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Abstract - Deep-learning-based intelligent fault diagnosis
methods are the new research hotspots in the fault diagnosis
field. Auto detection and correct detection of the emerging
micro-fault of rotating machinery, particularly with respect
to fault orientation and level of severity, remains a
significant issue in the area of intelligent fault diagnosis. To
detect an early fault successfully in rotating machinery, this
paper presents a Hybrid Recurrent Neural Network and
Gated Recurrent Unit (RNN +GRU) that can be used to
diagnose intelligent faults on the Case Western Reserve
University (CWRU) bearing dataset. The suggested hybrid
model covers both the short- and long-term temporal
characteristics of bearing vibration signals. Experimental
outcomes show high-quality performance with an accuracy
of 99.7, a precision of 99.4, a recall of 99 and an F1-score of
99.8, which is considerably better than the traditional
machine learning models as well as standalone deep
learning models. Such findings confirm how effective and
appropriate the proposed solution is in terms of high-
precision predictive maintenance and intelligent diagnosis of
faults in industries.
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1. Introduction

The modern manufacturing, energy, and chemical
industries depend on these industrial systems that consist of
interconnected mechanical, electrical, electronic, and
information subsystems [1]. The growing complexity and size
of these systems, as well as the growth in performance
expectations, have rendered reliability a key component in the
quest to have safe and effective operations. Industrial failures
may cause substantial losses of money, stagnation of
production, equipment destruction, and even safety risks,
which is why it is so vital to detect faults in time and
implement proactive maintenance plans [2]. Maintenance
practices in the past were based on a reactive or time-
dependent approach, e.g., scheduled maintenance checks or
maintenance after failure [3][4]. With the emergence of
artificial intelligence (Al) and data-oriented methods, the
practice of maintenance has changed, and predictive
maintenance (PdM) methods are now possible, where the
maintenance is predicted ahead of time [5][4]. PdM uses the
huge amounts of sensor and operational data created by
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industrial  environments and transforms maintenance
operation strategies towards proactive rather than reactive
maintenance and resource distribution optimization [6][7].

Deep learning (DL) is one of the methods of Al that has
been used to become a potent tool, as it can extract features
automatically, generalize nonlinear relationships and work
with high-dimensional data, as commonly found in industrial
settings [8]. Compared to conventional machine learning
(ML) algorithms, which frequently involve human
intervention and manual feature engineering to correct errors
[9]. DL models can learn hierarchical representations directly
based on raw sensor signals, and this increases the accuracy
and automation of fault diagnosis [10][11]. New
developments have examined bringing together DL and
digital twin frameworks, enhanced analytics, and sensor
unification to improve smart fault diagnostics in rotating
machines [12][13]. These methods enable the detection,
classification, and prediction of faults with high precision in
real-time and thus early interventions, which reduce the
operational disruption and minimize maintenance costs. This
paper explores the latest advancements in deep learning
methods in predictive maintenance and intelligent fault
detection with regard to how they can improve the reliability,
operational efficiency, and safety of complex industrial
systems.

1.1. Motivation and Contribution

Its increasing sophistication of industrial equipment and the
high price of unforeseeable failure demand precise and clever
predictive maintenance. Conventional maintenance plans and
the classical models of machine learning are poor in capturing
nonlinear and temporal features of vibration signals. This
encourages the adoption of modern deep learning methods,
including hybrid RNN+GRU models, to obtain valid fault
diagnosis and better maintenance performance. There are
some important contributions that are made by this research,
which are as follows:

e Proposed a hybrid RNN+GRU deep learning model
to be able to both capture both short-term and long-
term temporal dependencies on bearing vibration
signals.

e Developed a robust preprocessing pipeline
encompassing signal down-sampling, noise filtering,
entropy-based sampling rate selection, STFT-based



time—frequency transformation, and min-max
normalization.

e Validated the model’s generalization and robustness
through training—testing convergence analysis and
confusion matrix evaluation.

e Addressed multiclass fault classification with
varying severity levels, highlighting the model’s
discriminative capability across complex industrial
conditions.

e Provided a scalable methodology for industrial
predictive maintenance, enabling efficient and

precise condition monitoring in rotating machinery.

1.2. Novelty and Justification

This study is novel in that it is able to produce extremely
accurate and reliable fault diagnosis in rotating machinery
through effective processing of complex vibration signals
and multi-type faults. The proposed model has high
discriminative ability, unlike the current methods, and this
fact makes it strong and practical. It overcomes the
shortcomings of the traditional machine learning models,
which may not be able to handle temporal relationships and
multi-class classification. This research is supportable
because it offers a reliable and scalable solution to the
industrial predictive maintenance system to guarantee the
early identification of faults, minimal downtime, and
enhanced operation efficiency in the real-world
manufacturing and mechanical systems.

1.3. Organization of the Paper

The rest of the paper is structured as follows: Section 11
provides a literature review of predictive maintenance and
intelligent fault diagnosis. Section 111 outlines the dataset and
data preprocessing methods. In section 1V, experimental
results and a comparative performance analysis. Lastly,
Section V summarizes the paper with the main findings and
closes the paper with future research directions.

2. Literature Review

An extensive literature review and critical survey of the
recent works on Predictive Maintenance and Intelligent Fault
Diagnosis were conducted to inform and support the work
creation. Table | synthesizes these studies by providing the
proposed models, datasets, main findings and the challenges
that have been noted in the current methods.

Zou et al. (2025) mitigate feature degradation in
constructing domain-independent features. Additionally, the
weighted Lin SoftMax function is introduced as a
replacement for the traditional SoftMax, leading to a more
stable optimization target and improved model accuracy, with
a distance-based penalty weight focusing on significant
prediction errors. Experiments on the 2023 PHM Data
Challenge dataset demonstrate the effectiveness of the
proposed method, achieving a mean absolute error of 0.11, an
accuracy of 92.32%, and a fault tolerance accuracy of 98.02%
[14].

Zhao et al. (2025) used the random forest (RF) algorithm
to build a health state evaluation model, and the BP neural

network (BPNN) was used to predict the remaining service
life of the system, which provides strong support for the
maintenance decision of enterprises. The experimental results
show that the fault diagnosis and predictive maintenance
methods designed in this study have high accuracy and
stability. The classification accuracy of the fault diagnosis
model is generally high, reaching an average accuracy of
90%; the predictive maintenance model has high prediction
accuracy, and the error is controlled within 5% in predicting
the remaining service life [15].

Ma et al. (2024) BLSTM-GRU model is constructed by
combining bidirectional long short-term memory network
(BLSTM) and gated recurrent unit (GRU) networks, and
applied to fault prediction of electricity information collection
terminals, as well as issuing warnings based on the prediction
results. Based on the selected data samples, experimental
analysis is conducted on the proposed method, and the results
show that its fault diagnosis accuracy reaches 96.03%, and
the fault warning results are reliable [16].

Bai et al. (2023) proposed a method that utilizes Wavelet
Packet Decomposition (WPD) to efficiently extract features
from the laser gyroscope signal, which are then used as input
for our diagnostic model. Furthermore, the KELM model is
trained for fault diagnosis. Afterward, they utilize the
Improved Dung Beetle Optimizer (IDBO) algorithm to
optimize its parameters for improved optimization
performance. According to the experimental results, their
proposed IDBO-KELM model demonstrates a 3.68%
improvement in diagnostic accuracy compared to traditional
approaches. Additionally, it offers the advantages of shorter
training time and increased precision [17].

Du et al. (2023) proposed a deep learning-based
generative adversarial network to integrate with an
incremental learning SVM model to diagnose the commonly
occurred faults of the data center air conditioning system. The
adversarial learning between the generator and the
discriminator generates the data of the minority class for
training purposes in the HVAC system. The incremental
learning strategy is proposed to update the FDD model
regularly. The refrigerant leakage faults with intensities of
10%, 20%, 30% and 40% are tested and validated under
various operational conditions. The experimental results show
that the incremental learning SVM integrated with deep
learning GAN reaches acceptable diagnosis accuracies [18].

Soltani et al. (2022) compared Convolutional Neural
Networks, Support Vector Machines (SVM), Principal
Components Analysis-SVM, Linear Discriminant Analysis-
SVM, and Linear Discriminant Analysis classifiers. The
results indicate that the fault detection reliability of the
algorithms depends heavily on how well the training data
covers the operating regime. Furthermore, it is found that a
well-trained SVM can simultaneously classify twenty types of
fault with 95% accuracy when the verification data is taken
from different system configurations [19].
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Ghazali et al. (2022) present a fault diagnosis method for
twisted pair cable fault detection based on knowledge-based
and data-driven machine learning methods. The DSL Access
Network is emulated in the laboratory to accommodate
VDSL2 Technology with various types of cable faults along
the cable distance between 100 m and 1200. The random
forest algorithms (RFs), a data-driven method, are adopted to
train the fault diagnosis classifier and regression algorithm
with the processed fault data. Finally, the proposed fault
diagnosis method is used to detect and locate the cable fault
in the DSL Access Network System. The results show that
the cable fault detection has an accuracy of more than 97%,
with a minimum absolute error in cable fault localization of
less than 11%. The proposed algorithm may assist the
telecommunication service provider in initiating automated

cable faults identification and troubleshooting in the DSL
Access Network System [20].

Bhatti and Singh (2021) modelled a data-driven and
multi-physics robotic linear actuator digital twin and
integrated it with a custom-designed fault detection
mechanism using a Naive Bayes classifier. This architecture
can autonomously be deployed in tandem with the physical
machine to alarm and diagnose electrical faults as soon as
they occur in the machine. As compared with conventional
diagnostics, this will reduce machine downtime and expedite
repairs. The resultant model, built on MATLAB and
Simulink, gave an accuracy of 96% and required minimal
processing capability to operate [21].

Table 1: Recent Studies on Fault Diagnosis Using Machine Learning Techniques

Author Approaches Key Findings Limitations Future Work

Zou et al. | Domain-independent Achieved MAE of 0.11, | Performance validated on | Extend validation to

(2025) feature construction with | accuracy of 92.32%, and | a single  benchmark | heterogeneous industrial
Weighted Lin SoftMax | fault tolerance accuracy of | dataset; limited real-time | datasets and  online
loss; evaluated on PHM | 98.02%; improved | deployment analysis PHM systems
2023 dataset optimization stability

Zhao et | Random Forest for health | Fault diagnosis accuracy | Model interpretability | Integrate explainable Al

al. (2025) | state evaluation and BPNN | ~90%; RUL prediction error | and scalability to | and test on large-scale
for remaining useful life | within 5%, supporting | complex systems are not | industrial systems
prediction maintenance decisions discussed

Ma et al. | Hybrid BLSTM-GRU | Fault diagnosis accuracy | Computational Optimize model

(2024) deep learning model for | reached 96.03%; reliable | complexity and | efficiency and evaluate
fault prediction and | early warning capability deployment cost were | real-time edge
warning not analyzed implementation

Bai et al. | WPD-based feature | Diagnostic accuracy | Handcrafted feature | Combine with adaptive

(2023) extraction with IDBO- | improved by 3.68%; | dependence; limited | feature learning and
optimized KELM reduced training time and | adaptability to new fault | online optimization

higher precision types

Du et al. | GAN-based data | Improved diagnosis of | Focused on specific | Extend to multi-fault

(2023) augmentation with | minority fault classes under | HVAC faults; model | scenarios and adaptive
incremental learning SVM | varying conditions update frequency not | update scheduling
for HVAC fault diagnosis optimized

Soltani et | Comparative analysis of | Well-trained SVM achieved | Strong dependence on | Develop domain

al. (2022) | CNN, SVM, PCA-SVM, | 95% accuracy across 20 | the training data | adaptation  techniques
and LDA-based classifiers | fault classes coverage of operating | for unseen operating

regimes conditions

Ghazali Knowledge-based feature | Fault detection accuracy | Laboratory-based Validate on live telecom

et al. | transformation with RF for | >97%; localization error | emulation limits real- | networks and diverse

(2022) cable fault detection and | <11% world generalization cable infrastructures
localization

Bhatti & | Digital twin of robotic | Achieved 96% accuracy | Limited to electrical | Incorporate  advanced

Singh actuator with Naive Bayes | with low computational | faults and simple | learning models and

(2021) fault detection overhead classifiers multi-fault diagnostics

Research gaps: Although there are immense developments
in predictive maintenance and intelligent fault diagnosis, the
available literature indicates that there are various gaps that
limit practical implementations and generalizations. Most of
them, although being highly accurate in laboratory or
benchmark data, are sensitive to handcrafted features, single-
domain data, or even a type of equipment, limiting their
usefulness in a wide range of industrial systems. Moreover,
lots of deep learning models, like the BLSTM-GRU or the

GAN-based one, are not only costly in calculations but also
lack efficient strategies of real-time deployment. There are
also some that are highly reliant on full and uniform training
data, which constrain their ability to operate in hidden
operating conditions or minority fault sets. These
shortcomings point to the necessity of predictive maintenance
models that are scalable, adaptive, and interpretable and can
be extrapolated to different heterogeneous datasets and be
used to prescribe fault diagnostics in real time.
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3. Research Methodology

The paper presents a predictive maintenance system
based on the CWRU bearing system shows in Figure 1,
wherein raw vibration data of healthy bearings and faulty
bearings undergo pre-processing, including down-sampling,
noise removal, time-frequency transformation based on the
STFT, and min-max normalization. The obtained processed
data are stratified, sampled, and categorized in a hybrid
RNN+GRU model that takes into account temporal fault
patterns. Accuracy, precision, recall, and F1-score are used to
measure the performance of a model. The accuracy, precision,
recall, and F1-score variables are measured based on the
confusion matrix to assess the effectiveness of the proposed
approach.

The next section provides a detailed description of all the
stages of the proposed methodology:

Data preprocessing

Data collection

e Signal Downsampling
e Sampling Rate
Selection
e Time-Frequency
Transformation
Noise Filtering

T

Min-Max
normalization

Model evaluation
accuracy, precision,
recall, f1 score

Fig 1: Proposed Flowchart for Predictive Maintenance
and Intelligent Fault Diagnosis

CWRU bearing
dataset

Data splitting

[ Training [ Testing

\_Y_l

Implement Hybrid
RNN+GRU model

3.1. Data Gathering and Analysis

The Case Western Reserve University (CWRU) bearing
dataset has become a benchmark resource in the field of
machine condition monitoring and predictive maintenance
research. Vibration data were typically recorded at high
sampling rates of 12 kHz and 48 kHz, allowing for fine-
resolution signal analysis suitable for fault detection tasks.
This dataset captures various fault conditions at three key
locations—Ball, Inner Race, and Outer Race—along with
data for a healthy bearing condition (“None”). As shown in
Figure 2, there are significant differences in vibration
amplitude and waveform between the healthy condition and
various fault types in the dataset (e.g., inner race, outer race,
and rolling element faults).

i TR A B

Ball 0.007" Fault Ball 0.028” Fault

WA b o N

Inner race 0.007 Fault

Ball 0.014” Fault Ball 0.021” Fault

Inner race 0.028“ Fault

Outer race 0.007 Fault

Inner race 0.014” Fault Inner race 0.021“ Fault

Outer race 0.014” Fault Outer race 0.021” Fault Normal

Fig 2: Samples of Raw Vibration Sensor Signals Of All
Classes

Fig 2 depicts the complete data of raw vibration sensor
signals of twelve bearing conditions in twelve categories
according to the type and severity of faults. Ball defects with
the largest defects on the top row of 0.007-0.028, with more
pronounced irregularities of the waveform. The middle row
records the inner race faults, in the same way, increasing in
size, and signal distortion. The lower row entails the outer
race faults with a different level of severity and ends with the
normal bearing condition that has a stable and low-amplitude
waveform. These variations of signals underline how fault
type and size influence vibration properties, which is essential
input in the fault diagnosis and monitoring of conditions in
rotating machines.
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Fig 3: Correlation Heatmap for Mean Signals

Figure 3 shows the relations among the mean signal of
various bearing condition classes. The cells are the same as
the correlation coefficient between two classes, where
warmer colors are used to represent higher positive
correlations and cooler colors are used to represent weaker or
negative correlations. Diagonal component values are
perfectly self-correlated, and the off-diagonal values are used
to indicate the extent of similarity between the various fault
types and operating conditions. In general, the heatmap shows
low to moderate correlations among the majority of class
pairs, which shows that there are tangible differences in the
signal between ball faults, inner race faults, outer race faults,
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and normal conditions, which confirms the suitability of the
dataset to be trusted in classifying faults.

Ball Ball Ball Ball
0.021” Fault

0.007” Fault

0.014” Fault 0.028” Fault

Inner race
0.028” Fault

Inner race
0.021” Fault

Inner race
0.014” Fault

Inner race
0.007” Fault

Outer race
0.007“ Fault

Fig 4: Spectrogram to the Raw Vibration Signal of Each
Class

Outer race
0.021” Fault

Outer race
0.014” Fault

Normal

Figure 4 presents spectrograms of raw vibration signals
of twelve bearing conditions, each with the time frequency
properties of each fault class. The last spectrogram is that of
normal bearing. An increase fault severity gives rise to more
labor-intensive frequency patterns in the spectrograms, which
can be visually differentiated to detect fault types and severity
in order to effectively monitor the condition and fault
diagnosis.

3.2. Data Pre-processing

The preprocessing phase entailed the treatment of missing
data, elimination of outliers, noise filtering, and then a
process of data labeling and normalization. The following
steps are the main steps of preprocessing:

e Signal Downsampling: The original signals sampled
at 12 kHz and 48 kHz were downsampled to reduce
data dimensionality and computational complexity
while retaining essential fault-related information.

e Sampling Rate Selection: An entropy-based analysis
of the generated spectrograms was conducted to
identify the most informative sampling frequency,
leading to the selection of 6 kHz as the optimal rate.

e Time—Frequency Transformation: Each segmented
signal was converted from the time domain to the
time—frequency domain using the Short-Time
Fourier Transform (STFT) to extract localized
spectral characteristics.

e Noise Filtering: A noise filter is an algorithm or
system that suppresses or absorbs (or isolates)
high/low frequencies or random variations to extract
the underlying smoother information of a signal,
data, or image, in electronics, audio, video and
communications.

3.3. Min-Max Normalization

The normalization of records was carried out using the min—
max technique to constrain values within a range between 0
and 1. This was performed to optimize the performance of the
classifiers and mitigate the effects of outliers. Normalization

was conducted according to the following mathematical
formula in Equation (1):
X= Xmin

X'= M

Xmax—Xmin
Where X represents the original value of the feature, X' is the
normalized value, X,,;, is the minimum value of the feature,
and X4, 1S the maximum value of the same:

3.4. Data Splitting

The dataset was divided into training and testing subsets
in a 70:30 proportion by a stratified sampling approach,
where the proportion of classes in both subsets of the
partitioned dataset represented the proportion of classes in the
original dataset.
3.5. Hybrid Recurrent Neural Network and Gated
Recurrent Unit (RNN+GRU) Model

The Hybrid RNN+GRU model integrates the sequential
learning strength of the Recurrent Neural Network (RNN)
with the efficient memory retention ability of the Gated
Recurrent Unit (GRU). The hybrid Recurrent Neural Network
and Gated Recurrent Unit (RNN+GRU) model is developed
to improve predictive maintenance and intelligent fault
diagnosis by effectively modeling temporal dependencies in
multivariate time-series sensor data. The architecture
combines a traditional RNN layer for initial temporal feature
extraction with stacked GRU layers to capture long-term
dependencies and nonlinear degradation patterns while
alleviating the wvanishing gradient problem. This hybrid
design enables robust learning of equipment health evolution
under varying operating conditions. Hyper parameter training
plays a critical role in optimizing model performance. Key
hyperparameters include the number of hidden units in RNN
and GRU layers, learning rate, batch size, dropout rate, and
the number of training epochs, as shown in Table II.

Table 1: Hyperparameters of the Hybrid Rnn+Gru

Model
Parameter Value / Range
RNN Hidden Units 64
GRU Hidden Units 64-128
Number of Layers 2-3
Learning Rate 0.001
Optimizer Adam
Batch Size 32-64
Dropout Rate 0.2-0.5
Epochs 50
Activation Function | ReLU/ Tanh

Overall, the Hybrid RNN+GRU architecture improves
convergence speed, mitigates vanishing gradients, and
enhances prediction accuracy, making it a powerful
framework for modeling dynamic, resource-intensive cloud
environments.

3.6. Evaluation Metrics

The proposed design was tested in terms of several
performance measures. To thoroughly summarize the results

113



of the classification, a confusion matrix was created that gave
the distribution of both correct and incorrect predictions in all
the classes. Based on this matrix, some important statistical
measures, True Positives (TP), False Positives (FP), True
Negatives (TN) and False Negatives (FN) were obtained. The
primary performance indicators, i.e., accuracy, precision,
recall, and F1-score, were then estimated using these values
as mentioned below:

1) Accuracy
The ratio of the number of instances correctly predicted by
the trained model to the total number of instances in the
dataset (input samples). It is given as Equation (2)-
P+TN
Accuracy =

O]

TP+Fp+TN+FN
2) Precision

Precision is the proportion of positive instances successfully
predicted to all positive instances predicted by the model.
Precision expressed as Equation (3)-

. . TP
Precision =

TP+FP

®)
3) Recall

This metric is the ratio of events that were accurately
predicted as positive to all instances that should have proved

positive. In mathematical form, it is given as Equation (4)-
TP

TP+FN

Recall = (@)
4) F1score

It is a combination of the harmonic mean of precision and
recall, that is, it helps to balance recall and precision. Its range
is [0, 1]. Mathematically, it is given as Equation (5)-

F1 — score = 2 X Prect:SL:oanecall (5)
Precision+Recall

Taken together, these metrics provide a more detailed
and reliable evaluation of a classification model’s overall
performance and its ability to make accurate predictions
across different classes.

4. Results and Discussion

This section explains the experimental outline and
presents the experimental evaluation and effective processing
of the proposed model in both training and testing stages. The
experiments were performed on a powerful PC. The proposed
model was implemented using TensorFlow 2.3.0 with Python
in a Jupyter Notebook environment on a system equipped
with an Intel® Core™ i5-8250U processor (1.60-1.80 GHz)
and 12.0 GB RAM (11.9 GB usable). Table Il indicates that
the proposed Hybrid RNN+GRU model has a high prediction
accuracy in predictive maintenance and intelligent fault
diagnosis based on the CWRU bearing dataset. The model
has an excellent accuracy rate of 99.7, and this gives it a high
capability of predicting in general. Moreover, the high F1-
score (99.8 percent) indicates that there is a good trade-off
between precision and recall, or that the model is robust,
reliable and effective in terms of precise bearing fault
classification in the process of predictive maintenance in the
industry.

Table 2: Experiments Results of the Proposed Model
for Fault Diagnosis

Performance Matrix | Hybrid RNN+GRU
Accuracy 99.7
Precision 99.4

Recall 99
F1-score 99.8

model accuracy

100 1 — train
— est <

0 10 20 30 40 50

epoch
Fig 5: Training and Testing Accuracy for the RNN+GRU
Model

Figure 5 shows the curve of accuracy of the RNN+GRU
model on 50 training epochs on the training and testing sets.
At the beginning, the model quickly becomes more accurate,
which means that early epochs are effectively learnt. The
accuracy of training and testing occurs in a steady increase as
the training continues, as well as the testing, and they closely
follow with the values approaching 100% accuracy. This high
correlation indicates high generalization and low overfitting.
When the number of epochs becomes approximately 15-20,
the accuracy curves become flattened, which proves that the
model has reached convergence and attained high predictive
performance on both seen and unseen data.

model loss
0104 — train
— @5t
0.08 A
i 0.06 A
0.04 -
Vg
0.02
0.00 - . . . . . i
0 10 20 30 40 50
epoch
Fig 6: Training and Testing Loss for the RNN+GRU
Model

Figure 6 presents the loss curves of the proposed model
for both training and testing datasets across 50 epochs. The
loss values are high at the beginning of the course of the first
stage, but they level off quickly at the early epochs, which
suggests good optimization and learning of model parameters.
During the continuation of training, training and testing loss
counteract in a smooth manner and are highly parallel to each
other, which indicates steadiness of learning behavior as well
as excellent test generalization ability. Once about 15-20
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epochs are finished, the loss curves level off and tend towards
near-zero values, signifying the convergence of the model to
a minimum overfitting and good performance on unknown
data.

Confusion Matrix

[T 300

250

200

- 150

True Label

100

Predicted Label

Fig 7: Confusion Matrix for the Propose RNN+GRU
Model

Figure 7 shows the confusion of the RNN+GRU maodel,
which has high classification performance with all classes.
Most of the samples are properly defined as seen by the high
scores in the main diagonal, which implies proper prediction
of each of the classes. There are only very few
misclassifications that are observed, which mainly occur

Table 3: Comparison of Different Ml and MI Models for Fault Diagnosis Usin

between classes 4 and 5, which implies that there is a slight
overlap between these classes. All in all, the confusion matrix
shows that the model was very reliable, had an excellent
discriminative ability, and was very robust in its ability to
identify various classes with less error.

4.1. Comparative Analysis

Table IV shows that the proposed Hybrid RNN+GRU
model has better performance in various assessment metrics
and datasets. In the case of the Al4l 2020 Predictive
Maintenance Dataset, Logistic Regression (LR) demonstrates
that the accuracy is 66.9% with high recall (99.7) and low
precision, which means that the number of false positives is
large. The performance of Random Forest (RF) and KNN is
much better, with an accuracy of 96.2 and 97.3, respectively.
Regarding the CWRU bearing dataset, SVM, NB, and ANN
models achieve 84.3% 92.4% and 94.3% accuracy,
respectively, and the precision, recall and F1-scores depict
moderate to good classification. Conversely, the proposed
Hybrid RNN+GRU model yields the best results on the
CWRU bearing dataset with the accuracy of 99.7, precision of
99.4, recall of 99, and F1-score of 99.8, which clearly shows
that the model is efficient, robust and performs better
compared to current methods of predictive maintenance and
intelligent fault diagnosis.

Different Datasets

Ref Classifiers Dataset Accuracy | Precision | Recall F1-

score
[22] Logistic Regression Al4l 2020 Predictive Maintenance 66.9 46.9 99.7 63.8
[23] Random Forest Dataset 96.2 96.2 96.2 96.5
[24] K-Nearest Neighbors 97.3 96.2 97.3 96.5
[25] Support Vector Machine CWRU bearing dataset 84.3 82.5 80.9 81.7
[26] Naive Bayes 924 93 92 92
[27] | Artificial Neural Network 94.3 95 95 95
Our Proposed RNN+GRU 99.7 99.4 99 99.8

Model

The proposed Hybrid RNN+GRU model is shown to be
very robust in bearing fault diagnosis with very high
accuracy, precision, recall and F1-score in the CWRU dataset.
It has a good ability to capture time dependencies in vibration
data, and it converges quickly without overfitting. The
training and testing curve should be close, and this is a
confirmation that it has a good ability to generalize. The
model also performs better than a number of conventional
machine learning and neural network techniques, which
makes it robust and reliable when used in predictive
maintenance. The model, however, has more complexity in
computations because of recurrent layers that make it
consume more time in training. It also needs high-quality
labeled data that is carefully taken. This can impair its use on
low-resource-based or real-time industrial devices.

5. Conclusion and Future Study

Bearing faults are important in the safe, reliable, and
efficient operation of rotating machinery because bearings are
the carrying structure of rotating shafts with the ability to
sustain high loads and stresses. This paper suggested a hybrid
RNN+GRU-based predictive maintenance model of
intelligent bearing fault diagnosis on the CWRU dataset. The
proposed model attained a successful preprocessing and time-
frequency analysis with an accuracy of 99.7, precision of
99.4, recall of 99, and an F1-score of 99.8, which implies a
high accuracy and stability in fault classification. The training
curve and testing curve exhibited rapid convergence in 15-20
epochs with little overfitting, which proved that it had high
generalization abilities. Comparison outcomes also revealed
that the suggested model is more effective compared to the
classical machine learning models, including SVM, NB, and
ANN. In general, the findings confirm the usefulness of the
hybrid RNN+GRU model in predictive maintenance of
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industry rotating machines to be accurate and efficient.
Further contributions to the model can be made to reduce the
computational complexity of the model to allow real-time
implementation and enhance scalability to resource-
constrained systems. Some of the areas in which research
might be pursued include lightweight architectures,
optimization of models, and automatic hyperparameter
optimization.
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