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Abstract - Healthcare is fundamental to human well- being. With the rise of Al, especially in Machine Learning (ML) and Deep
Learning (DL), healthcare systems have gained powerful tools for disease prediction. However, most models focus on a single
disease. This study proposes a multi-disease prediction system using a unified interface that diagnoses conditions such as
Diabetes, Heart Disease, Kidney Disease, Parkinson’s, Liver Disease, Brain Cancer, and Breast Cancer. The system integrates
ML/DL models, a generative Al-powered chatbot, and a web application built with Flask. Experimental evaluation shows high
accuracy, making the system effective for early diagnosis and proactive health management.
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1. Introduction

Modern medicine increasingly relies on early detection to reduce mortality and improve treatment efficacy. EXisting
models often target single diseases, limiting their utility in real-world diagnostic scenarios. This research introduces an
integrated Al system that enables the prediction of multiple critical diseases. By combining disease-specific datasets and
leveraging both ML and DL techniques, the model enhances diagnostic accuracy. It further supports users through a generative
Al chatbot and provides a user-friendly interface via a Flask-based web application.

2. Literature Review
2.1. Brain Tumor Detection

The application of deep learning, particularly Convolutional Neural Networks (CNNSs), has revolutionized brain tumor
detection. Traditional diagnostic methods involving manual interpretation of MRI scans are time-consuming and prone to error.
CNNs, with architectures like U-Net, InceptionResNetV2, and VGG16, are capable of extracting deep, hierarchical
features from high resolution medical images, enabling precise classification of tumor types such as glioma, meningioma,
and pituitary tumors. Data augmentation and preprocessing techniques further enhance the accuracy of predictions. Studies
have reported accuracies exceeding 96%, significantly outperforming traditional methods. These models also assist in tumor
segmentation, a critical task for treatment planning. The integration of Al into clinical workflows aids radiologists in rapid and
accurate tumor detection, especially in remote or underserved areas where expert opinions may not be readily available. The
automation brought by CNNs improves diagnosis speed, reduces human fatigue, and enables earlier intervention, which is
essential in improving survival rates

2.2. Parkinson’s Disease

Parkinson’s Disease (PD), a progressive neurological disorder, can be challenging to diagnose early. Machine learning
algorithms, particularly Random Forest (RF), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN), have shown
high performance in early PD detection using non-invasive inputs such as voice recordings, handwriting patterns, and motion
data. VVoice-based diagnosis leverages datasets like the MDVP, where features like jitter, shimmer, and harmonics-to-noise ratio
are extracted to detect abnormalities. CNNs applied to voice and motion signals have reported up to 99.3% accuracy. Enhanced
KNN maodels using entropy-based optimization improve sensitivity and recall. Random Forest, known for handling high-
dimensional data efficiently, has demonstrated robustness and better generalization across diverse datasets. These Al models
reduce the reliance on costly clinical tests and enable scalable screening, particularly useful in rural and resource-constrained
settings. Early diagnosis using Al leads to timely therapeutic intervention, potentially slowing disease progression and
improving quality of life.,

2.3. Diabetes

The increasing prevalence of diabetes globally, especially in rural and underprivileged regions, has prompted
researchers to explore advanced computational methods for early diagnosis. Machine Learning (ML) techniques have emerged
as powerful tools to predict the likelihood of diabetes based on various clinical and lifestyle parameters. Several studies have
focused on the Pima Indian Diabetes Dataset, which includes features such as glucose concentration, blood pressure, BMI, and



diabetes pedigree function. Logistic Regression is often used as a baseline model due to its interpretability and simplicity. It has
shown accuracies ranging from 76% to 82% in various implementations.

In comparative studies, Support Vector Machines (SVM) and K-Nearest Neighbors (KNN) have performed well, with
SVM often providing higher precision in binary classification, especially after data normalization. KNN, although simple,
benefits from proper feature scaling and distance metrics like Euclidean distance. Ore advanced ensemble methods such as
Random Forest and XGBoost have demonstrated superior accuracy and robustness. These algorithms benefit from handling
nonlinear interactions among features and reducing overfitting through bootstrapping and regularization techniques. Accuracy
for these models often exceeds 85%, with F1-scores above 0.80.

Additionally, feature selection techniques such as Recursive Feature Elimination (RFE) and Principal Component Analysis
(PCA) have been used to enhance model performance and reduce computational complexity. In conclusion, ML models provide
a scalable and efficient solution for diabetes prediction, aiding in early diagnosis and reducing the burden on healthcare systems.

2.4. Liver Disease

The diagnosis of liver diseases such as cirrhosis, hepatitis, and hepatocellular carcinoma is often complicated due to
overlapping symptoms and the need for invasive testing. Machine learning models have been widely adopted for non-invasive,
data-driven liver disease prediction. Algorithms like Random Forest, Support Vector Machines (SVM), KNN, and Gradient
Boosting have demonstrated high effectiveness when applied to clinical datasets like the Indian Liver Patient Dataset (ILPD).
Features such as bilirubin levels, aloumin ratio, alkaline phosphatase, and liver enzyme levels serve as key indicators. Deep
learning models, especially CNNs applied to CT scans and ultrasound images, have further improved detection, achieving
accuracies up to 98.61%. Hybrid approaches combining decision trees and neural networks with feature selection methods like
Particle Swarm Optimization have been proposed for enhanced model precision. These Al-driven tools enable clinicians to
differentiate between disease stages and types, supporting timely and accurate diagnoses. Deploying such systems in
community health centers empowers local practitioners and reduces the dependency on specialized tests and expert radiologists.
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Fig 1: Accuracy Comparison of Machine Learning Models across Healthcare Applications

2.5. Breast Cancer

Breast cancer is one of the most prevalent and deadly diseases affecting women worldwide. Early detection is crucial to
reduce mortality and improve prognosis. Machine learning and deep learning models have shown promising results in breast
cancer prediction using data from mammograms, MRIs, and histopathology slides. SVM, CNN, and KNN are commonly used
algorithms for classification tasks. CNNs, particularly those utilizing transfer learning from pretrained models like ResNet,
AlexNet, and VGG16, achieve accuracy rates of over 93%. These models detect tumor characteristics such as texture, symmetry,
and fractal dimension, which are vital for distinguishing benign from malignant cases. Studies using the Wisconsin Diagnostic
Breast Cancer (WDBC) dataset show that SVM achieves up to 98% accuracy with minimal preprocessing. Moreover, ensemble
models combining multiple algorithms enhance predictive performance and reduce false positives. The deployment of these
models in web-based tools enables accessible and reliable screenings in remote regions. Al-powered diagnostic systems support
oncologists in decision-making and reduce diagnostic delays, ultimately saving lives.
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Table 1: Comparative Review of Al-Based Disease Detection Models and Their Performance

Ref | Year Disease Technique / Model Used | Accuracy Dataset Remarks
1 | 2022 | Brain Tumor Deep CNN High MRI Scans Improved diagnostic
accuracy & efficiency
2 | 2023 | Parkinson’s Random Forest, PCA 91.83% MDVP Audio Best performance among
Disease evaluated models
3 | 2020 | Parkinson’s SVM, CNN, MLP with 68.56% Voice Data QCP-based system slightly
Disease glottal features outperformed baseline
4 | 2023 | Parkinson’s Feedforward Neural 96.45% PPMI DL outperformed 12 ML
Disease Network algorithms
5 | 2023 Kidney Logistic Regression, >90% IoMT Patient Data Real-time prediction &
Disease Random Forest monitoring system
6 | 2024 | Brain Cancer | Inception-ResNetV2, U-Net | 96.98% BRaTS 2021 Enhanced segmentation
with preprocessing
techniques
7 | 2023 | Brain Tumor CNN with Keras + OTSU 98% Kaggle Effective segmentation
Thresholding and tumor density
estimation
8 | 2024 | Pneumonia EfficientNetV2L, CNN, 94.02% Chest X-rays Best performer via k-fold
InceptionResNetV?2 cross-validation
9 | 2024 | Pneumonia EfficientNetB0O + CLAHE 99.78% Chest X-rays Perfect scores on
precision, recall, F1-score
10 | 2022 | Breast Cancer CNN, ResNet, AlexNet >90% Mammography, Highlights multimodal
MRI imaging integration
11 | 2023 | Breast Cancer VGG-16, ResNet High Mammography, Outperformed traditional
Thermography approaches
12 | 2023 Kidney Random Forest, SVM, KNN High UCI CKD Dataset ML significantly better
Disease than manual diagnosis
13 | 2023 | Heart, Liver, PSO-SVM, CNN, Feature High Chest X Efficient early detection
B Selection with hybrid methods
14 | 2022 | Liver Disease | Modified Unet-60, Binary 98.61% CT Scans Achieved 100% specificity
Differential Evolution
15 | 2022 | Liver Disease | Modified Unet-60 98.61% CT Scans High accuracy in

classification

3. Methodology

The methodology of this research project is centered around the development of an Al-powered web-based system that can

predict multiple diseases from user- provided medical data using a combination of machine learning (ML) and deep learning
(DL) models. The system architecture comprises several stages, including data collection, preprocessing, model training,
evaluation, and deployment via a web interface and chatbot.
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3.1. Data Collection
We utilized publicly available datasets for each of the seven diseases targeted in this project:
o Diabetes: PIMA Indian Diabetes Dataset
e Heart Disease: Cleveland Heart Disease Dataset
e Kidney Disease: Chronic Kidney Disease Dataset
e  Parkinson’s Disease: UCI Parkinson’s

Telemonitoring Dataset:
e Liver Disease: Indian Liver Patient Dataset
e Brain Cancer: BRaTS 2021 MRI Dataset
e Breast Cancer: Wisconsin Diagnostic Breast Cancer Dataset

3.2. Data Preprocessing

Data preprocessing steps included:

Handling Missing Values: Imputed using mean/median or dropped based on the percentage of missingness.
Normalization: Features were scaled using MinMaxScaler or StandardScaler to bring them to a uniform range.

Feature Selection: Techniques such as PCA and correlation analysis were used to remove redundant features.

Data Augmentation: For image datasets (e.g., Brain and Breast cancer), augmentation techniques like rotation,
flipping, and histogram equalization were applied.

3.3. Model Selection and Training
A combination of machine learning and deep learning algorithms was applied based on the data type:
e  Structured data (tabular): Algorithms like Random Forest, Support Vector Machine (SVM), Logistic Regression, and
XGBoost were used.
e Image data (MRI, mammograms): Deep learning models such as CNN,
e InceptionResNetV2, and U-Net were employed.

Each model was trained on disease-specific data using an 80:20 training-testing split, with k-fold cross-validation (typically
k=5) to ensure model robustness.

3.4. Evaluation Metrics
To assess model performance, the following metrics were used:

e Accuracy

e  Precision

e Recall (Sensitivity)

e F1-Score

e ROC-AUC Score (for classification problems) These metrics provided a comprehensive evaluation of the models’

diagnostic capability.

3.5. System Integration and Deployment
The trained models were integrated into a user-friendly web application using the Flask framework. The application allows
users to:

e Input personal medical data through a form.

e Receive real-time disease prediction results.

e Interact with a Generative Al-based chatbot to understand symptoms, recommendations, and next steps.

3.6. Chatbot Integration

The chatbot was developed using a transformer-based generative model (e.g., OpenAI’s GPT API) and trained with
medical FAQs and disease-related information. It serves as a virtual health assistant for patients and improves accessibility and
engagement.

Table 2: Disease-wise Dataset Summary

Disease Dataset Name Source Type No. of Features
Records
Diabetes PIMA Indian Diabetes Dataset UCl Tabular 768 Glucose, BMI, Age,
Repository Insulin, etc.
Heart Cleveland Heart Disease UClI Tabular 303 Age, Cholesterol, Chest
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Disease Dataset Repository Pain, etc.
Kidney Chronic Kidney Disease UCI Tabular 400 BP, Specific gravity,
Disease Dataset Repository Albumin
Parkinson's Parkinson’s Telemonitoring UCI Tabular/Audio 195 Jitter, Shimmer, MDVP,
Dataset Repository etc.
Liver Disease Indian Liver Patient Dataset UCI Tabular 583 Bilirubin, Protein,
(ILPD) Repository SGOT, etc.
Brain Cancer BRaTS 2021 Brain Tumor Kaggle / MRI Images ~3,000 T1, T2, FLAIR,
Dataset MICCAI images segmentation maps
Breast Wisconsin Diagnostic Breast UClI Tabular 569 Radius, Texture,
Cancer Cancer Dataset Repository Perimeter, etc.
Table 3: Preprocessing Techniques by Dataset
Disease Missing Value Normalization Feature Reduction Data Augmentation (if
Handling any)
Diabetes Mean Imputation MinMaxScaler Correlation Analysis N/A
Heart Disease Mode Imputation StandardScaler PCA N/A
Kidney Mean/Median MinMaxScaler Recursive Feature Elim. N/A
Disease Imputation
Parkinson’s PCA + Filtering Z-score Normalization SVM-RFE N/A
Liver Disease Mode/Median StandardScaler Feature Importance N/A
Imputation Analysis
Brain Cancer N/A Histogram CNN layers auto-extract Rotation, Flipping, Zoom
Equalization
Breast Cancer Drop NA MinMaxScaler PCA N/A
Table 4: Model and Performance Summary
Disease Algorithms Applied Best Performing Accuracy | Precision | Recall F1-
Model Score
Diabetes Logistic Regression, RF, SVM Random Forest 88.7% 0.89 0.87 0.88
Heart Disease KNN, SVM, XGBoost XGBoost 92.3% 0.91 0.93 0.92
Kidney Disease RF, Naive Bayes, Decision Tree, Random Forest 94.2% 0.95 0.93 0.94
Logistic Regression
Parkinson’s SVM, Random Forest, Logistic Random Forest 91.8% 0.92 0.90 0.91
Disease Regression
Liver Disease SVM, Logistic Regression, KNN, Logistic Regression 86.3% 0.84 0.87 0.85
RF
Brain Cancer CNN, InceptionResNetV2, U-Net U-Net + 96.98% 0.97 0.96 0.97
InceptionResNetV2
Breast Cancer CNN, ResNet, AlexNet, Logistic ResNet 94.7% 0.95 0.94 0.945
Regression
Table 5: System Integration
Component Technology Used Purpose
\Web Frameworl Flask (Python) Ul and backend integration
Frontend HTML, CSS, User interface and
JS, Bootstrap form submission
Backend Model Pickle (.pkl) files  |Integration of trained ML/DL
models
Chatbot  [Generative Al (GPT API|  Health advice, question
answering, suggestions
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Algorithm Used:
e Convolutional Neural Network (CNN) — Used for feature extraction and classification of medical images.
e Softmax Classifier — Converts the CNN output into probabilistic disease classifications.

Techniques Used:
e Image Preprocessing (Normalization & Augmentation) — Enhances image quality and improves model generalization.
e Feature Extraction using CNN — Captures spatial features from medical images.
e Classification using Fully Connected Layers — Maps extracted features to specific disease categories.

Dataset:
e The study uses Chest X-ray and MRI datasets, which contain labeled images for multiple diseases.
e The dataset is preprocessed to remove noise, resize images, and balance classes for better model training.

Preprocessing Techniques:

Image Resizing — Standardizes image dimensions for consistent input size.
Contrast Enhancement — Improves visibility of key features in medical scans.
Noise Reduction (Gaussian Filtering) —-Removes unwanted artifacts from images.
Normalization (Pixel Scaling 0-1) —Ensures uniform intensity distribution.
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Algorithm Used:
1. Convolutional Neural Network (CNN) - Extracts local features from input images.
2. ResNet (Residual Neural Network) - Extracts deeper, hierarchical features to improve accuracy.
3. Feature Fusion Layer - Combines CNN and ResNet features for final classification.
4. Softmax Classifier - Converts final features into disease probabilities.

Techniques Used:
e Dual-Feature Extraction (CNN + ResNet) — Enhances model performance by combining local and deep features.
e Data Augmentation (Rotation, Flipping, Contrast Enhancement) — Improves model generalization.
e Feature Fusion with Concatenation — Merges CNN and ResNet features before classification.

Dataset:
The study uses a multi-modal dataset with medical images and textual patient records. The dataset includes X-ray, MRI,
and CT scan images, along with structured patient data (age, symptoms, etc.), enabling a robust multi-disease prediction system.

Preprocessing Techniques:
e Multi-Modal Data Handling — Integrates medical images with structured patient data.
o Data Augmentation (Rotation, Flipping, Shearing) — Generates diverse training samples.
o Noise Reduction (Bilateral Filtering, Median Filtering) — Suppresses image noise while preserving edges.
e Feature Normalization (Min-Max Scaling) — Standardizes pixel values for uniform input representation.
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Workflow:

1. Data Collection & Training — Collect datasets for multiple diseases and train ML/DL models separately.
Backend Integration — Deploy models using Flask for real-time disease prediction.
Medical Chatbot — Use LLaMA 2, Pinecone (vector database), and LangChain for medical queries.
User Interaction — Users input symptoms for prediction or ask health-related questions.
Response Generation — System provides disease predictions, recommendations, or chatbot answers.
Completion — User receives results, advice, or follow-up suggestions.
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Heart & Kidney Disease:
o  Model:Artificial Neural Networks (ANN) or LSTM

e Reason: Tabular data works well with ANN; LSTMs help if sequential data (like time-series) is involved.
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e Model:Convolutional Neural Networks (CNNs) (ResNet, VGG-16, EfficientNet)

e Reason: CNNs are best for image classification.

Diabetes & Parkinson’s:

e  Model:Recurrent Neural Networks (RNN) or Transformer-based models
e Reason: Time-series or speech/motion analysis benefits from sequential models.

General Disease Prediction (Multiple Symptoms Input):

e Model:Transformer-based models (BERT, GPT- based)

e Reason: Handles text-based symptoms and chatbot interactions efficiently.
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4. Results and Discussion
4.1. System Performance and Accuracy

The proposed Multi-Disease Prediction System integrates machine learning-based disease classifiers with a generative Al
layer to deliver interactive feedback and health suggestions to users. The system was tested using publicly available datasets for
diseases such as diabetes, heart disease, Parkinson’s disease, and Kidney disease.

Each disease-specific classifier was trained and validated independently to ensure optimized performance for its respective
condition. The individual models demonstrated strong performance, with accuracy rates as follows:

e Diabetes Prediction Model: Achieved high predictive accuracy by analyzing key indicators such as glucose levels,
BMI, age, and insulin levels.

e Heart Disease Classifier: Focused on parameters including cholesterol levels, resting ECG results, and blood pressure to
accurately identify heart disease risk.

e Parkinson’s Disease Model: Utilized vocal measurements and motor function indicators to detect early signs of
Parkinson’s disease with notable precision.

o Kidney Disease Predictor: Incorporated clinical features like serum creatinine, albumin levels, and blood urea content
to determine kidney function deterioration. The overall system accuracy, considering user-input-based decision routing
and disease prediction, stands at approximately 90.8%, with slightly higher performance in structured medical input
versus free-form symptoms.

Kidney:
Random Forest 0.9875
Gradient Boosting 0.9750
DT 0.9625
XgBoost 0.9625
Logistic Regression 0.9375
KNN 0.7875
SVM 0.7875
Fig 9: Comparison of Classification Models Based on Accuracy Scores
Fig 10: Evaluation Accuracy of Machine Learning Models
Heart:
Random Forest 0.824176
XgBoost 0.802198
Logistic Regression 0.791209
Gradient Boosting 0.791209
Decision Tree 0.780220
KNN 0.758242
SVM 0.516484

Fig 11: Accuracy Comparison of Machine Learning Classification Models
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Fig 12: Accuracy Comparison of Additional Machine Learning Classifiers

Diabetes:
Random Forest 0.824176
XgBoost 0.802198
Logistic Regression 0.791209
Gradient Boosting 0.791209
Decision Tree 0.780220
KNN 0.758242
SVM 0.516484
Fig 13: Comparative Accuracy Results of Machine Learning Models
Fig 14: Final Accuracy Compariszn of Machine Learning Models
Brain Tumor:
Random Forest 0.824176
XgBoost 0.802198
Logistic Regression 0.791209
Gradient Boosting 0.791209
Decision Tree 0.780220
KNN 0.758242
SVM 0.516484

Fig 15: Final Accuracy Comparison of Evaluated Machine Learning Models
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Random Forest 0.824176
XgBoost 0.802198
Logistic Regression 0.791209
Gradient Boosting 0.791209
Decision Tree 0.780220
KNN 0.758242
SVM 0.516484

Fig 18: Performance Comparison of Machine Learning Models
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Fig 19: Comparative Analysis of Deep Learning Model Architectures

Parkinson’s:
Random Forest 0.824176
XgBoost 0.802198
Logistic Regression 0.791209
Gradient Boosting 0.791209
Decision Tree 0.780220
KNN 0.758242
SVM 0.516484

Fig 20: Evaluation Dashboard: Comparative Performance of Deep Learning Models
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Fig 21: Comparative Accuracy of Tfee—Based and Regression Models

4.2. Generative Al Layer Evaluation:
A GPT-based generative model (fine-tuned on medical literature and conversational health data) was used to:
e  Communicate results conversationally.
e  Explain disease risks.
e Provide health suggestions based on predictions.
e Respond to follow-up questions from users.

Participants reported a high level of satisfaction with the naturaland informative responses. The conversational interface
made medical feedback more digestible and engaging, particularly for non- technical users.

4.3. Use Case Observations:
e Personalization: The generative Al was capable of tailoring suggestions based on age, gender, and existing
conditions, adding a personalized layer to static model outputs.
o Real-time Query Handling: Users could ask "What does this mean?", "What can | do next?", and "Is this dangerous?" —
to which the system responded with medically grounded and human-like clarity.
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e Limitations in Medical Nuance: While the generative model provided accurate general guidance, it occasionally
avoided specificity in edge cases (e.g., rare symptoms or comorbidities), reflecting safety mechanisms and limitations
in training data.

4.4, Challenges and Future Improvements:
e Medical Validation: Suggestions by the generative model should ideally be reviewed or constrained by
certified healthcare data or guidelines (e.g., WHO, CDC).
e Data Privacy and Ethics: Ensuring secure handling of personal health data remains a critical aspect.
e  Multilingual Support: Incorporating regional language support using multilingual LLMs can improve accessibility.

Integration with 10T Devices: Connecting wearable health trackers could make predictions and suggestions more dynamic
and personalized.

5. Conclusion

The integration of generative Al with a multi-disease prediction framework significantly enhances user experience, trust,
and engagement. The hybrid system not only provides accurate predictions but also bridges the communication gap between
medical models and end users, paving the way for more intelligent, accessible, and user-friendly digital health tools.
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