Autonomous Error Detection and Self-Healing Capabilities in Oracle Fusion Middleware
DOI:
https://doi.org/10.63282/3050-922X.IJERET-V5I1P108Keywords:
Oracle Fusion Middleware, Self-Healing Systems, AI-Assisted Fault Detection, SOA, BPEL, REST API, Predictive Maintenance, Anomaly Detection, Middleware Resilience, Enterprise IntegrationAbstract
Oracle Fusion Middleware (OFM) forms the backbone of enterprise integration, enabling business process execution through technologies such as Service-Oriented Architecture (SOA), Business Process Execution Language (BPEL), and RESTful APIs. However, as the complexity of enterprise systems escalates, ensuring high availability and resilience becomes a monumental challenge. Autonomous error detection and self-healing mechanisms have emerged as vital solutions to maintain seamless operational workflows in middleware platforms. This paper examines the integration of AI-assisted fault detection in Oracle Fusion Middleware, exploring mechanisms that autonomously identify, diagnose, and remediate faults in SOA composites, BPEL processes, and RESTful service endpoints. We propose a comprehensive self-healing architecture embedded with predictive analytics, anomaly detection algorithms, and dynamic remediation workflows. Leveraging AI technologies, including supervised machine learning and unsupervised clustering, our framework provides proactive monitoring and autonomous recovery. Multiple real-world case studies are analysed to substantiate the feasibility and effectiveness of the proposed solution, with a focus on enterprises such as Infosys, Oracle Corporation, and Accenture. Key contributions include: (1) a layered self-healing architecture, (2) real-time monitoring using AI models, (3) integration of AI agents within Oracle SOA Suite and Oracle Service Bus (OSB), and (4) a prototype evaluated on enterprise workloads. Experimental results demonstrate significant reductions in downtime and maintenance efforts, reinforcing the potential of AI-driven autonomous capabilities in middleware platforms
References
[1] Sommer, R., & Paxson, V. (2010, May). Outside the closed world: On using machine learning for network intrusion detection. In 2010, IEEE Symposium on Security and Privacy (pp. 305-316). IEEE.
[2] Du, M., Li, F., Zheng, G., & Srikumar, V. (2017, October). Deeplog: Anomaly detection and diagnosis from system logs through deep learning. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security (pp. 1285-1298).
[3] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing surveys (CSUR), 41(3), 1-58.
[4] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[5] Ghosh, D., Sharman, R., Rao, H. R., & Upadhyaya, S. (2007). Self-healing systems—survey and synthesis. Decision support systems, 42(4), 2164-2185.
[6] Tošić, P. T. (2021, June). On the Middleware Design, Cyber-Security, Self-monitoring and Self-healing for the Next-Generation. In Unifying Themes in Complex Systems X: Proceedings of the Tenth International Conference on Complex Systems (p. 305). Springer Nature.
[7] Klockowski, R., Imai, S., Rice, C. L., & Varela, C. A. (2013). Autonomous data error detection and recovery in streaming applications. Procedia Computer Science, 18, 2036-2045.
[8] Gini, M. (2020). Automatic error detection and recovery. In Robot technology and applications (pp. 445-484). CRC Press.
[9] Jovan Nikolic; Nursultan Jubatyrov; Evangelos Pournaras (2020)– Self healing Dilemmas in Distributed Systems: Fault Correction vs. Fault Tolerance.
[10] Lewis, J., & Fowler, M. (2014, March). A definition of this new architectural term.
[11] Parashar, M., & Hariri, S. (2004, September). Autonomic computing: An overview. In International workshop on unconventional programming paradigms (pp. 257-269). Berlin, Heidelberg: Springer Berlin Heidelberg.
[12] Krafzig, D., Banke, K., & Slama, D. (2005). Enterprise SOA: service-oriented architecture best practices. Prentice Hall Professional.
[13] Papazoglou, M. P., & Van Den Heuvel, W. J. (2007). Service-Oriented Architectures: Approaches, Technologies, and Research Issues. The VLDB journal, 16(3), 389-415.
[14] Choi, J., Nazareth, D. L., & Jain, H. K. (2010). Implementing service-oriented architecture in organizations. Journal of Management Information Systems, 26(4), 253-286.
[15] Lawler, J. P., & Howell-Barber, H. (2007). Service-oriented architecture: SOA strategy, methodology, and technology. Auerbach Publications.
[16] Maheshwari, A., & Panda, D. (2009). Middleware Management with Oracle Enterprise Manager Grid Control 10g R5. Packt Publishing Ltd.
[17] Moeen Ali Naqvi; Merve Astekin; Sehrish Malik; Leon Moonen (2021)– Adaptive Immunity for Software: Towards Autonomous Self healing Systems
[18] Liu, P., Ji, W., Liu, Q., & Xue, X. (2023). AI‐Assisted Failure Location Platform for Optical Network. International Journal of Optics, 2023(1), 1707815.
[19] Laszewski, T., & Williamson, J. (2008). Oracle Modernization Solutions. Packt Publishing Ltd.
[20] Patel, J., & Shah, H. (2021). Software engineering revolutionized by machine learning-powered self-healing systems. International Research Journal of Engineering & Applied Sciences, 9(1), 10-55083.
[21] Mudunuri L.N.R.; (December, 2023); “AI-Driven Inventory Management: Never Run Out, Never Overstock”; International Journal of Advances in Engineering Research; Vol 26, Issue 6; 24-36
[22] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
[23] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
[24] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
[25] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106
[26] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
[27] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
[28] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 107-115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112
[29] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
[30] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105
[31] Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03
[32] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109
[33] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108
[34] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111
[35] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
[36] Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107
[37] Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108
[38] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110
[39] Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109
[40] Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107
[41] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105
[42] Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107
[43] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106
[44] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
[45] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
[46] Rusum, G. P., & Pappula, K. K. (2022). Federated Learning in Practice: Building Collaborative Models While Preserving Privacy. International Journal of Emerging Research in Engineering and Technology, 3(2), 79-88. https://doi.org/10.63282/3050-922X.IJERET-V3I2P109
[47] Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106
[48] Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Role of Artificial Intelligence and Machine Learning in IoT Device Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 77-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108
[49] Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 64-76. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107
[50] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110
[51] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
[52] Rusum, G. P. (2023). Large Language Models in IDEs: Context-Aware Coding, Refactoring, and Documentation. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 101-110. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110
[53] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
[54] Jangam, S. K. (2023). Importance of Encrypting Data in Transit and at Rest Using TLS and Other Security Protocols and API Security Best Practices. International Journal of AI, BigData, Computational and Management Studies, 4(3), 82-91. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109
[55] Anasuri, S., & Pappula, K. K. (2023). Green HPC: Carbon-Aware Scheduling in Cloud Data Centers. International Journal of Emerging Research in Engineering and Technology, 4(2), 106-114. https://doi.org/10.63282/3050-922X.IJERET-V4I2P111
[56] Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore Strategies for Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 104-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112
[57] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108
[58] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111
[59] Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated Remediation in Batch Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108
[60] Anasuri, S. (2022). Formal Verification of Autonomous System Software. International Journal of Emerging Research in Engineering and Technology, 3(1), 95-104. https://doi.org/10.63282/3050-922X.IJERET-V3I1P110
[61] Rusum, G. P., & Anasuri, S. (2023). Synthetic Test Data Generation Using Generative Models. International Journal of Emerging Trends in Computer Science and Information Technology, 4(4), 96-108. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I4P111
[62] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration and Analytics. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-100. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110
[63] Anasuri, S., Rusum, G. P., & Pappula, K. K. (2023). AI-Driven Software Design Patterns: Automation in System Architecture. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 78-88. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P109
[64] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111