Advancements in Large-Scale Transformer Architectures for Multimodal AI Integration

Authors

  • Musthafa Ali Technical Analyst, TCS, Mumbai, India. Author

DOI:

https://doi.org/10.63282/3050-922X.IJERET-V1I2P101

Keywords:

Transformer Architecture, Self-Attention, Multimodal AI, Vision Transformer, Cross-Attention, Pretraining, Fine-Tuning, Deep Learning, Neural Networks, Data Integration

Abstract

Large-scale transformer architectures have revolutionized the field of artificial intelligence (AI), particularly in natural language processing (NLP) and computer vision (CV). The recent advancements in these architectures have enabled the integration of multimodal data, leading to more robust and versatile AI systems. This paper provides a comprehensive overview of the latest developments in large-scale transformer architectures, focusing on their application in multimodal AI integration. We discuss the theoretical foundations, key architectural innovations, and practical applications. Additionally, we present a detailed analysis of the challenges and future directions in this rapidly evolving field. The paper includes empirical evaluations, algorithmic descriptions, and comparative studies to highlight the effectiveness of these models.

References

[1] Akbari, H., Yuan, L., Qian, R., Chuang, W.-H., Chang, S.-F., Cui, Y., & Gong, B. (2020). VATT: Transformers for multimodal self-supervised learning from raw video, audio, and text. arXiv preprint arXiv:2104.11178.

[2] Cai, Y., & Rostami, M. (2019). Dynamic transformer architecture for continual learning of multimodal tasks. arXiv preprint arXiv:2401.15275.

[3] Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., & Vinyals, O. (2014). Perceiver: General perception with iterative attention. arXiv preprint arXiv:2103.03206.

[4] Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., ... & Vinyals, O. (2020). Perceiver IO: A general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795.

[5] Liang, P. P., Lyu, Y., Fan, X., Tsaw, J., Liu, Y., Mo, S., ... & Salakhutdinov, R. (2018). High-modality multimodal transformer: Quantifying modality & interaction heterogeneity for high-modality representation learning. arXiv preprint arXiv:2203.01311. https://arxiv.org/abs/2203.01311

[6] Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., & Vinyals, O. (2016). Perceiver: General perception with iterative attention. arXiv preprint arXiv:2103.03206.

[7] Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., ... & Vinyals, O. (2015). Perceiver IO: A general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795.

[8] Liang, P. P., Lyu, Y., Fan, X., Tsaw, J., Liu, Y., Mo, S., ... & Salakhutdinov, R. (2020). High-modality multimodal transformer: Quantifying modality & interaction heterogeneity for high-modality representation learning. arXiv preprint arXiv:2203.01311.

[9] Akbari, H., Yuan, L., Qian, R., Chuang, W.-H., Chang, S.-F., Cui, Y., & Gong, B. (2020). VATT: Transformers for multimodal self-supervised learning from raw video, audio, and text. arXiv preprint arXiv:2104.11178.

[10] Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., & Vinyals, O. (2019). Perceiver: General perception with iterative attention. arXiv preprint arXiv:2103.03206.

[11] Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., ... & Vinyals, O. (2017). Perceiver IO: A general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795.

[12] Liang, P. P., Lyu, Y., Fan, X., Tsaw, J., Liu, Y., Mo, S., ... & Salakhutdinov, R. (2004). High-modality multimodal transformer: Quantifying modality & interaction heterogeneity for high-modality representation learning. arXiv preprint arXiv:2203.01311.

[13] Akbari, H., Yuan, L., Qian, R., Chuang, W.-H., Chang, S.-F., Cui, Y., & Gong, B. (2009). VATT: Transformers for multimodal self-supervised learning from raw video, audio, and text. arXiv preprint arXiv:2104.11178.

Downloads

Published

2020-01-05

Issue

Section

Articles

How to Cite

1.
Ali M. Advancements in Large-Scale Transformer Architectures for Multimodal AI Integration. IJERET [Internet]. 2020 Jan. 5 [cited 2025 Sep. 18];1(2):1-8. Available from: https://ijeret.org/index.php/ijeret/article/view/18