The literature focuses on particular Java security methods
like the frameworks, APIs, performance, and Al-assisted code
generation, though it lacks a comprehensive, large scale, end-
to-end survey of the practices, techniques of evaluation,
deployment issues.

Ishu Anand Jaiswal (2025) examines how enterprise
grade security is put in place in large scale Java applications.
It is also concerned with the ways to prevent threats by using
sophisticated authentication, role-based access control,
encryption, and safe coding at the development lifecycle. The

paper highlights the importance of using multi-layered
defenses against vulnerabilities, automation of the security
policy, and the advantages of constant monitoring. Through
the analysis of case studies, it elucidates the criticality of
scalable security solutions and proactive security culture,
meant to advise future practice and solve cyber problems
within enterprise settings [27].

Isreal (2025) examines why secured messaging systems
should be optimized in high traffic enterprise settings. It
shows how Java-based frameworks, although being strong in
cryptographic and authentication capabilities, may have
performance problems at large loads due to elements like
encryption overheads and network delays. The study applies
strategies such as asynchronous processing, tuning thread
pools, connection management and lightweight cryptographic
settings with the aim of establishing bottlenecks in the context
of throughput and latency. The benchmarking findings show
that these optimizations could improve message delivery rates
by up to 40%, which can give developers and system
architects useful clues to optimize the performance without
compromising security in demanding messaging scenarios
[28].

Chaganti (2024) explains that Java is widely used in
business applications, and high levels of security are essential
since it can be attacked by cybercrimes. The paper provides
an extensive security strategy on Java applications, safe
coding techniques, as well as vulnerabilities that are described
in the OWASP Top 10. It underscores the need to incorporate
security mechanisms like Spring Security and Jakarta EE to
provide security measures like encryption and authentication.
As presented in the case study, the security principles are
applied to Java microservices in financial sectors, which
presents a hierarchy of security that improves client
information and financial operation security. Through a
proactive security approach, organizations would be able to
minimize threats and abide by industry rules [29].

Mousavi et al. (2024) analyse the credibility of the Large
Language Models (LLMs) or the in producing secure code to
the Application Programming Interfaces (APIs). Their paper
identifies the major problem of developers with integrating
security APIs, which results in inappropriate usage and
computer vulnerability. Evaluating 48 programming tasks that
used five security APIs, the authors ended up with shocking
results that about 70% of the generated code had security API
misuse, and a few tasks has a misuse rate of 100%. This
means that there are significant constraints to the existing
dependability of ChatGPT in regard to safe coding practices
[30].

George (2023) focuses on the value of a secure API
communication in web programs to protect the data and to
verify the identity of the user. It also talks about Java HTTP
Client which was added to Java 11 and it supports secure
HTTP communication using TLS and OAuth authentication.
The paper identifies best practices relating to the process of
securing API communication within Java applications based
on OAuth 2.0 authentication, TLS encryption, handling of

105

access-tokens, and the handling of secure connections. It also
points to practical uses in the financial and healthcare data
exchanges and discusses future trends in API security,
including zero-trust architecture and Al-based monitoring

[31].

contrasts the use of Spring Security with other Java
implementations such as Apache Shiro, and best practices
when configuring a system security, including cloud-native
security and Zero Trust concepts of Java applications. The

intended viewers encompass developers, architects and
security practitioners [32].

Manne (2023) reviews Spring Security, which is a
flexible Java architecture that can be adapted to authentication

and access control in a web application. The paper explains
the structure, elements, and functionalities such as session
management, role based access, and CSRF protection in
addition to the OAuth2 and JWT integration. It demonstrates

the ways of addressing typical threats of the OWASP Top 10,

Table 2: Comparative Analysis of Existin

findings,

methods,

and

The Table II is a systematic comparison of available
literature on Java security practices with emphasis areas,
technologies,
demonstrate a fragmented coverage of a
application security research

limitations to
large-scale

o Literature on Java Security Practices in Large-Scale Applications

Reference Focus Area Java Security Approach Key Findings Limitations
Technology Practices Observed
Ishu Enterprise Java | Enterprise- Authentication, Conceptual Layered security | Lacks empirical
Anand Security grade Java | RBAC, analysis with | frameworks benchmarking
Jaiswal, Architecture applications encryption, case studies significantly and Cross-
(2025) secure coding, improve organization
monitoring resilience against | comparative
complex cyber | analysis
threats
Isreal Secure Java secure | Cryptography, Experimental Optimized Focuses on
(2025) Messaging messaging authentication, benchmarking | asynchronous messaging
Performance frameworks performance processing systems only;
optimization improves ignores broader
throughput by up | application
to 40% without | security
weakening practices
security
Chaganti | Secure Java | Spring OWASP Top 10 | Case study- | Proactive secure | Findings are
(2024) Development Security, mitigation, API | based coding and | limited to
Practices Jakarta EE, | security, evaluation integrated financial-
Java encryption, frameworks domain
microservices | monitoring reduce enterprise | microservices
security risks
Mousavi et | LLM-Assisted Java security | Security API | Automated Approximately Does not
al. (2024) | Secure Coding APIs with | usage and manual | 70% of Al- | propose
ChatGPT correctness code analysis generated Java | mitigation
code misuses | techniques or
security APIs enterprise
adoption
guidelines
George Secure API | Java OAuth 2.0, TLS, | Best-practice Proper OAuth and | Concentrates
(2023) Communication | HttpClient token and | driven analysis | TLS only on external
(Java 11) certificate configuration API security
management ensures secure | layers
API data
exchange
Manne Java Security | Spring Authentication, Comparative Spring Security | Limited real-
(2023) Framework Security, authorization, framework provides more | world validation
Review Shiro, JAAS CSRF, OAuth2, | analysis comprehensive in distributed
JWT protection than | large-scale
traditional ~ Java | systems

security models

106

6. Conclusion & Futurework

The security of large-scale Java applications is now an
essential concern as enterprise applications keep growing in
size, complexity, and vulnerability to cyber threats. The
argument presented in this paper highlights the fact that Java
security is not a domain of language-level functionality, but it
is the product of the concerted efforts in the JVM, application
frameworks, and application development. Enterprise
architecture frameworks like Spring and Jakarta EE are
crucial as they provide a standard and extensible security
implementation, but as time goes on, there are still
unaddressed vulnerabilities that indicate that secure
configurations, dependency management, and awareness
among the developers continue to be a persistent issue. The
analyzed literature also reveals that the current research is
inclined to cover isolated security issues, leaving blank areas
in end-to-end security assessment. Future research must focus
on creating some model of integrated security assessment,
combining runtime monitoring, automated testing, and
configuration analysis of enterprise Java systems. The
research of the safe adoption of Al-assisted development
tools is also of high scope, especially in verifying the
security-critical code and API use. In addition, integrating the
zero-trust architectures and context-sensitive security policies
in cloud-native and microservice-based Java applications can
be used to better mitigate novel and advanced attack vectors.

References

[1] G. Maddali, “Efficient Machine Learning Approach
Based Bug Prediction for Enhancing Reliability of
Software and Estimation,” SSRN Electron. J., vol. 8, no.
6, 2025, doi: 10.2139/ssrn.5367652.

[2] V. Thangaraju, “Enhancing Web Application
Performance and Security Using Al-Driven Anomaly
Detection and Optimization Techniques,” Int. Res. J.
Innov. Eng. Technol, vol. 9, no. 3, 2025, doi:
47001/IRJIET/2025.903027.

[3] S. Devalla, “Adaptive security frameworks for Java EE
8 and JSF: Automating threat detection and mitigation in
enterprise web applications,” J. Sci. Eng. Res., vol. 6,
no. 10, pp. 326-334, 2019.

[4] S. Barman, P. Gupta, and S. Kashiramka, “Project
Management Survey: A Review of Software Project
Management Methodologies,” 2024 IEEE 1ith Uttar
Pradesh Sect. Int. Conf. Electr. Electron. Comput. Eng.
UPCON 2024, 2024, doi:
10.1109/UPCON62832.2024.10983518.

[5] S. P. Kalava, “Enhancing Software Development with
Al-Driven Code Reviews,” North Am. J. Eng. Res., vol.
5,no. 2, pp. 1-7, 2024.

[6] P. Chandrashekar and M. Kari, “A Study on Artificial
Intelligence in Software ~ Engineering with
Methodologies , Applications , and Effects on SDLC,”
TIJER — Int. Res. J., vol. 11, no. 12, pp. 932-937, 2024.

[71 V. Prajapati, “Enhancing Threat Intelligence and Cyber
Defense through Big Data Analytics: A Review Study,”
J. Glob. Res. Math. Arch., vol. 12, no. 4, 2025.

[8] H. He, R. He, H. Gu, and M. Zhou, “A large-scale
empirical study on Java library migrations: prevalence,
trends, and rationales,” in Proceedings of the 29th ACM

joint meeting on European software engineering
conference and symposium on the foundations of
software engineering, 2021, pp. 478-490. doi:
10.5281/zenodo.5091384.

[9] T. A. K. Manne, “Serverless Java Applications: Security
and Performance Considerations,” J. Sci. Eng. Res., vol.
10, no. 10, pp- 207-213, 2023, doi:
10.5281/zenodo.17062349.

[10] S. C. G. Varma, “The Role of Java in Modern Software
Development: A Comparative Analysis with Emerging
Programming Languages,” Int. J. Emerg. Res. Eng.
Technol., vol. 1, no. 2, pp. 28-36, 2020, doi:
10.63282/3050-922X/IJERET-V112P104.

[11] L. Ion, B. Dragovic, and B. Crispo, “Extending the Java
Virtual Machine to Enforce Fine-Grained Security
Policies in Mobile Devices,” in Twenty-Third Annual
Computer Security Applications Conference (ACSAC
2007), 1EEE, Dec. 2007, pp. 233-242. doi:
10.1109/ACSAC.2007.36.

[12] B. Vyas, “Security challenges and solutions in java
application development,” Eduzone Int. Peer Rev.
Multidiscip. J., vol. 12, no. 2, pp. 268-275, 2023.

[13] N. K. Prajapati, “Federated Learning for Privacy-
Preserving Cybersecurity: A Review on Secure Threat
Detection,” Int. J. Adv. Res. Sci. Commun. Technol., vol.
5, mno. 4, pp. 520-528, Apr. 2025, doi:
10.48175/IJARSCT-25168.

[14] E. Kuzmina, S. P. Chattha, S. E. Hosseini, M. Shahbaz,
and A. Akhunzada, “Spring Framework Benchmarking
Utility for Static Application Security Testing (SAST)
Tools,” IEEE Internet Things J., vol. 12, no. 22, pp.
46863-46877, Nov. 2025, doi:
10.1109/J10T.2025.3598235.

[15] N. Dimitrijevié, N. Zdravkovi¢, M. Bogdanovié, and A.
Mesterovic, “Advanced Security Mechanisms in the
Spring Framework: JWT, OAuth, LDAP and Keycloak,”
in Proceedings of the 14th International Conference on
Business Information Security (BISEC 2023), 2024, pp.
64-70.

[16] H. P. Kapadia, “Role-Based Access Control (RBAC)
for Banking Web Platforms : Compliance Implications,”
vol. 1, no. 3, pp. 11-15, 2023.

[17] N. Meng, S. Nagy, D. (Daphne) Yao, W. Zhuang, and
G. A. Argoty, “Secure coding practices in Java,” in
Proceedings of the 40th International Conference on
Software Engineering, New York, NY, USA: ACM,
May 2018, pp. 372-383. doi:
10.1145/3180155.3180201.

[18] S. Matcha and S. Kumar, “Java/J2EE Development:
Best Practices and Performance Optimization in
Enterprise Applications,” Int. J. Sci. Dev. Res., vol. 10,
no. 1, pp. b123-b138, 2025.

[19] K. C. Chaganti, “Securing Enterprise Java Applications:
A Comprehensive Approach,” EPH - Int. J. Sci. Eng.,
vol. 10, mno. 02, pp. 1827, 2024, doi:
10.53555/ephijse.v10i2.286.

[20] A. R. Bilipelli, “Visual Intelligence Framework for
Business Analytics Using SQL Server and Dashboards,”
ESP J. Eng. Technol. Adv., vol. 3, no. 3, pp. 144-153,
2023, doi: 10.56472/25832646/JETA-V3I17P118.

107

[21] V. Nerella, “Architecting secure, automated multi-cloud
database platforms strategies for scalable compliance,”
Int. J. Intell. Syst. Appl. Eng., vol. 9, no. 1, pp. 128—-138,
2021.

[22] D. Patel, “Leveraging Database Technologies for
Efficient Data Modeling and Storage in Web
Applications,” Int. J. Sci. Res. Comput. Sci. Eng. Inf.
Technol., vol. 10, no. 4, pp. 357-369, 2024, doi:
10.32628/cseit25113374.

[23] M. Menghnani, “Advancing PWA Accessibility : The
Impact of Modern Frameworks and Development
Tools,” vol. 12, no. 3, pp. 465-471, 2025.

[24] R. Carvalho, S. A. Pushkala, and R. Saxena, “Systems
and methods for rapid processing of file data,”
US9594817B2, 2017

[25] A.-D. Tran, M.-Q. Nguyen, G.-H. Phan, and M.-T. Tran,
“Security Issues in Android Application Development
and Plug-in for Android Studio to Support Secure
Programming,” in International Conference on Future
Data and Security Engineering, 2021, pp. 105-122. doi:
10.1007/978-981-16-8062-5 7.

[26] V. S. Thokala, S. Pillai, and S. Gupta, “Testing and
Optimizing Web Applications with Continuous
Integration/Continuous Deployment in Cloud
Environments,” in 2025 IEEE International Conference
on Emerging Technologies and Applications (MPSec

ICETA), 2025, Pp- 1-6. doi:
10.1109/MPSecICETA64837.2025.11118842.

[2711. A. Jaiswal and R. K. Singh, “Implementing
Enterprise-Grade Security in Large-Scale Java
Applications,” Int. J. Res. Mod. Eng. Emerg. Technol.,
vol. 13, no. 3, pp. 424433, 2025, doi:
10.63345/ijrmeet.org.v13.13.28.

[28] O. Isreal, “Performance Optimization of Java Secure
Messaging for High Traffic,” 2025.

[29] K. C. Chaganti, “Securing Enterprise Java Applications:
A Comprehensive Approach,” EPH - Int. J. Sci. Eng.,
2024, doi: 10.53555/ephijse.v10i2.286.

[30] Z. Mousavi, C. Islam, K. Moore, A. Abuadbba, and M.
A. Babar, “An investigation into misuse of java security
apis by large language models,” in Proceedings of the
19th ACM Asia Conference on Computer and
Communications Security, 2024, pp. 1299-1315.

[31] J. George, “Secure APl Communication in Java Web
Applications: Implementing OAuth and TLS with Java
HttpClient,” 2023.

[32] T. A. K. Manne, “Enhancing Web Security in Java
Applications: A Deep Dive into Spring Security
Framework,” ESP J. Eng. Technol. Adv., vol. 3, pp.
179-185, 2023, doi: 10.56472/25832646/JETA-
V3I6P115.

108

