Visualizing the Future: Integrating Data Science and AI for Impactful Analysis

Authors

  • Hemalatha Naga Himabindu Data Scientist, USA. Author
  • Gurajada Data Economy Inc, USA. Author

DOI:

https://doi.org/10.63282/3050-922X.IJERET-V5I1P107

Keywords:

Data visualization, Data science, Artificial Intelligence (AI), Machine learning, Predictive analytics, Impactful analysis, Data-driven insights, Big data analytics, AI integration, Decision intelligence

Abstract

The intersection of data science and artificial intelligence (AI) has not only transformed the value of data-driven decision-making but also enabled organizations to utilize data on a scale and variety that is difficult to mistake. The proposed study involves implementing a multidimensional framework to facilitate cross-domain, effective analysis by integrating AI-powered modeling with state-of-the-art data visualization techniques. The cross-domain integration of various open-source datasets, such as economic, healthcare, environmental, technological, and educational indicators retrieved primarily through the World Bank, Kaggle, and the World Health Organization, is an illustration of how cross-domain integration facilitates interpretation and strengthens evidence-based policymaking. The approach combines data exploration with predictive modeling and clustering algorithms in its interactive visualization tools, thus enabling both technical knowledge and stakeholder accessibility. It is found that the AI-based visual analytics have the ability to discover actionable patterns, detect anomalies, and produce interpretable outputs that are flexible in various industries. Combining the analytical sophistication of AI and the communicative sophistication of visualization, this work highlights the possibilities of composite frameworks in enabling informed, strategic, and future-minded decision-makin

References

[1] Wang et al. (2023) – VIS+AI: integrating visualization with artificial intelligence for efficient data analysis

this study introduces the VIS+AI framework, defining three levels of integration between visualization and AI: AI-assisted visualization (AI4VIS), visualization-assisted AI (VIS4AI), and the highest level—VIS+AI, which enables bi-directional interaction between humans and AI through visual interfaces.

[2] S. Chinta, “Integrating artificial intelligence with cloud business intelligence: Enhancing predictive analytics and data visualization,” Iconic Research and Engineering Journals, vol. 6, no. 9, pp. 101–108, Sept. 2022. [Online]. Available: https://www.academia.edu/89654321

[3] Ramadugu, R. Laxman doddipatla, & Sai Teja Sharma R.(2023). The Role of AI and Machine Learning in Strengthening Digital Wallet Security Against Fraud. Journal for ReAttach Therapy and Developmental Diversities, 6(1), 2172-2178.

[4] Inkarbekov et al. (2023) – Visualization of AI Systems in Virtual Reality: A Comprehensive Review

A comprehensive review exploring how VR techniques via platforms like Unreal Engine and Unity—are used to visualize AI systems. It highlights methodological strengths and limitations across different immersive visualization approaches.

[5] X. Wang, Z. Wu, W. Huang, Y. Wei, Z. Huang, M. Xu, and L. Zhang, “VIS+ AI: Integrating visualization with artificial intelligence for efficient data analysis,” International Journal of Computer Science, vol. 34, no. 5, pp. 921–935, May 2023. [Online]. Available: https://doi.org/10.1007/s11390-023-2058-9

[6] A. Aldoseri, K. N. Al-Khalifa, and A. M. Hamouda, “Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and challenges,” Applied Sciences, vol. 13, no. 6, p. 3567, Mar. 2023. [Online]. Available: https://doi.org/10.3390/app13063567

[7] L. Cao, “Data science: A comprehensive overview,” ACM Computing Surveys (CSUR), vol. 50, no. 3, pp. 1–42, Jun. 2017. [Online]. Available: https://doi.org/10.1145/3076253

[8] D. Larson and V. Chang, “A review and future direction of agile, business intelligence, analytics and data science,” International Journal of Information Management, vol. 36, no. 5, pp. 700–710, Oct. 2016. [Online]. Available: https://doi.org/10.1016/j.ijinfomgt.2016.04.013

[9] I. H. Sarker, “Data science and analytics: An overview from data-driven smart computing, decision-making and applications perspective,” SN Computer Science, vol. 2, no. 5, pp. 377–390, Sept. 2021. [Online]. Available: https://doi.org/10.1007/s42979-021-00681-w

[10] M. Johnson, R. Jain, P. Brennan-Tonetta, and L. A. B. Andrade, “Impact of big data and artificial intelligence on industry: Developing a workforce roadmap for a data driven economy,” Global Journal of Flexible Systems Management, vol. 22, pp. 189–207, Jun. 2021. [Online]. Available: https://doi.org/10.1007/s40171-021-00280-5

[11] D. Donoho, “50 years of data science,” Journal of Computational and Graphical Statistics, vol. 26, no. 4, pp. 745–766, Oct. 2017. [Online]. Available: https://doi.org/10.1080/10618600.2017.1384734

[12] Ramadugu, R. Laxman doddipatla.(2022). EMERGING TRENDS IN FINTECH: HOW TECHNOLOGY IS RESHAPING THE GLOBAL FINANCIAL LANDSCAPE. Journal of Population Therapeutics and Clinical Pharmacology, 29(02), 573-580.

[13] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau, “Visual analytics in deep learning: An interrogative survey for the next frontiers,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, no. 8, pp. 2674–2693, Aug. 2019. [Online]. Available: https://doi.org/10.1109/TVCG.2018.2843369

[14] J. Kehrer and H. Hauser, “Visualization and visual analysis of multifaceted scientific data: A survey,” IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 3, pp. 495–513, Mar. 2013. [Online]. Available: https://doi.org/10.1109/TVCG.2012.110

[15] F. Tao, Q. Qi, A. Liu, and A. Kusiak, “Data-driven smart manufacturing,” Journal of Manufacturing Systems, vol. 48, pp. 157–169, Jul. 2018. [Online]. Available: https://doi.org/10.1016/j.jmsy.2018.01.006

[16] S. Akter, K. Michael, M. R. Uddin, G. McCarthy, and P. Mujtaba, “Transforming business using digital innovations: The application of AI, blockchain, cloud and data analytics,” Annals of Operations Research, vol. 308, pp. 643–665, Apr. 2022. [Online]. Available: https://doi.org/10.1007/s10479-020-03683-z

[17] S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, “Big data in healthcare: Management, analysis and future prospects,” Journal of Big Data, vol. 6, no. 1, pp. 1–25, Dec. 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0217-0

[18] A. S. Panayides, A. Amini, N. D. Filipovic, S. Sharma, M. Tsaftaris, M. Young, and M. Foran, “AI in medical imaging informatics: Current challenges and future directions,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 7, pp. 1837–1857, Jul. 2020. [Online]. Available: https://doi.org/10.1109/JBHI.2020.2982964

[19] R. H. Hariri, E. M. Fredericks, and K. M. Bowers, “Uncertainty in big data analytics: Survey, opportunities, and challenges,” Journal of Big Data, vol. 6, no. 1, pp. 1–16, Dec. 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0206-3

[20] M. Arora, A. Prakash, S. Dixit, and A. Mittal, “A critical review of HR analytics: Visualization and bibliometric analysis approach,” Information Discovery and Delivery, vol. 51, no. 2, pp. 85–98, Apr. 2023. [Online]. Available: https://doi.org/10.1108/IDD-09-2022-0090

[21] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Siddiqa, and I. Yaqoob, “Big IoT data analytics: Architecture, opportunities, and open research challenges,” IEEE Access, vol. 5, pp. 5247–5261, 2017. [Online]. Available: https://doi.org/10.1109/ACCESS.2017.2689040

[22] E. Ahmed, I. Yaqoob, I. A. T. Hashem, I. Khan, A. I. A. Ahmed, M. Imran, and A. V. Vasilakos, “The role of big data analytics in Internet of Things,” Computer Networks, vol. 129, pp. 459–471, Dec. 2017. [Online]. Available: https://doi.org/10.1016/j.comnet.2017.06.013

[23] A. Vellido, “The importance of interpretability and visualization in machine learning for applications in medicine and health care,” Neural Computing and Applications, vol. 32, no. 24, pp. 18069–18083, Dec. 2020. [Online]. Available: https://doi.org/10.1007/s00521-019-04051-w

[24] M. G. Kibria, K. Nguyen, G. P. Villardi, O. Zhao, K. Ishizu, and F. Kojima, “Big data analytics, machine learning, and artificial intelligence in next-generation wireless networks,” IEEE Access, vol. 6, pp. 32328–32338, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2837692

[25] M. A. Fauzi, Z. A. Kamaruzzaman, S. A. A. Rahman, and M. N. Noor, “Bibliometric review on human resources management and big data analytics,” International Journal of Manpower, vol. 44, no. 4, pp. 782–804, Apr. 2023. [Online]. Available: https://doi.org/10.1108/IJM-05-2021-0327

[26] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise data analysis and visualization: An interview study,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2917–2926, Dec. 2012. [Online]. Available: https://doi.org/10.1109/TVCG.2012.219

[27] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic, “Deep learning applications and challenges in big data analytics,” Journal of Big Data, vol. 2, no. 1, pp. 1–21, Feb. 2015. [Online]. Available: https://doi.org/10.1186/s40537-014-0007-7

[28] Z. Ahmed, K. Mohamed, S. Zeeshan, and X. Q. Dong, “Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine,” Database, vol. 2020, pp. 1–35, Jan. 2020. [Online]. Available: https://doi.org/10.1093/database/baaa010

[29] H. Luan, P. Geczy, H. Lai, J. Gobert, S. J. H. Yang, M. Ogata, and R. Joksimovic, “Challenges and future directions of big data and artificial intelligence in education,” Frontiers in Artificial Intelligence, vol. 3, p. 44, Jul. 2020. [Online]. Available: https://doi.org/10.3389/frai.2020.00044

[30] A. H. Doan, “Human-in-the-loop data analysis: A personal perspective,” in Proceedings of the Workshop on Human-in-the-Loop Data Analytics (HILDA), 2018, pp. 1–6. [Online]. Available: https://doi.org/10.1145/3209900.3209901

[31] Mudunuri L.N.R.; (December, 2023); “AI-Driven Inventory Management: Never Run Out, Never Overstock”; International Journal of Advances in Engineering Research; Vol 26, Issue 6; 24-36

Downloads

Published

2024-03-30

Issue

Section

Articles

How to Cite

1.
Himabindu HN, Gurajada. Visualizing the Future: Integrating Data Science and AI for Impactful Analysis. IJERET [Internet]. 2024 Mar. 30 [cited 2025 Oct. 28];5(1):48-59. Available from: https://ijeret.org/index.php/ijeret/article/view/240