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Abstract - Cancer research has increasingly embraced bioinformatics and computational statistics to interpret large-scale and 

complex biological data generated by modern high-throughput technologies [14], [15]. Advances in sequencing and profiling 

platforms have produced extensive genomic, transcriptomic, and proteomic datasets that require sophisticated analytical 

techniques for meaningful interpretation [3], [16]. This survey explores how statistical modelling, machine learning, and data-

driven approaches enable effective knowledge extraction from cancer data. Key applications such as cancer detection, subtype 

identification, prognosis estimation, and treatment response prediction are reviewed [4], [6]. In addition, this study addresses 

methodological challenges, including data heterogeneity, scalability, and interpretability, while discussing recent developments 

that advance precision oncology and personalised cancer therapy [1], [11]. 
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1. Introduction  
Cancer research has increasingly embraced bioinformatics and computational statistics to interpret large-scale and 

complex biological data generated by modern high-throughput technologies [14], [15]. Rapid advances in next-generation 

sequencing, microarray platforms, and mass spectrometry have enabled comprehensive profiling of genomic, transcriptomic, 
and proteomic landscapes across diverse cancer types. While these technologies generate unprecedented volumes of data, their 

high dimensionality, noise, and biological variability pose significant analytical challenges, necessitating the use of advanced 

computational and statistical methodologies for meaningful interpretation [3], [16]. Statistical modelling provides a rigorous 

foundation for cancer data analysis by supporting hypothesis testing, feature selection, and robust inference under uncertainty. 

Techniques such as regression analysis, Bayesian models, and regularisation methods are widely used to identify cancer-

associated genes, mutations, and molecular pathways while controlling false discovery rates. Complementing these 

approaches, machine learning techniques enable the discovery of complex, non-linear patterns within multi-omics datasets, 

facilitating accurate cancer detection, subtype classification, prognosis estimation, and prediction of treatment response [4], 

[6]. Supervised and unsupervised learning models, including support vector machines, neural networks, and clustering 

algorithms, have demonstrated strong predictive performance across multiple cancer studies. 

 

In addition, data-driven and integrative approaches play a critical role in combining heterogeneous data sources, such as 
molecular profiles, clinical records, and imaging data, to generate holistic insights into cancer biology. These frameworks 

support personalised risk assessment and therapy selection, thereby advancing precision oncology [1], [11]. Despite these 

advances, challenges related to data heterogeneity, scalability, model interpretability, and clinical translation remain significant. 

This survey reviews recent methodological developments that address these issues and highlights how the integration of 

bioinformatics, computational statistics, and machine learning continues to drive progress toward personalised and data-driven 

cancer therapy. 

 
 

2. Literature Review  
2.1. From (2010–2015) 

Between 2010 and 2015, cancer research underwent a major transition toward data-centric methodologies supported by 

bioinformatics and computational statistics [14]. Researchers increasingly applied statistical learning, clustering, and 

regularisation techniques to manage high-dimensional gene expression data for accurate cancer classification and prediction 

[4], [8]. This era also witnessed the rise of network-based approaches and large collaborative initiatives such as The Cancer 

Genome Atlas (TCGA), which enabled comprehensive genomic profiling across diverse cancer types [16]. By the end of this 

period, integrative multiomics strategies began to emerge, laying the groundwork for more detailed and precise cancer analyses 
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[17], provided in the table 2.1 as year-wise literature review on Bioinformatics and Computational Statistics in Cancer 

Research.  

 

Table 1: Year-Wise Literature Review on Bioinformatics and Computational Statistics in Cancer Research (2010–2015)

Year Authors Institution(s) Focus / Contribution 

2010 Golub et al. Broad Institute, MIT Early use of statistical learning and clustering methods for cancer 

classification using gene expression data. 

2011 Simon et al. National Cancer Institute (NCI), 

USA 

Statistical methods for high-dimensional genomic data; 

regularization techniques for cancer prediction. 

2012 Ideker & 

Sharan 

University of California, San 

Diego 

Network-based computational models to analyze cancer pathways 

and gene interactions. 

2013 Weinstein et 

al. 

The Cancer Genome Atlas 

(TCGA) Consortium 

Large-scale genomic characterization of multiple cancer types 

using statistical and bioinformatics pipelines. 

2014 Ramazzotti et 

al. 

University of Milan, NYU Probabilistic and statistical models for cancer progression and 

mutation analysis. 

2015 Yuan et al. MD Anderson Cancer Center Integrative statistical frameworks for multi-omics cancer data 

analysis. 

 

2.1.1. Good Outcomes during the years from 2010 to 2015 

Early statistical learning and clustering approaches enabled accurate cancer classification from gene expression data, 

laying the foundation for data-driven oncology. The introduction of regularisation, network-based models, and probabilistic 

frameworks improved the analysis of high-dimensional genomic data and revealed key cancer pathways and progression 
patterns. Large-scale initiatives such as TCGA further enabled integrative multi-omics analysis, leading to deeper biological 

insights and more reliable identification of cancer-associated molecular features. 

 

2.2. From (2016–2020) 
From 2016 to 2020, cancer research experienced accelerated integration of machine learning and deep learning methods to 

analyse increasingly complex biomedical datasets [6], [18]. Research efforts progressed from traditional machine learning 

algorithms to advanced deep learning architectures for survival analysis and outcome prediction based on multi-omics data [2], 

[12]. During this period, considerable emphasis was placed on curating high-quality, machine learning–ready genomic and 

transcriptomic datasets to improve model robustness, reproducibility, and generalisability [10]. Several comprehensive reviews 

published during this time synthesised statistical and machine learning techniques, providing structured guidance for effective 

multi-omics data integration in cancer research [11], [18], provided in the table 2.2 as year-wise literature review on Machine 
Learning and Multi-Omics Approaches in Cancer Research. 

 

Table 2: Year-Wise Literature Review on Machine Learning and Multi-Omics Approaches in Cancer Research (2016–

2020)

Year Authors Institution(s) Focus / Contribution 

2016 Kourou et al. University of Ioannina, 

Greece 

Review of machine learning techniques (SVM, RF, ANN) applied to 

cancer diagnosis and prognosis. 

2017 Chaudhary et 

al. 

Harvard Medical School Deep learning models for cancer survival prediction using multi-omics 

data. 

2018 Libbrecht & 

Noble 

University of 

Washington 

Machine learning applications in genomics, emphasizing predictive 

cancer models. 

2019 Lim et al. Genome Institute of 

Singapore 

Transcriptomic datasets and ML-ready cancer compendiums for 

predictive analytics. 

2020 Nicora et al. University of Milan Comprehensive review of ML and statistical tools for multi-omics 
cancer data integration. 

 

2.2.1. Good Outcomes during the years from 2016 to 2020 

During this period, machine learning and deep learning methods significantly improved cancer diagnosis, prognosis, and 

survival prediction using multi-omics data. The availability of high-quality, ML-ready datasets and comprehensive 

methodological reviews enhanced model robustness, reproducibility, and effective integration of genomic and transcriptomic 

information, strengthening data-driven cancer research. 

 

2.3. From (2021–2025)  

From 2021 to 2025, cancer research has increasingly been shaped by sophisticated computational workflows and AI-

enabled methodologies designed to enhance clinical applicability [3], [9]. Research during this period prioritised high-

confidence genome sequencing analysis, precise variant annotation, and AI-driven biomarker identification [3], [7]. Deep 



Mr Chandaka Indra Rao et al. / 9th International Conference on Artificial Intelligence, Language Learning Models, and Bioinformatics 

Applications, 38-43, 2025 

40 

learning techniques were widely adopted for prognostic modelling using integrated genomic and transcriptomic datasets, while 

growing attention was given to knowledge-guided and multi-omics frameworks to improve interpretability and advance 

precision oncology [1], [11], provided in the table 2.3 as Recent Advances.  

 

Table 3: Recent Advances in Computational and AI-Driven Cancer Research (2021–2025) 

Year Authors Institution(s) Focus / Contribution 

2021 Cortés-Ciriano et al. EMBL-EBI, Wellcome 

Sanger Institute 

Computational analysis pipelines for cancer genome 

sequencing and variant interpretation. 

2022 Zou et al. Tsinghua University Statistical learning and AI-based models for cancer biomarker 

discovery. 

2023 Lee Seoul National University Deep learning approaches for cancer prognosis using genomic 

and transcriptomic data. 

2024 Mao et al. University of Texas, MD 

Anderson 

Knowledge-guided machine learning models addressing 

interpretability and clinical relevance. 

2025 Acharya & 

Mukhopadhyay 

University of Kalyani Advanced ML and deep learning frameworks for precision 

oncology using multi-omics data. 

 

2.3.1. Good Outcomes during the years from 2021 to 2025 

This period marked the maturation of AI-driven cancer research, with robust computational pipelines enabling accurate 

genome sequencing analysis and variant interpretation. Knowledge-guided and deep learning models improved biomarker 

discovery, prognostic accuracy, and clinical interpretability, strengthening the translation of multi-omics insights into precision 
oncology applications. 

 

3. Methodology Materials and Methods  
This study adopts a structured methodology to review statistical models, machine learning techniques, and data-driven 

approaches used in cancer bioinformatics, with a focus on analysing genomic, transcriptomic, and proteomic data [11], [14]. 

 

3.1. Review of Statistical Models 
Statistical models play a central role in managing high-dimensional biological data by enabling the identification of 

significant genes, mutations, and protein expressions while effectively accounting for noise, variability, and uncertainty 

inherent in cancer omics datasets [14]. High-throughput technologies often generate data with far more features than samples, 

making conventional analysis unreliable without rigorous statistical control. Techniques such as linear models and regression 

analysis are widely used to quantify associations between molecular features and cancer phenotypes, while regularisation 

methods help prevent overfitting in high-dimensional settings. Bayesian frameworks further enhance cancer data analysis by 

incorporating prior biological knowledge and providing probabilistic estimates that capture uncertainty in model parameters 

and predictions. In addition, hypothesis testing and multiple testing correction procedures are essential for controlling false 

discovery rates and ensuring the reliability of identified cancer-related biomarkers [4], [13]. Together, these statistical 

approaches provide a principled and interpretable foundation for cancer research, supporting robust inference and reproducible 

results. By ensuring analytical reliability and biological relevance, statistical models remain indispensable for downstream 
machine learning, integrative analyses, and clinical translation in precision oncology. 

 

Table 4: Role of Statistical Models in High-Dimensional Cancer Omics Data Analysis 

Aspect Description 

Data Type Genomic, transcriptomic, proteomic data 

Problem High dimensionality, noise, variability 

Statistical Models Used Linear models, regression, Bayesian models, hypothesis testing 

Output Significant genes, mutations, protein expressions 

Advantage Handles uncertainty and reduces false discoveries 

Table 4 demonstrates the application of statistical models to genomic, transcriptomic, and proteomic datasets to address 

challenges related to dimensionality, noise, and biological variation. These methods enhance analytical robustness and support 

reliable identification of cancer-related molecular features [14], [17]. 

 

3.2. Review of Machine Learning Techniques 

Machine learning techniques play a vital role in cancer research by enabling effective pattern recognition, cancer subtype 

classification, biomarker discovery, and clinical outcome prediction from complex multi-omics datasets [6], [8]. Supervised 

learning models, such as support vector machines, random forests, and neural networks, are widely used to predict disease risk, 
patient survival, and treatment response by learning discriminative patterns from labelled genomic, transcriptomic, and 

proteomic data. These models are particularly valuable for handling high-dimensional data and capturing complex, non-linear 
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relationships that are difficult to model using traditional statistical approaches [4], [18]. Unsupervised learning methods, 

including clustering and dimensionality reduction techniques, facilitate the discovery of novel cancer subtypes and molecular 

signatures by uncovering intrinsic structures within heterogeneous datasets. Such approaches support exploratory analysis and 

hypothesis generation, revealing previously unknown biological patterns. In addition, ensemble and deep learning models have 

demonstrated improved predictive performance by integrating diverse omics features and learning hierarchical representations. 

Despite their strong performance, challenges related to interpretability, data imbalance, and model generalisation remain. 
Nevertheless, machine learning techniques continue to significantly enhance the analytical capabilities of cancer research, 

contributing to more accurate diagnosis, prognosis, and personalised treatment strategies in precision oncology. 

 

   Table 5: Machine Learning Techniques for Multi-Omics Cancer Data Analysis 

Category Description 

Data Type Genomic, transcriptomic, proteomic (multi-omics) data 

ML Models Used Supervised (SVM, Random Forest, Neural Networks), Unsupervised (K-means, Hierarchical clustering) 

Key Tasks Pattern recognition, cancer subtype classification, biomarker discovery, outcome prediction 

Input Features Gene expression levels, mutation profiles, protein abundance 

Output Cancer classes, risk scores, significant biomarkers 

Advantage Handles complex, non-linear relationships in high-dimensional data 

 

Table 5outlines the use of machine learning models across genomic, transcriptomic, and proteomic data for tasks such as 

subtype classification and outcome prediction. These techniques support robust biomarker identification and enhance 

predictive performance in cancer research [2], [12]. 

 

3.3. Review of Data-Driven Approaches 

Data-driven approaches play a crucial role in modern cancer research by integrating heterogeneous data sources, including 

genomic, transcriptomic, proteomic, clinical, and imaging data, to uncover latent relationships and molecular interactions 
underlying disease progression [11], [19]. Unlike single-modality analyses, these approaches leverage data fusion and feature-

level integration techniques to combine complementary information across diverse datasets, enabling a more comprehensive 

understanding of cancer biology. Network-based and systems-level models further enhance this integration by capturing 

complex interactions among genes, proteins, and pathways, which are often disrupted in cancer. By analysing multi-source 

data collectively, data-driven frameworks improve cancer detection accuracy, prognostic assessment, and treatment response 

prediction. These methods support the development of personalised risk profiles and therapy recommendations tailored to 

individual patients, thereby advancing precision oncology. Additionally, data-driven approaches facilitate the identification of 

clinically relevant biomarkers and molecular signatures that may not be detectable through isolated analyses. Despite 

challenges related to data standardisation, scalability, and interpretability, continued advances in computational infrastructure 

and integrative modelling techniques are addressing these limitations. Overall, data-driven approaches provide a powerful 

foundation for translating complex cancer data into actionable clinical insights and personalised treatment strategies. 

 

                                     Table 6: Data-Driven Integration Approaches for Personalised Cancer Analysis 

Aspect Description 

Data Sources Genomic, transcriptomic, proteomic, clinical, imaging data 

Integration Methods Data fusion, feature-level integration, network-based models 

Analysis Goal Discover hidden molecular relationships and interactions 

Applications Cancer detection, prognosis, treatment response prediction 

Outcome Personalized risk scores and therapy recommendations 

Advantage Provides a holistic view of cancer biology 

 

Table 6 highlights data fusion, feature-level integration, and network-based models that combine genomic, transcriptomic, 

proteomic, and clinical information. These approaches enable personalised risk assessment and therapy recommendations, 

advancing precision oncology [9], [11]. 

 

4. Results and Discussion 
4.1. Results 

Statistical models applied to genomic, transcriptomic, and proteomic datasets have effectively addressed challenges 

associated with high dimensionality, noise, and biological variability commonly encountered in cancer research [14]. 

Approaches such as linear and regression models, Bayesian methods, and hypothesis testing frameworks enabled the reliable 

identification of cancer-related genes, mutations, and molecular features while maintaining interpretability and statistical rigor 

[13], [17]. These methods provided a strong analytical foundation by controlling uncertainty and reducing false discoveries. 
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In parallel, machine learning techniques demonstrated strong performance in pattern recognition, cancer subtype classification, 

and clinical outcome prediction using multi-omics data [6]. Supervised learning models achieved high predictive accuracy in 

risk stratification and survival analysis, whereas unsupervised methods uncovered intrinsic data structures and revealed 

molecular heterogeneity within cancer populations [4], [18]. Such capabilities are essential for understanding disease 

complexity and supporting personalised medicine. Furthermore, data-driven approaches enabled comprehensive integration of 

heterogeneous datasets, including molecular, clinical, and imaging information, leading to the discovery of hidden molecular 
interactions [11], [19]. This integrative analysis significantly improved prognostic accuracy and treatment response prediction, 

reinforcing the importance of combining statistical, machine learning, and data-driven methodologies to advance precision 

oncology. 

 

4.2. Discussion 

Overall, statistical models, machine learning techniques, and data-driven approaches work synergistically to advance 

cancer data analysis by addressing complementary analytical challenges across diverse biomedical datasets [11]. Statistical 

models form the backbone of analytical rigor by ensuring robustness, interpretability, and reliable inference, particularly in 

high-dimensional and noisy cancer omics data. Their ability to control uncertainty and false discovery rates supports 

trustworthy identification of biologically meaningful features. In contrast, machine learning techniques excel at capturing 

complex, non-linear relationships that are difficult to model using traditional statistical methods. By leveraging supervised and 

unsupervised learning, these techniques enhance cancer detection, subtype classification, and outcome prediction, enabling 
more accurate and scalable analytical solutions. Data-driven frameworks further strengthen cancer analysis by integrating 

heterogeneous data sources, including genomic, transcriptomic, proteomic, clinical, and imaging data, to provide holistic 

insights into cancer biology. This integrative perspective supports comprehensive disease characterisation and personalised risk 

assessment. Together, the combined use of statistical, machine learning, and data-driven approaches significantly improves 

cancer diagnosis, prognosis, and personalised treatment strategies, thereby advancing the goals of precision oncology and data-

driven clinical decision-making [1], [9]. 

 

5. Conclusion 
This survey comprehensively reviewed the role of bioinformatics and computational statistics in modern cancer research, 

with an emphasis on genomic, transcriptomic, and proteomic data analysis [14], [15]. The literature review highlights a clear 

evolution from traditional statistical methods to advanced machine learning, deep learning, and data-driven multi-omics 

integration approaches [6], [11]. The findings demonstrate that statistical models ensure robustness and interpretability, 

machine learning techniques enable accurate prediction and subtype classification, and data-driven approaches support holistic 

and personalised cancer analysis. Overall, the integration of these computational methodologies plays a critical role in 

advancing precision oncology and improving clinical decision-making in cancer care [1], [9]. 
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