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Abstract - Deep-learning-based intelligent fault diagnosis 

methods are the new research hotspots in the fault diagnosis 

field. Auto detection and correct detection of the emerging 

micro-fault of rotating machinery, particularly with respect 

to fault orientation and level of severity, remains a 

significant issue in the area of intelligent fault diagnosis. To 

detect an early fault successfully in rotating machinery, this 

paper presents a Hybrid Recurrent Neural Network and 

Gated Recurrent Unit (RNN +GRU) that can be used to 

diagnose intelligent faults on the Case Western Reserve 

University (CWRU) bearing dataset. The suggested hybrid 

model covers both the short- and long-term temporal 

characteristics of bearing vibration signals. Experimental 

outcomes show high-quality performance with an accuracy 

of 99.7, a precision of 99.4, a recall of 99 and an F1-score of 

99.8, which is considerably better than the traditional 

machine learning models as well as standalone deep 

learning models. Such findings confirm how effective and 

appropriate the proposed solution is in terms of high-

precision predictive maintenance and intelligent diagnosis of 

faults in industries. 

 

Keywords - Predictive Maintenance, Intelligent Fault 

Diagnosis, Deep Learning, Vibration Analysis, Rotating 

Machinery, Industrial Systems Reliability.  

 

1. Introduction 
The modern manufacturing, energy, and chemical 

industries depend on these industrial systems that consist of 

interconnected mechanical, electrical, electronic, and 

information subsystems [1]. The growing complexity and size 

of these systems, as well as the growth in performance 

expectations, have rendered reliability a key component in the 

quest to have safe and effective operations. Industrial failures 

may cause substantial losses of money, stagnation of 

production, equipment destruction, and even safety risks, 

which is why it is so vital to detect faults in time and 

implement proactive maintenance plans [2]. Maintenance 

practices in the past were based on a reactive or time-

dependent approach, e.g., scheduled maintenance checks or 

maintenance after failure [3][4]. With the emergence of 

artificial intelligence (AI) and data-oriented methods, the 

practice of maintenance has changed, and predictive 

maintenance (PdM) methods are now possible, where the 

maintenance is predicted ahead of time [5][4]. PdM uses the 

huge amounts of sensor and operational data created by 

industrial environments and transforms maintenance 

operation strategies towards proactive rather than reactive 

maintenance and resource distribution optimization [6][7]. 

 

Deep learning (DL) is one of the methods of AI that has 

been used to become a potent tool, as it can extract features 

automatically, generalize nonlinear relationships and work 

with high-dimensional data, as commonly found in industrial 

settings [8]. Compared to conventional machine learning 

(ML) algorithms, which frequently involve human 

intervention and manual feature engineering to correct errors 

[9]. DL models can learn hierarchical representations directly 

based on raw sensor signals, and this increases the accuracy 

and automation of fault diagnosis [10][11]. New 

developments have examined bringing together DL and 

digital twin frameworks, enhanced analytics, and sensor 

unification to improve smart fault diagnostics in rotating 

machines [12][13]. These methods enable the detection, 

classification, and prediction of faults with high precision in 

real-time and thus early interventions, which reduce the 

operational disruption and minimize maintenance costs. This 

paper explores the latest advancements in deep learning 

methods in predictive maintenance and intelligent fault 

detection with regard to how they can improve the reliability, 

operational efficiency, and safety of complex industrial 

systems. 

 

1.1. Motivation and Contribution 

Its increasing sophistication of industrial equipment and the 

high price of unforeseeable failure demand precise and clever 

predictive maintenance. Conventional maintenance plans and 

the classical models of machine learning are poor in capturing 

nonlinear and temporal features of vibration signals. This 

encourages the adoption of modern deep learning methods, 

including hybrid RNN+GRU models, to obtain valid fault 

diagnosis and better maintenance performance. There are 

some important contributions that are made by this research, 

which are as follows: 

 Proposed a hybrid RNN+GRU deep learning model 

to be able to both capture both short-term and long-

term temporal dependencies on bearing vibration 

signals.  

 Developed a robust preprocessing pipeline 

encompassing signal down-sampling, noise filtering, 

entropy-based sampling rate selection, STFT-based 
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time–frequency transformation, and min–max 

normalization. 

 Validated the model’s generalization and robustness 

through training–testing convergence analysis and 

confusion matrix evaluation. 

 Addressed multiclass fault classification with 

varying severity levels, highlighting the model’s 

discriminative capability across complex industrial 

conditions. 

 Provided a scalable methodology for industrial 

predictive maintenance, enabling efficient and 

precise condition monitoring in rotating machinery. 

 

1.2. Novelty and Justification  

This study is novel in that it is able to produce extremely 

accurate and reliable fault diagnosis in rotating machinery 

through effective processing of complex vibration signals 

and multi-type faults. The proposed model has high 

discriminative ability, unlike the current methods, and this 

fact makes it strong and practical. It overcomes the 

shortcomings of the traditional machine learning models, 

which may not be able to handle temporal relationships and 

multi-class classification. This research is supportable 

because it offers a reliable and scalable solution to the 

industrial predictive maintenance system to guarantee the 

early identification of faults, minimal downtime, and 

enhanced operation efficiency in the real-world 

manufacturing and mechanical systems. 

 

1.3. Organization of the Paper 

The rest of the paper is structured as follows: Section II 

provides a literature review of predictive maintenance and 

intelligent fault diagnosis. Section III outlines the dataset and 

data preprocessing methods. In section IV, experimental 

results and a comparative performance analysis. Lastly, 

Section V summarizes the paper with the main findings and 

closes the paper with future research directions. 

 

2. Literature Review  
An extensive literature review and critical survey of the 

recent works on Predictive Maintenance and Intelligent Fault 

Diagnosis were conducted to inform and support the work 

creation. Table I synthesizes these studies by providing the 

proposed models, datasets, main findings and the challenges 

that have been noted in the current methods. 

 

Zou et al. (2025) mitigate feature degradation in 

constructing domain-independent features. Additionally, the 

weighted Lin SoftMax function is introduced as a 

replacement for the traditional SoftMax, leading to a more 

stable optimization target and improved model accuracy, with 

a distance-based penalty weight focusing on significant 

prediction errors. Experiments on the 2023 PHM Data 

Challenge dataset demonstrate the effectiveness of the 

proposed method, achieving a mean absolute error of 0.11, an 

accuracy of 92.32%, and a fault tolerance accuracy of 98.02% 

[14]. 

 

Zhao et al. (2025) used the random forest (RF) algorithm 

to build a health state evaluation model, and the BP neural 

network (BPNN) was used to predict the remaining service 

life of the system, which provides strong support for the 

maintenance decision of enterprises. The experimental results 

show that the fault diagnosis and predictive maintenance 

methods designed in this study have high accuracy and 

stability. The classification accuracy of the fault diagnosis 

model is generally high, reaching an average accuracy of 

90%; the predictive maintenance model has high prediction 

accuracy, and the error is controlled within 5% in predicting 

the remaining service life [15]. 

 

Ma et al. (2024) BLSTM-GRU model is constructed by 

combining bidirectional long short-term memory network 

(BLSTM) and gated recurrent unit (GRU) networks, and 

applied to fault prediction of electricity information collection 

terminals, as well as issuing warnings based on the prediction 

results. Based on the selected data samples, experimental 

analysis is conducted on the proposed method, and the results 

show that its fault diagnosis accuracy reaches 96.03%, and 

the fault warning results are reliable [16]. 

 

Bai et al. (2023) proposed a method that utilizes Wavelet 

Packet Decomposition (WPD) to efficiently extract features 

from the laser gyroscope signal, which are then used as input 

for our diagnostic model. Furthermore, the KELM model is 

trained for fault diagnosis. Afterward, they utilize the 

Improved Dung Beetle Optimizer (IDBO) algorithm to 

optimize its parameters for improved optimization 

performance. According to the experimental results, their 

proposed IDBO-KELM model demonstrates a 3.68% 

improvement in diagnostic accuracy compared to traditional 

approaches. Additionally, it offers the advantages of shorter 

training time and increased precision [17]. 

 

Du et al. (2023) proposed a deep learning-based 

generative adversarial network to integrate with an 

incremental learning SVM model to diagnose the commonly 

occurred faults of the data center air conditioning system. The 

adversarial learning between the generator and the 

discriminator generates the data of the minority class for 

training purposes in the HVAC system. The incremental 

learning strategy is proposed to update the FDD model 

regularly. The refrigerant leakage faults with intensities of 

10%, 20%, 30% and 40% are tested and validated under 

various operational conditions. The experimental results show 

that the incremental learning SVM integrated with deep 

learning GAN reaches acceptable diagnosis accuracies [18]. 

 

Soltani et al. (2022) compared Convolutional Neural 

Networks, Support Vector Machines (SVM), Principal 

Components Analysis-SVM, Linear Discriminant Analysis-

SVM, and Linear Discriminant Analysis classifiers. The 

results indicate that the fault detection reliability of the 

algorithms depends heavily on how well the training data 

covers the operating regime. Furthermore, it is found that a 

well-trained SVM can simultaneously classify twenty types of 

fault with 95% accuracy when the verification data is taken 

from different system configurations [19]. 
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Ghazali et al. (2022) present a fault diagnosis method for 

twisted pair cable fault detection based on knowledge-based 

and data-driven machine learning methods. The DSL Access 

Network is emulated in the laboratory to accommodate 

VDSL2 Technology with various types of cable faults along 

the cable distance between 100 m and 1200. The random 

forest algorithms (RFs), a data-driven method, are adopted to 

train the fault diagnosis classifier and regression algorithm 

with the processed fault data. Finally, the proposed fault 

diagnosis method is used to detect and locate the cable fault 

in the DSL Access Network System. The results show that 

the cable fault detection has an accuracy of more than 97%, 

with a minimum absolute error in cable fault localization of 

less than 11%. The proposed algorithm may assist the 

telecommunication service provider in initiating automated 

cable faults identification and troubleshooting in the DSL 

Access Network System [20]. 

 

Bhatti and Singh (2021) modelled a data-driven and 

multi-physics robotic linear actuator digital twin and 

integrated it with a custom-designed fault detection 

mechanism using a Naïve Bayes classifier. This architecture 

can autonomously be deployed in tandem with the physical 

machine to alarm and diagnose electrical faults as soon as 

they occur in the machine. As compared with conventional 

diagnostics, this will reduce machine downtime and expedite 

repairs. The resultant model, built on MATLAB and 

Simulink, gave an accuracy of 96% and required minimal 

processing capability to operate [21]. 

 

 

Table 1: Recent Studies on Fault Diagnosis Using Machine Learning Techniques 

Author Approaches Key Findings Limitations Future Work 

Zou et al. 

(2025) 

Domain-independent 

feature construction with 

Weighted Lin SoftMax 

loss; evaluated on PHM 

2023 dataset 

Achieved MAE of 0.11, 

accuracy of 92.32%, and 

fault tolerance accuracy of 

98.02%; improved 

optimization stability 

Performance validated on 

a single benchmark 

dataset; limited real-time 

deployment analysis 

Extend validation to 

heterogeneous industrial 

datasets and online 

PHM systems 

Zhao et 

al. (2025) 

Random Forest for health 

state evaluation and BPNN 

for remaining useful life 

prediction 

Fault diagnosis accuracy 

≈90%; RUL prediction error 

within 5%, supporting 

maintenance decisions 

Model interpretability 

and scalability to 

complex systems are not 

discussed 

Integrate explainable AI 

and test on large-scale 

industrial systems 

Ma et al. 

(2024) 

Hybrid BLSTM–GRU 

deep learning model for 

fault prediction and 

warning 

Fault diagnosis accuracy 

reached 96.03%; reliable 

early warning capability 

Computational 

complexity and 

deployment cost were 

not analyzed 

Optimize model 

efficiency and evaluate 

real-time edge 

implementation 

Bai et al. 

(2023) 

WPD-based feature 

extraction with IDBO-

optimized KELM 

Diagnostic accuracy 

improved by 3.68%; 

reduced training time and 

higher precision 

Handcrafted feature 

dependence; limited 

adaptability to new fault 

types 

Combine with adaptive 

feature learning and 

online optimization 

Du et al. 

(2023) 

GAN-based data 

augmentation with 

incremental learning SVM 

for HVAC fault diagnosis 

Improved diagnosis of 

minority fault classes under 

varying conditions 

Focused on specific 

HVAC faults; model 

update frequency not 

optimized 

Extend to multi-fault 

scenarios and adaptive 

update scheduling 

Soltani et 

al. (2022) 

Comparative analysis of 

CNN, SVM, PCA-SVM, 

and LDA-based classifiers 

Well-trained SVM achieved 

95% accuracy across 20 

fault classes 

Strong dependence on 

the training data 

coverage of operating 

regimes 

Develop domain 

adaptation techniques 

for unseen operating 

conditions 

Ghazali 

et al. 

(2022) 

Knowledge-based feature 

transformation with RF for 

cable fault detection and 

localization 

Fault detection accuracy 

>97%; localization error 

<11% 

Laboratory-based 

emulation limits real-

world generalization 

Validate on live telecom 

networks and diverse 

cable infrastructures 

Bhatti & 

Singh 

(2021) 

Digital twin of robotic 

actuator with Naïve Bayes 

fault detection 

Achieved 96% accuracy 

with low computational 

overhead 

Limited to electrical 

faults and simple 

classifiers 

Incorporate advanced 

learning models and 

multi-fault diagnostics 

Research gaps: Although there are immense developments 

in predictive maintenance and intelligent fault diagnosis, the 

available literature indicates that there are various gaps that 

limit practical implementations and generalizations. Most of 

them, although being highly accurate in laboratory or 

benchmark data, are sensitive to handcrafted features, single-

domain data, or even a type of equipment, limiting their 

usefulness in a wide range of industrial systems. Moreover, 

lots of deep learning models, like the BLSTM-GRU or the 

GAN-based one, are not only costly in calculations but also 

lack efficient strategies of real-time deployment. There are 

also some that are highly reliant on full and uniform training 

data, which constrain their ability to operate in hidden 

operating conditions or minority fault sets. These 

shortcomings point to the necessity of predictive maintenance 

models that are scalable, adaptive, and interpretable and can 

be extrapolated to different heterogeneous datasets and be 

used to prescribe fault diagnostics in real time. 
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3. Research Methodology  
The paper presents a predictive maintenance system 

based on the CWRU bearing system shows in Figure 1, 

wherein raw vibration data of healthy bearings and faulty 

bearings undergo pre-processing, including down-sampling, 

noise removal, time-frequency transformation based on the 

STFT, and min-max normalization. The obtained processed 

data are stratified, sampled, and categorized in a hybrid 

RNN+GRU model that takes into account temporal fault 

patterns. Accuracy, precision, recall, and F1-score are used to 

measure the performance of a model. The accuracy, precision, 

recall, and F1-score variables are measured based on the 

confusion matrix to assess the effectiveness of the proposed 

approach. 

 

The next section provides a detailed description of all the 

stages of the proposed methodology: 

 

 
Fig 1: Proposed Flowchart for Predictive Maintenance 

and Intelligent Fault Diagnosis  

 

3.1. Data Gathering and Analysis 

The Case Western Reserve University (CWRU) bearing 

dataset has become a benchmark resource in the field of 

machine condition monitoring and predictive maintenance 

research. Vibration data were typically recorded at high 

sampling rates of 12 kHz and 48 kHz, allowing for fine-

resolution signal analysis suitable for fault detection tasks. 

This dataset captures various fault conditions at three key 

locations—Ball, Inner Race, and Outer Race—along with 

data for a healthy bearing condition (―None‖). As shown in 

Figure 2, there are significant differences in vibration 

amplitude and waveform between the healthy condition and 

various fault types in the dataset (e.g., inner race, outer race, 

and rolling element faults). 

 

 
Fig 2: Samples of Raw Vibration Sensor Signals Of All 

Classes 

 

Fig 2 depicts the complete data of raw vibration sensor 

signals of twelve bearing conditions in twelve categories 

according to the type and severity of faults. Ball defects with 

the largest defects on the top row of 0.007-0.028, with more 

pronounced irregularities of the waveform. The middle row 

records the inner race faults, in the same way, increasing in 

size, and signal distortion. The lower row entails the outer 

race faults with a different level of severity and ends with the 

normal bearing condition that has a stable and low-amplitude 

waveform. These variations of signals underline how fault 

type and size influence vibration properties, which is essential 

input in the fault diagnosis and monitoring of conditions in 

rotating machines. 

 

 
Fig 3: Correlation Heatmap for Mean Signals 

 

Figure 3 shows the relations among the mean signal of 

various bearing condition classes. The cells are the same as 

the correlation coefficient between two classes, where 

warmer colors are used to represent higher positive 

correlations and cooler colors are used to represent weaker or 

negative correlations. Diagonal component values are 

perfectly self-correlated, and the off-diagonal values are used 

to indicate the extent of similarity between the various fault 

types and operating conditions. In general, the heatmap shows 

low to moderate correlations among the majority of class 

pairs, which shows that there are tangible differences in the 

signal between ball faults, inner race faults, outer race faults, 

CWRU bearing 
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 Signal Downsampling 

 Sampling Rate 
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 Time–Frequency 

Transformation 
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and normal conditions, which confirms the suitability of the 

dataset to be trusted in classifying faults. 

 

 
Fig 4: Spectrogram to the Raw Vibration Signal of Each 

Class 

 

Figure 4 presents spectrograms of raw vibration signals 

of twelve bearing conditions, each with the time frequency 

properties of each fault class. The last spectrogram is that of 

normal bearing. An increase fault severity gives rise to more 

labor-intensive frequency patterns in the spectrograms, which 

can be visually differentiated to detect fault types and severity 

in order to effectively monitor the condition and fault 

diagnosis. 

 

3.2. Data Pre-processing  

The preprocessing phase entailed the treatment of missing 

data, elimination of outliers, noise filtering, and then a 

process of data labeling and normalization. The following 

steps are the main steps of preprocessing: 

 Signal Downsampling: The original signals sampled 

at 12 kHz and 48 kHz were downsampled to reduce 

data dimensionality and computational complexity 

while retaining essential fault-related information. 

 Sampling Rate Selection: An entropy-based analysis 

of the generated spectrograms was conducted to 

identify the most informative sampling frequency, 

leading to the selection of 6 kHz as the optimal rate. 

 Time–Frequency Transformation: Each segmented 

signal was converted from the time domain to the 

time–frequency domain using the Short-Time 

Fourier Transform (STFT) to extract localized 

spectral characteristics. 

 Noise Filtering: A noise filter is an algorithm or 

system that suppresses or absorbs (or isolates) 

high/low frequencies or random variations to extract 

the underlying smoother information of a signal, 

data, or image, in electronics, audio, video and 

communications.  

 

3.3. Min-Max Normalization  

The normalization of records was carried out using the min–

max technique to constrain values within a range between 0 

and 1. This was performed to optimize the performance of the 

classifiers and mitigate the effects of outliers. Normalization 

was conducted according to the following mathematical 

formula in Equation (1): 

 

   
       

         
 (1) 

 

Where X represents the original value of the feature,  ′ is the 

normalized value,      is the minimum value of the feature, 

and      is the maximum value of the same: 

 

3.4. Data Splitting 

The dataset was divided into training and testing subsets 

in a 70:30 proportion by a stratified sampling approach, 

where the proportion of classes in both subsets of the 

partitioned dataset represented the proportion of classes in the 

original dataset. 

 

3.5. Hybrid Recurrent Neural Network and Gated 

Recurrent Unit (RNN+GRU) Model 

The Hybrid RNN+GRU model integrates the sequential 

learning strength of the Recurrent Neural Network (RNN) 

with the efficient memory retention ability of the Gated 

Recurrent Unit (GRU). The hybrid Recurrent Neural Network 

and Gated Recurrent Unit (RNN+GRU) model is developed 

to improve predictive maintenance and intelligent fault 

diagnosis by effectively modeling temporal dependencies in 

multivariate time-series sensor data. The architecture 

combines a traditional RNN layer for initial temporal feature 

extraction with stacked GRU layers to capture long-term 

dependencies and nonlinear degradation patterns while 

alleviating the vanishing gradient problem. This hybrid 

design enables robust learning of equipment health evolution 

under varying operating conditions. Hyper parameter training 

plays a critical role in optimizing model performance. Key 

hyperparameters include the number of hidden units in RNN 

and GRU layers, learning rate, batch size, dropout rate, and 

the number of training epochs, as shown in Table II. 

  

Table 1: Hyperparameters of the Hybrid Rnn+Gru 

Model 

Parameter Value / Range 

RNN Hidden Units 64 

GRU Hidden Units 64–128 

Number of Layers 2–3 

Learning Rate 0.001 

Optimizer Adam 

Batch Size 32–64 

Dropout Rate 0.2–0.5 

Epochs 50 

Activation Function ReLU / Tanh 

 

Overall, the Hybrid RNN+GRU architecture improves 

convergence speed, mitigates vanishing gradients, and 

enhances prediction accuracy, making it a powerful 

framework for modeling dynamic, resource-intensive cloud 

environments. 

 

3.6. Evaluation Metrics 

The proposed design was tested in terms of several 

performance measures. To thoroughly summarize the results 
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of the classification, a confusion matrix was created that gave 

the distribution of both correct and incorrect predictions in all 

the classes. Based on this matrix, some important statistical 

measures, True Positives (TP), False Positives (FP), True 

Negatives (TN) and False Negatives (FN) were obtained. The 

primary performance indicators, i.e., accuracy, precision, 

recall, and F1-score, were then estimated using these values 

as mentioned below: 

 

1) Accuracy 

The ratio of the number of instances correctly predicted by 

the trained model to the total number of instances in the 

dataset (input samples). It is given as Equation (2)- 

          
     

           
 (2) 

2) Precision 

Precision is the proportion of positive instances successfully 

predicted to all positive instances predicted by the model. 

Precision expressed as Equation (3)- 

           
  

     
 (3) 

3) Recall 

This metric is the ratio of events that were accurately 

predicted as positive to all instances that should have proved 

positive. In mathematical form, it is given as Equation (4)- 

        
  

     
 (4) 

4) F1 score 

It is a combination of the harmonic mean of precision and 

recall, that is, it helps to balance recall and precision. Its range 

is [0, 1]. Mathematically, it is given as Equation (5)-  

            
                

                
 (5) 

 

Taken together, these metrics provide a more detailed 

and reliable evaluation of a classification model’s overall 

performance and its ability to make accurate predictions 

across different classes. 

 

4. Results and Discussion  
This section explains the experimental outline and 

presents the experimental evaluation and effective processing 

of the proposed model in both training and testing stages. The 

experiments were performed on a powerful PC. The proposed 

model was implemented using TensorFlow 2.3.0 with Python 

in a Jupyter Notebook environment on a system equipped 

with an Intel® Core™ i5-8250U processor (1.60–1.80 GHz) 

and 12.0 GB RAM (11.9 GB usable). Table III indicates that 

the proposed Hybrid RNN+GRU model has a high prediction 

accuracy in predictive maintenance and intelligent fault 

diagnosis based on the CWRU bearing dataset. The model 

has an excellent accuracy rate of 99.7, and this gives it a high 

capability of predicting in general. Moreover, the high F1-

score (99.8 percent) indicates that there is a good trade-off 

between precision and recall, or that the model is robust, 

reliable and effective in terms of precise bearing fault 

classification in the process of predictive maintenance in the 

industry. 

 

 

 

Table 2: Experiments Results of the Proposed Model 

for Fault Diagnosis 

Performance Matrix Hybrid RNN+GRU 

Accuracy 99.7 

Precision 99.4 

Recall 99 

F1-score 99.8 

 

 
Fig 5: Training and Testing Accuracy for the RNN+GRU 

Model 

 

Figure 5 shows the curve of accuracy of the RNN+GRU 

model on 50 training epochs on the training and testing sets. 

At the beginning, the model quickly becomes more accurate, 

which means that early epochs are effectively learnt. The 

accuracy of training and testing occurs in a steady increase as 

the training continues, as well as the testing, and they closely 

follow with the values approaching 100% accuracy. This high 

correlation indicates high generalization and low overfitting. 

When the number of epochs becomes approximately 15-20, 

the accuracy curves become flattened, which proves that the 

model has reached convergence and attained high predictive 

performance on both seen and unseen data. 

 
Fig 6:  Training and Testing Loss for the RNN+GRU 

Model 

 

Figure 6 presents the loss curves of the proposed model 

for both training and testing datasets across 50 epochs. The 

loss values are high at the beginning of the course of the first 

stage, but they level off quickly at the early epochs, which 

suggests good optimization and learning of model parameters. 

During the continuation of training, training and testing loss 

counteract in a smooth manner and are highly parallel to each 

other, which indicates steadiness of learning behavior as well 

as excellent test generalization ability. Once about 15-20 
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epochs are finished, the loss curves level off and tend towards 

near-zero values, signifying the convergence of the model to 

a minimum overfitting and good performance on unknown 

data. 

 

 
Fig 7: Confusion Matrix for the Propose RNN+GRU 

Model 

 

Figure 7 shows the confusion of the RNN+GRU model, 

which has high classification performance with all classes. 

Most of the samples are properly defined as seen by the high 

scores in the main diagonal, which implies proper prediction 

of each of the classes. There are only very few 

misclassifications that are observed, which mainly occur 

between classes 4 and 5, which implies that there is a slight 

overlap between these classes. All in all, the confusion matrix 

shows that the model was very reliable, had an excellent 

discriminative ability, and was very robust in its ability to 

identify various classes with less error. 

 

4.1. Comparative Analysis 

Table IV shows that the proposed Hybrid RNN+GRU 

model has better performance in various assessment metrics 

and datasets. In the case of the AI4I 2020 Predictive 

Maintenance Dataset, Logistic Regression (LR) demonstrates 

that the accuracy is 66.9% with high recall (99.7) and low 

precision, which means that the number of false positives is 

large. The performance of Random Forest (RF) and KNN is 

much better, with an accuracy of 96.2 and 97.3, respectively. 

Regarding the CWRU bearing dataset, SVM, NB, and ANN 

models achieve 84.3% 92.4% and 94.3% accuracy, 

respectively, and the precision, recall and F1-scores depict 

moderate to good classification. Conversely, the proposed 

Hybrid RNN+GRU model yields the best results on the 

CWRU bearing dataset with the accuracy of 99.7, precision of 

99.4, recall of 99, and F1-score of 99.8, which clearly shows 

that the model is efficient, robust and performs better 

compared to current methods of predictive maintenance and 

intelligent fault diagnosis. 

 

 

 

Table  3: Comparison of Different Ml and Ml Models for Fault Diagnosis Using Different Datasets 

Ref Classifiers Dataset Accuracy Precision Recall F1-

score 

[22] Logistic Regression AI4I 2020 Predictive Maintenance 

Dataset 

66.9 46.9 99.7 63.8 

[23] Random Forest 96.2 96.2 96.2 96.5 

[24] K-Nearest Neighbors 97.3 96.2 97.3 96.5 

[25] Support Vector Machine CWRU bearing dataset 84.3 82.5 80.9 81.7 

[26] Naïve Bayes 92.4 93 92 92 

[27] Artificial Neural Network 94.3 95 95 95 

Our Proposed RNN+GRU 

Model 

99.7 99.4 99 99.8 

The proposed Hybrid RNN+GRU model is shown to be 

very robust in bearing fault diagnosis with very high 

accuracy, precision, recall and F1-score in the CWRU dataset. 

It has a good ability to capture time dependencies in vibration 

data, and it converges quickly without overfitting. The 

training and testing curve should be close, and this is a 

confirmation that it has a good ability to generalize. The 

model also performs better than a number of conventional 

machine learning and neural network techniques, which 

makes it robust and reliable when used in predictive 

maintenance. The model, however, has more complexity in 

computations because of recurrent layers that make it 

consume more time in training. It also needs high-quality 

labeled data that is carefully taken. This can impair its use on 

low-resource-based or real-time industrial devices. 

 

 

 

5. Conclusion and Future Study 
Bearing faults are important in the safe, reliable, and 

efficient operation of rotating machinery because bearings are 

the carrying structure of rotating shafts with the ability to 

sustain high loads and stresses. This paper suggested a hybrid 

RNN+GRU-based predictive maintenance model of 

intelligent bearing fault diagnosis on the CWRU dataset. The 

proposed model attained a successful preprocessing and time-

frequency analysis with an accuracy of 99.7, precision of 

99.4, recall of 99, and an F1-score of 99.8, which implies a 

high accuracy and stability in fault classification. The training 

curve and testing curve exhibited rapid convergence in 15-20 

epochs with little overfitting, which proved that it had high 

generalization abilities. Comparison outcomes also revealed 

that the suggested model is more effective compared to the 

classical machine learning models, including SVM, NB, and 

ANN. In general, the findings confirm the usefulness of the 

hybrid RNN+GRU model in predictive maintenance of 
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industry rotating machines to be accurate and efficient. 

Further contributions to the model can be made to reduce the 

computational complexity of the model to allow real-time 

implementation and enhance scalability to resource-

constrained systems. Some of the areas in which research 

might be pursued include lightweight architectures, 

optimization of models, and automatic hyperparameter 

optimization. 
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