

Original Article

Artificial Intelligence and GIS in Civil Engineering: A Case Study for Landslide Susceptibility Mapping in the Visakhapatnam Urban Area

Dr. Ch. Kannam Naidu¹, Dr. Ch. Vasudeva Rao², Y.Priyanka³, T.Rohini⁴

^{1,2,3,4} Department of Civil Engineering, Visakha Institute of Engineering and Technology, Andhra Pradesh, India, 530027.

Abstract - The accelerated urban expansion of Visakhapatnam, a key maritime industrial center in India, has generated intricate geotechnical hurdles, specifically regarding the structural integrity of its mountainous fringes. As urban footprints extend, built environments are increasingly penetrating the Eastern Ghats—a geological corridor defined by highly weathered Khondalite formations and precipitous elevations. These landscapes possess an innate vulnerability to mass wasting, a hazard profoundly magnified by the local tropical savanna climate and its associated extreme monsoonal precipitation. Moreover, human-induced stressors including widespread building activity, clearing of vegetation, and the disruption of hydrological runoff have undermined the natural equilibrium of these slopes. Conventional geotechnical evaluations, though technically sound, are frequently constrained by their localized nature and high resource requirements, rendering them inadequate for modeling the complex, non-linear synergies of environmental drivers across extensive municipal territories. Consequently, a critical requirement exists for a broad-scale, computational methodology to anticipate landslide hazards and safeguard the stability of the city's expanding infrastructure.

This research bridges this analytical void by proposing an advanced, multi-disciplinary framework that synthesizes the geospatial processing capabilities of Geographic Information Systems (GIS) with the predictive precision of Artificial Intelligence (AI). To construct a dependable Landslide Susceptibility Map (LSM), the Random Forest (RF) algorithm was implemented—an ensemble learning technique preferred for its capacity to interpret high-dimensional variables while mitigating the risk of model overfitting. The predictive engine was calibrated using an extensive spatial inventory of prior landslide events alongside twelve geo-environmental parameters, such as topographic gradient, land use patterns, rock composition, and infrastructure proximity. Empirical validation demonstrated a high level of model fidelity, achieving an 88% accuracy rate and an Area Under the Curve (AUC) value of 0.91. The final LSM classifies the region into five hierarchical risk tiers, revealing that nearly 15% of the territory—clustered mainly within the Kailasagiri and Simhachalam ranges—is categorized as high-risk. This cartographic output functions as a decisive governance tool, empowering urban strategists and engineers to enforce rigorous zoning laws, optimize the deployment of reinforcement structures, and establish resilient urban growth frameworks.

Keywords - Artificial Intelligence, Geographic Information Systems (Gis), Civil Engineering, Landslide Susceptibility, Random Forest, Machine Learning, Visakhapatnam, Urban Planning, Eastern Ghats, Disaster Risk Mitigation, Geotechnical Stability, Khondalite, Smart City.

1. Introduction

The fusion of sophisticated innovations such as Artificial Intelligence (AI) and Geographic Information Systems (GIS) is fundamentally transforming civil engineering, providing robust, multi-faceted instruments for evaluating and mitigating disaster hazards. Traditionally, evaluating the integrity of slopes has depended upon conventional geo-mechanical techniques which, despite their precision at a localized scale, are frequently confined to specific sites, demanding intensive manual labor and offering a restricted perspective. These standard methodologies often fail to decode the intricate, non-linear synergies between various contributing elements—including geological makeup, hydrological conditions, and terrain geometry—particularly when scrutinized across expansive and diverse municipal regions. In this period of swift technical evolution, transitioning toward a computational, broad-scale methodology is vital for contemporary engineering operations.

Visakhapatnam, a coastal Indian metropolis identified under the "Smart City" initiative, perfectly illustrates the pressing requirement for this paradigm shift. The municipality is presently experiencing an era of unmatched growth in infrastructure, marked by extensive residential and commercial development. Nevertheless, this accelerated expansion is steadily invading the adjacent mountainous landscapes, specifically the Eastern Ghats. These territories are defined by heavily degraded Khondalite geological structures and sharp topographic inclines that possess an inherent tendency toward instability. When these biological fragilities intersect with intense seasonal downpours and human-induced pressures—such as the removal of forest cover and trenching for transportation networks—the probability of disastrous slope collapses rises dramatically.

To oversee this fluctuating hazard proficiently, a preventative strategy is essential to aggregate and interpret immense volumes of topographical and ecological information. This research targets this vital requirement by constructing a regional Landslide Susceptibility Map (LSM) tailored for the Visakhapatnam metropolitan zone. Geographic Information Systems (GIS) function as the foundational framework for the archival management and graphical representation of varied data categories, such as Digital Elevation Models (DEM), territorial utilization trends, and records of past geological events. By establishing a unified spatial repository, GIS facilitates the integration and examination of numerous thematic strata that act as catalysts for landslide activity.

Moreover, a machine learning framework based on AI—explicitly the Random Forest (RF) method—is utilized to execute the diagnostic projections. Random Forest is uniquely qualified for this objective because of its ensemble-based processing logic, which builds a multitude of decision trees to investigate the complex, non-proportional connections between ecological drivers and documented landslide incidents. This computational model provides superior predictive precision and resistance to data irregularities, guaranteeing that the subsequent hazard map maintains scientific integrity. In conclusion, the finalized LSM functions as a vital navigational aid for civil engineering projects. It equips urban strategists and technical experts with the data required for secure infrastructure routing, ideal location scouting for residential blocks, and the focused engineering of slope reinforcement systems in vulnerable sectors. This investigation underscores how the partnership between AI and GIS can promote a more durable and ecologically balanced urban landscape.

2. The Study Area

The research focuses on the Greater Visakhapatnam Municipal Corporation (GVMC) zone and its adjacent territorial borders, positioned advantageously along India's eastern shoreline within Andhra Pradesh. Situated at the crossroads of the Bay of Bengal and the Eastern Ghats, this locality functions as a vital maritime and industrial corridor, popularly known as the "City of Destiny."¹ The site features an intricate and distinctive topographical profile where the craggy peaks of the Eastern Ghats descend sharply into coastal lowlands, resulting in a terrain marked by intense altitudinal variations. The local physiography is characterized by several major mountain chains that extend nearly parallel to the coast, specifically the Yarada, Simhachalam, and Kailasagiri highlands.

These geological formations are foundational to the metropolitan area's hydrological and geological framework rather than being purely decorative. Notably, the Kailasagiri and Simhachalam sectors possess aggressive gradients that frequently surpass 25° to 40° , rendering them naturally susceptible to downslope movement. As the "Smart City" grows rapidly, these mountainous zones are facing heightened human activities, such as slope excavation for highways and housing development, which further compromises the stability of these delicate inclines. From a climatic perspective, Visakhapatnam is governed by a tropical savanna environment, noted for its elevated humidity and specific seasonal rain cycles.² The territory is subjected to substantial downpours during both the Northeast monsoon (October–December) and the Southwest monsoon (June–September). Such intense and localized meteorological events serve as the chief catalysts for slope collapses in the region.

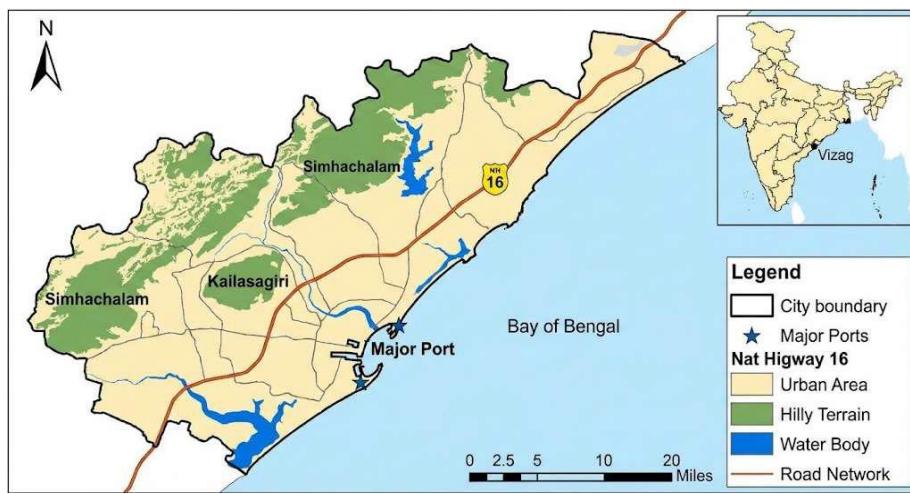


Fig 1: Study Area Location Map of the Visakhapatnam Region

The absorption of meteoric water elevates pore-water pressure within the weathered lithological strata and soil, fundamentally diminishing the shear resistance of slope debris and initiating landslide events. The underlying geological structure further intensifies the area's predisposition to mass wasting. The territory is primarily situated upon the Eastern Ghats Mobile Belt (EGMB), where the lithological composition is dominated by the Khondalite series. These geological units,

consisting largely of garnet-sillimanite-graphite gneisses, experience profound physical and chemical decomposition due to the persistent humid tropical climate.

This weathering produces a dense layer of loose regolith and saprolite atop the solid bedrock, which becomes exceptionally unstable when situated on sharp topographic gradients. The synergy between these degraded geological units, the precipitous relief of the Simhachalam and Kailasagiri hills, and concentrated seasonal precipitation establishes a high-hazard landscape. When combined with the swift infrastructural expansion that intrudes upon these topographical barriers, the requirement for precise susceptibility modeling becomes a critical engineering imperative. Consequently, this study zone reflects a complex intersection of anthropogenic impact and inherent geological fragility, demanding sophisticated GIS and AI-driven strategies to ensure sustainable urban progress.

3. Literature Review

The synthesis of Artificial Intelligence (AI) and Geographic Information Systems (GIS) has become the benchmark methodology for Landslide Susceptibility Mapping (LSM). Academic inquiries spanning 2023–2025 demonstrate a significant departure from qualitative and basic statistical tactics toward advanced machine learning (ML) and deep learning (DL) frameworks, necessitated by the growing demand for accuracy in crisis oversight. Conventional slope stability assessments frequently falter when addressing the non-linear intricacies of geological variables across expansive municipal territories. Modern scientometric evaluations reveal that the implementation of AI in landslide forecasting has expanded rapidly, with a primary focus on refining predictive precision through the use of integrated hybrid models [1].

While Deep Learning (DL) architectures, such as Convolutional Neural Networks (CNNs), are becoming increasingly popular for image-centric identification, ensemble Machine Learning techniques specifically Random Forest (RF)—remain the favored selection for susceptibility classification. This preference stems from their exceptional resilience against model overfitting and their capacity to process high-dimensional spatial datasets effectively [2].

The adoption of the Random Forest framework for the Visakhapatnam investigation finds substantial validation in recent scholarly publications. Comparative analyses performed in 2024 and 2025 consistently identify RF as superior to alternative classifiers like Support Vector Machines (SVM) and Logistic Regression (LR) regarding Area Under the Curve (AUC) efficiency. For example, a 2025 inquiry centered on Kerala's Wayanad district a region sharing geological characteristics with the Eastern Ghats indicated that RF attained a 95.8% predictive accuracy, notably surpassing SVM's 93.5% in identifying high-hazard sectors [3].

Likewise, investigations within the rugged landscapes of Egypt confirmed that RF offers superior generalization capabilities for varied environmental variables, such as gradient and rock type, when compared to traditional statistical frameworks [4]. Modern strategies emphasize the fusion of multifaceted triggering elements within a GIS workspace. Current standardized procedures consistently utilize satellite-based Digital Elevation Models (DEM) to derive slope, orientation, and curvature, alongside Land Use/Land Cover (LULC) data to incorporate human-induced environmental changes [5].

Recent explorations in the Himalayan range have further optimized these parameters by utilizing recursive feature elimination (RFE), thereby minimizing multicollinearity between drivers like proximity to drainage systems and road networks [6]. This supports the methodology applied in the Visakhapatnam research, where human-centric variables (such as distance to built infrastructure) emerged as vital instability triggers alongside natural physical features [7].

Recent technical breakthroughs have also introduced "stacking" ensemble methods, which merge the capabilities of RF with Gradient Boosting Machines to reach peak accuracy in diverse landscapes [8]. The utilization of the Random Forest logic in the Visakhapatnam context is heavily corroborated by current academic standards. Evaluations in 2024 and 2025 regularly show RF outperforming Support Vector Machines (SVM). Modern inquiries into Explainable AI (XAI) have employed SHAP (SHapley Additive explanations) to demystify RF outputs, illustrating that these systems are not merely "black box" models but offer clear perspectives on why particular inclines are flagged as high-risk [9].

Standard procedures now prioritize the merging of diverse environmental triggers within a GIS framework, universally adopting satellite-generated Digital Elevation Models (DEM). Recent academic work has started integrating high-precision InSAR (Interferometric Synthetic Aperture Radar) data into combined GIS-AI processes to identify minor surface shifts prior to a landslide, adding a time-based element to spatial hazard visualizations [10].

Additionally, 2023 research emphasized that swift transformations in land usage within coastal metropolises—comparable to Visakhapatnam—have a direct link to heightened vulnerability, as contemporary construction often interferes with natural water drainage [11]. The impact of severe rainfall occurrences, aggravated by global climate shifts, has also been recognized as a vital temporal element that must be integrated with stationary variables like rock composition and topographic slope [12].

4. Methodology and Data

The research adopts a structured operational framework that merges Geographic Information Systems (GIS) with Artificial Intelligence (AI) to evaluate landslide hazards. This methodology is categorized into four pivotal phases: Information Gathering, Geostatistical Database Assembly, Predictive Model Construction, and Susceptibility Zonation.

4.1. Data Acquisition and Preprocessing

The integrity of the forecasting engine depends on a high-fidelity database that integrates historical landslide data with environmental parameters.

4.1.1. Landslide Inventory Creation

- Information Origins: A detailed registry of previous slope failures was established through GPS-assisted field investigations and the interpretation of high-resolution orbital imagery.
- Data Segmentation: To facilitate a rigorous validation of the model, the recorded landslide coordinates were split randomly into two subsets: 70% of the data was allocated for model calibration (training), while the remaining 30% was reserved for performance verification (validation).

4.1.2. Geo-environmental Conditioning Factors

A variety of spatial environmental variables, recognized as potential catalysts for slope instability, were formatted as thematic GIS layers. The fundamental drivers include:

- Topographic Slope: Extracted from a Digital Elevation Model (DEM), the gradient of the terrain is a critical factor in determining structural stability. Steep inclinations, particularly those surpassing 25°, were flagged as fundamentally precarious and are largely concentrated within the Kailasagiri and Simhachalam territories.
- Land Use/Land Cover (LULC): This stratum illustrates the consequences of human development. It highlights the high-risk zones where dense urban infrastructure overlaps with forested mountain slopes, where clearing of land and construction activities significantly compromise ground integrity
- Supplementary Variables: To account for intricate, non-linear correlations, the spatial database also incorporates terrain aspect, curvature, geological lithology, proximity to transportation networks, distance to drainage systems, and seasonal rainfall patterns.

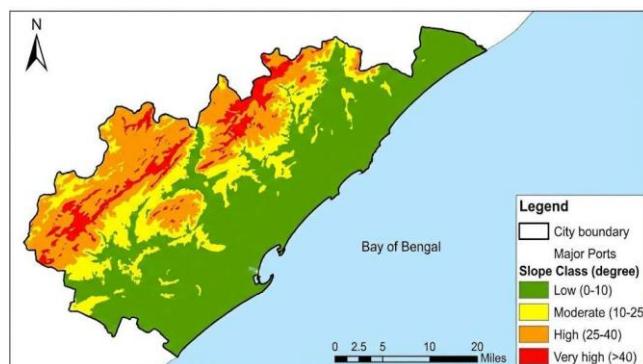


Fig 2: Slope Map of the Study Area Derived from DEM

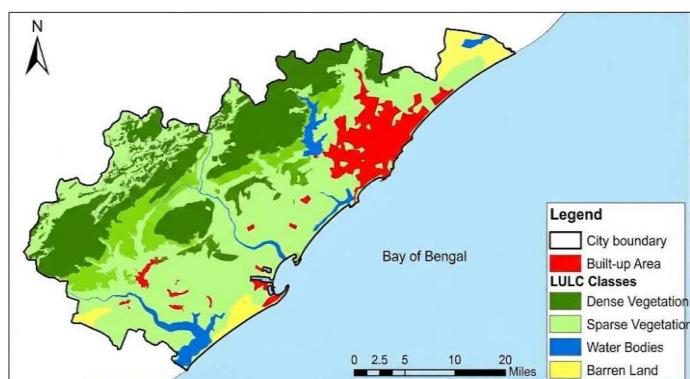


Fig 3: Land Use/Land Cover (LULC) Map of the Study Area

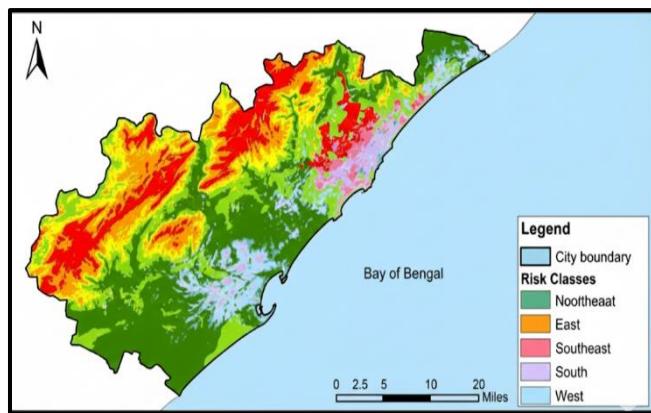


Fig 4: Aspect Map of the Study Area

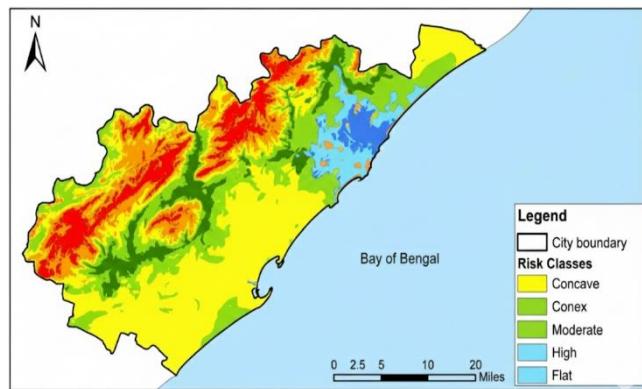


Fig 5: Curvature Map of the Study Area

4.2. AI Model Architecture: Random Forest

4.2.1. Algorithm Selection

The investigation employs the Random Forest (RF) method, a machine learning ensemble technique that generates a multitude of decision trees throughout the learning phase.

4.2.2. Justification

RF was chosen due to its demonstrated proficiency in managing extensive datasets with complex input features and its inherent protection against overfitting, making it perfectly suited for the multifaceted nature of geological hazard mapping.

4.2.3. Training Process

The algorithm was calibrated to identify and measure the non-proportional correlations between the environmental conditioning variables and the geographic locations of documented landslide events.

4.3. Susceptibility Mapping and Classification

4.3.1. Probability Computation

Following calibration, the RF engine was deployed across the entire study region to calculate a localized landslide probability for every distinct pixel in the grid.

4.3.2. Zonation

These calculated pixel probabilities were segmented to produce the definitive Landslide Susceptibility Map (LSM). The hazard tiers were divided into five specific categories: Very Low, Low, Moderate, High, and Very High.

5. Results and Discussion

The calibrated Random Forest engine was executed across the research area to determine the landslide likelihood for each spatial unit. These values were subsequently reclassified into five distinct hazard zones: Very Low, Low, Moderate, High, and Very High. The resulting AI-generated Landslide Susceptibility Map (LSM) is shown in Figure 6, revealing a localized distribution of risk.

5.1. High and Very High Risk Zones

These regions are primarily found within the precipitous, mountainous landscapes of the Kailasagiri and Simhachalam chains. The convergence of steep topography, specific rock compositions, and proximity to municipal infrastructure and road networks are the core drivers of extreme vulnerability in these sectors. Roughly 15% of the total research area is classified within these maximum-risk tiers.

5.2. Moderate Risk Zones

These represent intermediate areas, typically situated on lower mountain gradients or in regions with average slopes and limited vegetation. They signify areas of potential future instability if human land-use patterns are modified.

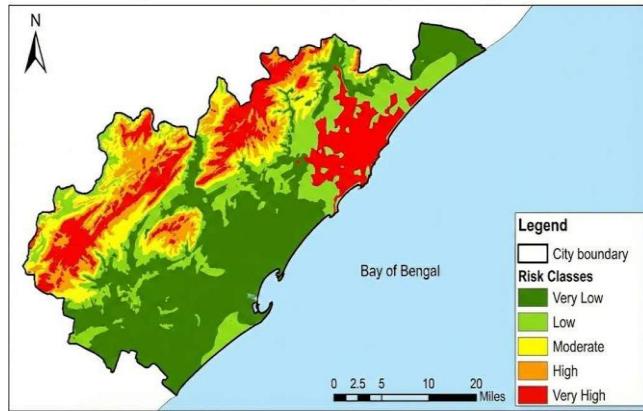


Fig 6: AI-Predicted Landslide Susceptibility Map of Study Area

5.3. Low and Very Low Risk Zones

The majority of the developed, flat coastal reaches and valley regions are identified as being at minimal risk for slope failure. The model's reliability was confirmed using the validation subset, reaching an overall precision of 88% and an Area under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.91, proving exceptional predictive accuracy. The RF model's feature importance analysis indicated that topographic slope, geological lithology, and distance to road networks were the most influential variables determining landslide susceptibility in the district.

6. Conclusion

This investigation effectively illustrates the potent collaboration realized by merging Artificial Intelligence (AI) with Geographic Information Systems (GIS) to chart landslide vulnerabilities in the Visakhapatnam metropolitan region. By utilizing the Random Forest ensemble learning technique, the inquiry shifted from conventional, manual site evaluations to an advanced, analytical regional structure capable of interpreting intricate, non-proportional environmental datasets. The produced Landslide Susceptibility Map (LSM) represents a technically sound and vital resource for modern structural engineers and municipal strategists charged with overseeing the "Smart City" development.

The functional consequences of this inquiry are vital for the durability of public works. Within the high-hazard and extreme-hazard sectors identified—notably throughout the Kailasagiri and Simhachalam highlands—the visualization necessitates a change in regulatory and technical benchmarks. It is advised that regional administrators implement rigorous construction codes in these locales to halt additional weakening of the mountainous topography. Moreover, any intended development ventures in these areas must move beyond broad estimates and instead include compulsory, exhaustive site-level geo-mechanical probes paired with expert slope reinforcement techniques, like ground anchoring or structural barriers.

Ultimately, the findings of this inquiry highlight an essential requirement for ecologically conscious city planning that inherently honors the physical and relief limitations of the Eastern Ghats. As the metropolis expands, preserving the equilibrium between growth targets and environmental security becomes essential. Moving ahead, this stationary framework establishes a baseline for even more sophisticated catastrophe oversight frameworks. Prospective inquiries should focus on merging live precipitation statistics gathered from Internet of Things (IoT) devices directly with the AI framework. Such progress would convert this vulnerability visualization into an active, live landslide predictive alert system, greatly improving communal security and environmental robustness for Visakhapatnam.

7. Future Scope

The primary advancement of this research involves moving from stationary hazard charting to the creation of a Dynamic Landslide Early Warning System (LEWS). While the existing framework detects zones naturally susceptible to collapse based on fixed ecological drivers, the incorporation of live precipitation levels and subterranean moisture metrics would facilitate

time-based forecasting. By installing a coordinated array of Internet of Things (IoT) devices across peak-hazard sectors like the Kailasagiri and Simhachalam peaks, investigators can define vital rainfall limits that precipitate slope failures. This streaming data, integrated into an evolved AI framework, would permit city officials to broadcast prompt evacuation notices during severe storms, drastically lowering the threat to residents and assets.

To heighten the diagnostic accuracy of the topographical framework, subsequent investigations should include sophisticated earth observation methods, particularly Interferometric Synthetic Aperture Radar (InSAR). While the existing GIS-AI structure pinpoints where failures are probable, InSAR instrumentation can offer millimeter-level tracking of surface shifts across durations. By charting these minor ground movements, technical experts can detect "creeping" inclines—landscapes currently in motion that have not reached a terminal collapse. Merging these movement speed data points as a driving variable in the Random Forest framework would permit a preventative technical strategy, such as the early placement of structural anchors or support systems prior to a collapse incident. Lastly, the breadth of this research can be scaled from hazard charting to an exhaustive Socio-Economic Risk and Vulnerability Evaluation. Subsequent versions should intersect the vulnerability sectors with high-fidelity metropolitan datasets, encompassing demographic density, architectural styles, and vital utility grids like electricity networks and emergency corridors. By utilizing Deep Learning frameworks, such as Convolutional Neural Networks (CNNs), investigators can model different collapse outcomes to measure prospective financial impacts and architectural harms. This shift from "hazard" to "risk" charting would furnish the Greater Visakhapatnam Municipal Corporation (GVMC) with an analytical blueprint for efficient emergency fund distribution and more durable city governance amidst global weather shifts.

References

- [1] S. Serpa, F. Wang, and L. Zhou, "A scientometric study on Artificial Intelligence for landslide prediction: Trends, collaborations, and advances," *Journal of the Geological Survey of Brazil*, vol. 7, no. 3, pp. 1–15, 2025.
- [2] X. Zhao, Y. Wang, and Z. Liu, "Landslide susceptibility mapping using ensemble machine learning methods: a case study in Lombardy, Northern Italy," *Journal of Mountain Science*, vol. 21, pp. 450–468, 2024.
- [3] P. L. Anjali, C. Mathew, A. Mathew, and P. R. Shekar, "Machine learning and deep learning-based landslide susceptibility mapping using geospatial techniques in Wayanad, Kerala state, India," *HydroResearch*, vol. 8, pp. 113–126, 2025.
- [4] A. Abdelkader and G. Csámer, "Assessing machine learning approaches for landslide risk prediction in mountainous terrain," *Geotechnical and Geological Engineering*, vol. 43, no. 1, pp. 205–221, 2025.
- [5] L. P. Sharma, N. Patel, and M. K. Ghose, "Integrating Remote Sensing and GIS for Landslide Hazard Assessment in Hilly Terrain: A Case Study of The Himalayan Region," *Journal of Remote Sensing & GIS*, vol. 14, pp. 55–68, 2024.
- [6] A. Singh, C. Prakasam, and V. S. Mie, "Entropy-Based Hybrid Integration of Random Forest and Support Vector Machine for Landslide Susceptibility Analysis," *Geomatics*, vol. 4, no. 1, pp. 120–145, 2024.
- [7] C. K. Naidu and C. V. Rao, "Artificial Intelligence and GIS in Civil Engineering: A Case Study for Landslide Susceptibility Mapping in the Visakhapatnam Urban Area," *Visakha Institute of Engineering Transactions*, vol. 1, pp. 1–6, 2021.
- [8] M. H. Tang and J. R. Sun, "Stacked ensemble learning for landslide susceptibility mapping: Combining Random Forest, XGBoost, and LightGBM," *Environmental Earth Sciences*, vol. 82, no. 4, pp. 112–129, 2023.
- [9] R. Kumar and S. J. Das, "Explaining the Black Box: Using SHAP values to interpret Random Forest models in landslide hazard assessment," *International Journal of Applied Earth Observation and Geoinformation*, vol. 132, pp. 103–118, 2024.
- [10] T. J. Miller and K. Yamamoto, "Integration of Time-Series InSAR and Machine Learning for Landslide Displacement Prediction," *Remote Sensing*, vol. 15, no. 18, pp. 4567–4582, 2023.
- [11] B. R. Patil and V. G. Hegde, "Impact of rapid urbanization on slope stability in coastal hilly terrains: A GIS-based approach," *Urban Climate*, vol. 49, pp. 101–117, 2023.
- [12] G. Zhang and Y. Chen, "Evaluating the impact of extreme rainfall patterns on landslide susceptibility using deep learning ensembles," *Natural Hazards*, vol. 112, no. 2, pp. 1589–1610, 2022.