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Abstract - Text preprocessing plays a critical role in
enhancing the performance of SMS spam classification systems
by transforming raw ftext into a structured and machine-
readable format. This study examines the impact of various text
preprocessing techniques on the accuracy of SMS spam
classification models. Key preprocessing steps analyzed
include text normalization, tokenization, stop-word removal,
stemming, lemmatization, handling of special characters, and
feature scaling. Using benchmark SMS spam datasets, multiple
machine learning classifiers are evaluated under different
preprocessing configurations to assess their influence on
classification accuracy, precision, recall, and Fl-score. The
results  demonstrate  that  appropriate  preprocessing
significantly improves model performance by reducing noise,
dimensionality, and data sparsity. However, the study also
highlights that excessive or improper preprocessing can lead
to information loss and reduced accuracy. The findings
provide practical insights into selecting optimal preprocessing
pipelines for efficient and accurate SMS spam detection
systems, particularly in resource-constrained and real-time
environments.

Keywords - SMS Spam Classification, Text Preprocessing,
Natural Language Processing, Machine Learning, Feature
Engineering, Classification Accuracy, Spam Detection.

1. Introduction
1.1. Background of SMS Spam Classification

The rapid growth of mobile communication has led to a
significant increase in unsolicited and malicious SMS
messages, commonly referred to as SMS spam. These
messages are often used for advertising, phishing, fraud, and
the distribution of harmful links, posing security and privacy
risks to users. SMS spam classification aims to automatically
distinguish spam messages from legitimate (ham) messages
using computational techniques, primarily leveraging machine
learning and natural language processing (NLP). Effective
classification systems are essential for improving user
experience, reducing exposure to threats, and supporting
telecom operators in managing network abuse.
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1.2. Importance of Text Preprocessing in NLP-Based

Classification
SMS messages are typically short, informal, and noisy,
containing abbreviations, misspellings, emojis, special

characters, and inconsistent grammar. Text preprocessing is a
crucial step in NLP-based classification, as it transforms raw
text into a cleaner and more structured representation suitable
for feature extraction and model learning. Techniques such as
normalization, tokenization, stop-word removal, stemming,
and lemmatization help reduce noise, control vocabulary size,
and address data sparsity. The quality of preprocessing directly
affects feature representation and, consequently, the
performance of SMS spam classification models.

1.3. Problem Statement and Research Motivation

Despite the widespread use of text preprocessing in SMS
spam detection, there is no universal agreement on which
preprocessing techniques or combinations yield optimal
classification accuracy. In some cases, aggressive
preprocessing may remove discriminative information, while
insufficient preprocessing may leave noise that degrades model
performance. This lack of clarity motivates a systematic
investigation into how different text preprocessing techniques
influence SMS spam classification accuracy across machine
learning models.

1.4. Objectives and Scope of the Study

The primary objective of this study is to analyze the
impact of various text preprocessing techniques on the
accuracy of SMS spam classification systems. Specifically, the
study aims to evaluate individual and combined preprocessing
methods and assess their effects on common performance
metrics. The scope is limited to SMS spam datasets and
focuses on traditional machine learning classifiers and standard
NLP preprocessing approaches, providing practical guidelines
for designing effective and efficient SMS spam detection
pipelines.

2. Overview of SMS Spam Classification
2.1. Characteristics of SMS Data

SMS data possess unique characteristics that distinguish
them from other text sources. Messages are typically short in
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length, which limits contextual information and increases data
sparsity. They often contain noise in the form of misspellings,
abbreviations, slang, emoticons, URLs, phone numbers, and
special characters. Additionally, SMS messages are highly
informal, lacking consistent grammar and punctuation. These
characteristics make SMS spam classification challenging, as
models must learn discriminative patterns from minimal and
irregular textual content.

2.2. Common Machine Learning and Deep Learning
Approaches

SMS spam classification has traditionally relied on
machine learning algorithms such as Naive Bayes, Support
Vector Machines, Logistic Regression, Decision Trees, and
Random Forests. These models are commonly paired with bag-
of-words or term frequency—inverse document frequency (TF-
IDF) feature representations. More recently, deep learning
approaches have gained prominence, including Convolutional
Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), Long Short-Term Memory (LSTM) networks, and
transformer-based models. Deep learning models can
automatically learn hierarchical and contextual features from
text, often achieving higher accuracy, but they typically require
larger datasets and greater computational resources.

2.3. Role of Feature Representation
Accuracy

Feature representation is a critical factor influencing the
accuracy of SMS spam classification systems. Effective feature
representations capture meaningful patterns that distinguish
spam from legitimate messages while minimizing noise and
redundancy. Traditional representations such as bag-of-words
and TF-IDF depend heavily on preprocessing quality, as
vocabulary size and term relevance directly affect model
learning. In contrast, word embeddings and contextual
representations used in deep learning models encode semantic
relationships between words. Regardless of the approach, the
choice of feature representation, in combination with
appropriate preprocessing techniques, plays a decisive role in
determining classification performance.

in Classification

3. Text Preprocessing in Natural Language

Processing
3.1. Definition and Purpose of Text Preprocessing

Text preprocessing refers to a set of techniques used to
transform raw textual data into a clean, structured, and
machine-readable format suitable for natural language
processing (NLP) tasks. Its primary purpose is to reduce noise,
standardize text, and extract meaningful features that enhance
the performance of computational models. Common
preprocessing steps include text normalization, tokenization,
stop-word removal, stemming, lemmatization, and handling of
special characters or numbers. By preparing text data
effectively, preprocessing improves model learning, reduces
computational complexity, and increases the accuracy of tasks

such as classification, sentiment analysis, and information
retrieval.

3.2. Challenges Specific to SMS Text Preprocessing
SMS data pose unique challenges that make preprocessing
particularly critical and complex:

e Short and Sparse Text: SMS messages are typically
very brief, limiting the context available for feature
extraction and increasing the difficulty of
distinguishing spam from ham.

e Informal Language and Abbreviations: Users
frequently employ slang, shorthand, or phonetic
spellings, requiring normalization techniques to
standardize text.

e Misspellings and Typos: Frequent errors in spelling
can fragment word representations, reducing the
effectiveness of models that rely on exact matches or
vocabulary-based features.

e Special Characters and Emojis: SMS often contain
emojis, symbols, or punctuation used to convey
meaning, which can complicate tokenization and
feature extraction.

e URLs, Phone Numbers, and Alphanumeric Codes:
Spam messages often include links, codes, or numbers
that are informative but must be handled carefully
during preprocessing.

e C(Class Imbalance Sensitivity: Spam messages are

usually fewer than ham messages, making
preprocessing  choices critical to  preserving
discriminative information without exacerbating
imbalance.

Addressing these challenges requires careful selection and
combination of preprocessing techniques to maximize
classification accuracy while minimizing information loss.

4. Common Text Preprocessing Techniques
4.1. Text Normalization (Lowercasing, Punctuation Removal)
Text normalization standardizes raw text to reduce
variability caused by inconsistent formatting. Lowercasing
converts all characters to a uniform case, preventing duplicate
representations of the same word (e.g., “Free” and “free”).
Punctuation removal eliminates non-alphanumeric characters
that may not contribute meaningful information. In SMS spam
classification, normalization helps reduce vocabulary size and
noise, although excessive removal of punctuation may discard
useful cues such as repeated symbols often used in spam
messages.

4.1.1. Tokenization

Tokenization is the process of splitting text into smaller
units, typically words or subwords, known as tokens. For SMS
data, tokenization must handle irregular spacing, emojis,
URLs, and special symbols. Effective tokenization enables
accurate feature extraction by ensuring that meaningful text
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components are correctly identified and represented in the
model.

4.1.2. Stop-Word Removal

Stop-word removal eliminates commonly occurring words
(e.g., “is,” “the,” “and”) that carry limited semantic value for
classification. Removing stop words can reduce dimensionality
and improve computational efficiency. However, in short SMS
messages, aggressive stop-word removal may eliminate
contextually  important  words, potentially  reducing
classification accuracy.

4.1.3. Stemming

Stemming reduces words to their root or base form by
removing suffixes (e.g., “winning,” “winner” — “win”). This
process helps consolidate word variants and reduce vocabulary
size. While stemming is computationally efficient, it can
produce non-linguistic root forms, which may negatively affect
interpretability and, in some cases, model performance.

4.1.4. Lemmatization

Lemmatization maps words to their dictionary base form
(lemma) using linguistic knowledge (e.g., “running” — “run”).
Compared to stemming, lemmatization preserves semantic
meaning and produces valid words. Although more
computationally expensive, it often results in better feature
quality for SMS spam classification tasks.

4.2. Handling Numbers, Symbols, and Special Characters

SMS spam messages frequently include phone numbers,
currency symbols, URLs, and promotional codes.
Preprocessing may involve removing, masking, or replacing
these elements with placeholder tokens. Proper handling
ensures that informative patterns, such as the presence of URLs
or monetary values, are retained without introducing
unnecessary noise.

4.3. Dealing with Slang, Abbreviations, and Misspellings

Informal language is common in SMS data, including
slang, abbreviations, and intentional misspellings. Techniques
such as slang dictionaries, abbreviation expansion, and spelling
correction can improve text consistency and feature
representation. However, these approaches must be applied
carefully to avoid altering meaningful spam indicators or
increasing preprocessing complexity.

5. Advanced and SMS-Specific Preprocessing

Methods
5.1. URL, Email, and Phone Number Normalization

SMS spam messages frequently contain URLs, email
addresses, and phone numbers as key indicators of malicious or
promotional intent. Instead of removing these elements
entirely, normalization techniques replace them with
standardized placeholder tokens (e.g., <URL>, <EMAIL>,
<PHONE>). This approach preserves their discriminative

value while reducing vocabulary fragmentation caused by
unique or randomly generated strings, thereby improving
model generalization.

5.2. Emoji and Emoticon Handling

Emojis and emoticons are commonly used in SMS
messages to express emotions or attract attention, particularly
in spam messages. Preprocessing strategies include removing
them, converting them into textual descriptions, or mapping
them to sentiment-based tokens. Proper handling of emojis can
help retain emotional or promotional cues that may contribute
to improved classification accuracy.

5.3. Spell Correction and Text Expansion

Spell correction addresses typographical errors and
intentional misspellings designed to bypass spam filters.
Automated spelling correction tools can normalize word forms
and reduce vocabulary sparsity. Text expansion techniques,
such as converting abbreviations and shorthand (e.g., “u” to
“you,” “msg” to “message”), further enhance text clarity.
While beneficial, these methods must be applied cautiously to

avoid altering meaningful patterns specific to spam content.

5.4. Handling Class Imbalance During Preprocessing

SMS spam datasets are often imbalanced, with legitimate
messages significantly outnumbering spam messages.
Preprocessing can play a role in mitigating this issue through
techniques such as targeted data augmentation for minority
classes, selective feature weighting, or careful preservation of
rare but informative tokens. Addressing class imbalance during
preprocessing helps prevent model bias toward the majority
class and supports more robust spam detection performance.

6. Impact of Individual Preprocessing

Techniques on Classification Accuracy
6.1. Effects on Traditional Machine Learning Models
Traditional machine learning models such as Naive Bayes,
Support Vector Machines (SVM), and Logistic Regression are
highly sensitive to text preprocessing choices because they rely
on explicit feature representations like bag-of-words and TF-
IDF. Techniques such as lowercasing, stop-word removal, and
stemming generally improve classification accuracy by
reducing vocabulary size and noise. Tokenization quality
directly affects feature consistency, while normalization of
URLs and numbers often enhances spam detection
performance. However, aggressive preprocessing such as
excessive stop-word removal or stemming can remove
discriminative terms, leading to reduced model accuracy,
particularly for short SM'S messages.

6.2. Effects on Deep Learning Models

Deep learning models, including Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs), and
transformer-based architectures, are comparatively more robust
to raw and noisy text. These models can learn contextual and
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semantic patterns directly from sequences of words or
subwords. As a result, minimal preprocessing such as basic
normalization and tokenization is often sufficient. Techniques
like lemmatization or stop-word removal may have limited
impact and, in some cases, can negatively affect performance
by altering word order or semantic cues. Nevertheless,
normalization of URLs, emojis, and special tokens can still
contribute  positively by providing consistent input
representations.

6.3. Trade-Offs Between Noise Reduction and Information
Loss

While preprocessing aims to reduce noise and improve
model efficiency, it introduces a critical trade-off between
simplifying text and preserving meaningful information.
Excessive preprocessing may discard subtle indicators of spam,
such as repeated symbols, informal language, or specific
keyword patterns. Conversely, insufficient preprocessing may
leave irrelevant noise that degrades model learning. Achieving
optimal classification accuracy therefore requires a balanced
preprocessing strategy that minimizes noise while retaining
features essential for distinguishing spam from legitimate SMS
messages.

7. Comparative
Pipelines
7.1. Minimal vs. Extensive Preprocessing

Preprocessing pipelines can range from minimal
approaches, involving basic normalization and tokenization, to
extensive pipelines that include stop-word removal, stemming
or lemmatization, spell correction, and SMS-specific
normalization. Minimal preprocessing often preserves more of
the original message structure and semantic cues, which can be
beneficial for deep learning models. In contrast, extensive
preprocessing tends to reduce noise and dimensionality,
making it more suitable for traditional machine learning
models. Comparative analysis shows that while extensive
preprocessing can improve accuracy in some cases, it may also
introduce information loss, particularly in short and informal
SMS texts.

Analysis of Preprocessing

7.2. Model-Dependent Preprocessing Requirements

Different classification models exhibit varying sensitivity
to preprocessing techniques. Traditional machine learning
models typically require more aggressive preprocessing to
optimize feature quality and reduce sparsity. Deep learning
models, especially transformer-based architectures, can tolerate
raw text and rely less on manual preprocessing due to their
ability to learn contextual representations. As a result, the
effectiveness of a preprocessing pipeline is strongly model-
dependent, and no single pipeline performs optimally across all
classifiers.

7.3. Performance Comparison Using Evaluation Metrics

The effectiveness of preprocessing pipelines is evaluated
using standard classification metrics such as accuracy,
precision, recall, and Fl-score. Comparative results indicate
that preprocessing choices influence not only overall accuracy
but also class-specific performance, particularly recall for spam
detection. Balanced evaluation across multiple metrics is
essential to identify preprocessing strategies that achieve
robust and reliable SMS spam classification o

8. Evaluation Metrics and Experimental Setup
8.1. Accuracy, Precision, Recall, and F1-Score

To assess the effectiveness of SMS spam classification
models under different preprocessing techniques, standard
evaluation metrics are employed. Accuracy measures the
overall proportion of correctly classified messages but may be
misleading in imbalanced datasets. Precision evaluates the
proportion of correctly identified spam messages among all
messages classified as spam, reflecting the model’s ability to
avoid false positives. Recall measures the proportion of actual
spam messages correctly detected, indicating the effectiveness
of spam coverage. The Fl-score, as the harmonic mean of
precision and recall, provides a balanced assessment of model
performance, particularly in the presence of class imbalance.

8.2. Dataset Description and Preprocessing Configurations

The experimental evaluation 1is conducted using
benchmark SMS spam datasets containing labeled spam and
legitimate messages. The datasets typically exhibit class
imbalance, with legitimate messages forming the majority
class. Multiple preprocessing configurations are designed to
analyze their impact on classification performance, ranging
from minimal preprocessing (lowercasing and tokenization) to
extensive pipelines incorporating stop-word removal,
stemming or lemmatization, normalization of URLs and
numbers, and SMS-specific text handling. Each configuration
is applied consistently across models to ensure fair
comparison.

8.3. Experimental Methodology

The experimental methodology involves splitting the
dataset into training and testing subsets using standard
validation techniques. Classification models are trained
separately under each preprocessing configuration, and their
performance is evaluated using the selected metrics.
Comparative analysis is then performed to identify trends,
strengths, and limitations associated with different
preprocessing strategies. This systematic approach ensures
reproducibility and provides reliable insights into the
relationship between text preprocessing techniques and SMS
spam classification accuracy.
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9. Challenges and Limitations
9.1. Over-Preprocessing and Semantic Distortion

One of the primary challenges in SMS spam classification
is  over-preprocessing, where excessive cleaning or
normalization removes meaningful semantic information.
Techniques such as aggressive stop-word removal, stemming,
or symbol deletion can distort message intent, especially in
short SMS texts where each token carries significant meaning.
This semantic distortion may reduce the model’s ability to
capture subtle spam indicators, ultimately lowering
classification accuracy.

9.2. Language and Domain Dependency

Preprocessing techniques are often language- and domain-
specific, limiting their generalizability. Methods optimized for
English SMS data may not perform effectively on messages in
other languages or mixed-language contexts. Additionally,
spam content varies across regions and domains, requiring
adaptation of preprocessing rules, slang dictionaries, and
normalization strategies. This dependency poses challenges for
building universally robust SMS spam classification systems.

9.3. Computational Cost and Scalability

Advanced preprocessing methods such as spell correction,
lemmatization, and text expansion increase computational
complexity and processing time. In large-scale or real-time
SMS filtering systems, these costs can impact scalability and
deployment feasibility. Balancing preprocessing sophistication
with computational efficiency remains a key limitation,
particularly in resource-constrained environments where rapid
message classification is required.

10. Implications
Systems

10.1. Best Practices for Preprocessing Selection

The findings of SMS spam classification studies highlight
the importance of selecting preprocessing techniques that align
with the chosen classification model and application context.
For traditional machine learning models, structured and
moderately extensive preprocessing such as normalization,
tokenization, and controlled stemming or lemmatization tends
to yield better performance. For deep learning models, minimal
but consistent preprocessing is often sufficient, with emphasis
on preserving contextual and semantic information. In all
cases, preprocessing pipelines should be empirically evaluated
rather than assumed, as their impact varies across datasets and
models.

for SMS Spam Detection

10.2. Balancing Accuracy, Efficiency, and Robustness

An effective SMS spam detection system must balance
high classification accuracy with computational efficiency and
robustness to evolving spam patterns. Overly complex
preprocessing pipelines may improve accuracy marginally but
at the cost of increased latency and reduced scalability.
Conversely, insufficient preprocessing may lead to noisy inputs

and unstable predictions. A balanced approach that combines
essential noise reduction with preservation of discriminative
features supports reliable performance across diverse message
types and operating conditions.

10.3. Practical Deployment Considerations

In real-world deployments, SMS spam detection systems
must operate under constraints such as real-time processing,
limited computational resources, and dynamic spam behavior.
Preprocessing techniques should therefore be lightweight,
adaptable, and easy to update as new spam patterns emerge.
Additionally, system designers should consider
maintainability, language support, and integration with existing
communication infrastructures. These practical considerations
ensure that preprocessing strategies contribute effectively to
the long-term reliability and usability of SMS spam detection
systems.

11. Future Research Directions
11.1. Adaptive and Automated Preprocessing Techniques

Future research can focus on developing adaptive and
automated preprocessing methods that dynamically adjust to
data characteristics and model requirements. Instead of relying
on fixed preprocessing pipelines, learning-based or data-driven
approaches can identify optimal preprocessing strategies based
on message content, noise level, or evolving spam patterns.
Such adaptive techniques have the potential to reduce manual
tuning and improve long-term classification performance.
11.2.  Multilingual and Cross-Domain
Strategies

As SMS communication increasingly spans multiple
languages and domains, there is a growing need for
preprocessing strategies that generalize beyond single-
language or domain-specific settings. Future studies may
explore language-agnostic preprocessing methods, cross-
lingual normalization techniques, and transfer learning
approaches that enable effective spam detection across diverse
linguistic contexts. Addressing code-switching and mixed-
language SMS content is also a critical research direction.

Preprocessing

11.3. Integration with Contextual Embeddings

The integration of preprocessing techniques with
contextual word and sentence embeddings represents a
promising area for future research. Modern embedding models
capture semantic and contextual information that may reduce
the need for aggressive preprocessing. Investigating how
minimal or selective preprocessing interacts with contextual
embeddings can lead to more efficient and accurate SMS spam
classification systems, particularly when combined with
transformer-based architectures.
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12. Conclusion
12.1. Summary of Key Findings

This study examined the role of text preprocessing in SMS
spam classification and analyzed how different preprocessing
techniques influence model performance. The findings show
that preprocessing significantly affects feature representation
and classification outcomes, particularly for short and noisy
SMS data. Traditional machine learning models benefit from
structured and carefully designed preprocessing pipelines,
while deep learning models demonstrate greater robustness to
raw text and require less aggressive preprocessing.

12.2. Overall Impact of Preprocessing on SMS Spam
Classification Accuracy

Overall, text preprocessing has a substantial impact on
SMS spam classification accuracy by reducing noise,
controlling vocabulary size, and enhancing discriminative
feature extraction. However, the results also highlight that
excessive preprocessing can lead to semantic distortion and
information loss, negatively affecting performance. The
effectiveness of preprocessing is therefore model-dependent,
dataset-specific, and closely tied to the nature of SMS content.

12.3. Recommendations for Researchers and Practitioners

Researchers are encouraged to systematically evaluate
preprocessing techniques rather than relying on standard or
assumed pipelines. Future studies should explore adaptive,
multilingual, and context-aware preprocessing approaches to
improve  generalization.  Practitioners  should  select
preprocessing strategies that balance accuracy, efficiency, and
scalability, prioritizing lightweight and maintainable solutions
for real-world SMS spam detection systems.
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