Trustworthy AI in Software Systems: From Explainability to Regulatory Compliance

Authors

  • Guru Pramod Rusum Independent Researcher, USA. Author

DOI:

https://doi.org/10.63282/3050-922X.IJERET-V5I1P109

Keywords:

Trustworthy AI, Explainability, AI Governance, Software Ethics, Regulatory Compliance, AI Lifecycle, Fairness, Transparency, AI in Software Systems

Abstract

Artificial Intelligence (AI) is one of the disruptive technologies of the modern software systems that has rendered the software systems automatable, including predictive analytics and intelligent decision-making. The broad DIY use of AI will, nevertheless, present ethical, legal, and government policy challenges that will need to be overcome in order to establish trustworthiness. In the present paper, the principles of trustworthy AI as they apply to explainability, fairness, accountability, robustness, and regulatory compliance are discussed. In the context of this paper, the issue of explainability frameworks (e.g., SHAP, LIME, and counterfactuals) as the means of providing human interpretability and the means of governance in balancing the use of AI and the values within the society is addressed. The methodology holds a Trustworthy AI Lifecycle model that incorporates technical, ethical, and legal requirements, and is validated in the case studies of healthcare, finance, and autonomous systems. The evidence indicates that businesses with established systems of governance are more transparent, comply with regulations, and consider the discretion of stakeholders. The findings indicate that AI governance, interpretable models, and compliance assurance mechanisms will play a crucial role in ensuring that most AI implementations become sustainable. It is concluded in this paper that interdisciplinary research is the key to the fulfillment of trustworthy AI in software-based systems; it should involve the realms of AI ethics, software engineering, and regulatory science

References

[1] Helen Canton, “Organisation for Economic Co-operation and Development—OECD,” In The Europa Directory of International Organizations, Routledge, pp. 677-687, 2021. |Google Scholar| Publisher Site|

[2] N.A. Smuha, “The EU Approach to Ethics Guidelines for Trustworthy Artificial Intelligence.” Computer Law Review International, vol. 20, no. 4, pp. 97-106, 2019. |Google Scholar| Publisher Site|

[3] L. Floridi, and J. Cowls, “A Unified Framework of Five Principles for AI in Society,” Machine Learning and the City: Applications in Architecture and Urban Design, pp. 535-545, 2022. |Google Scholar| Publisher Site|

[4] Macro Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, "Why Should I Trust You?" Explaining the Predictions of Any Classifier,” 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135-1144, 2016. |Google Scholar| Publisher Site|

[5] Scott M Lundberg, and Su-In Lee, “A Unified Approach to Interpreting Model Predictions,” Advances in Neural Information Processing Systems, vol. 30, 2017. |Google Scholar| Publisher Site|

[6] Sandra Wachter, Brent Mittelstadt, and Chris Russell, “Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR,” Harvard Journal of Law and Technology, vol. 31, no. 2, pp. 841, 2017. |Google Scholar| Publisher Site|

[7] Christoph Molnar, “Interpretable Machine Learning A Guide of Making Black Box Models Explainable,” Lean Publishing, pp. 1-313, 2020. |Google Scholar| Publisher Site|

[8] Joanna Isabelle Olszewska, “Systems and Software Engineering Standards Committee,” IEEE Standard Model Process for Addressing Ethical Concerns During System Design: IEEE Standard 7000-2021, 2021. |Google Scholar| Publisher Site|

[9] Anna Jobin, Marcello Ienca, and Effy Vayena, “The Global Landscape of AI Ethics Guidelines,” Nature Machine Intelligence, vol. 1, no. 9, pp. 389-399, 2019. |Google Scholar| Publisher Site|

[10] RKE Bellamy et al., “AI Fairness 360: An Extensible Toolkit for Detecting and Mitigating Algorithmic Bias,” IBM Journal of Research and Development, vol. 63, no. 4/5, pp. 4:1 - 4:15, 2019. |Google Scholar| Publisher Site|

[11] D.C. Verma, “Inference for Trustworthy Machine Intelligence: Challenges and Solutions,” IEEE 4th International Conference on Cognitive Machine Intelligence (CogMI), pp. 27-34, 2022. |Google Scholar| Publisher Site|

[12] D. Kaur et al., “Trustworthy Artificial Intelligence: A Review,” ACM Computing Surveys (CSUR), vol. 55, no. 2, pp. 1-38, 2022.|Google Scholar| Publisher Site|

[13] M. K. Ahuja, et al., “Opening the Software Engineering Toolbox for the Assessment of Trustworthy AI,” arXiv, 2020. |Google Scholar| Publisher Site|

[14] V. S. P. Nimmagadda, “Explainable AI in Regulatory Compliance for Pharmaceutical Manufacturing.” European Journal of Quantum Computing and Intelligent Agents, vol. 3, pp. 341-382, 2019. |Google Scholar| Publisher Site|

[15] WHO Guidance, Ethics and Governance of Artificial Intelligence for Health, World Health Organization, pp. 1-165, 2021. |Google Scholar| Publisher Site|

[16] H. Liu et al., “Trustworthy AI: A Computational Perspective,” ACM Transactions on Intelligent Systems and Technology, vol. 14, no. 1, pp. 1-59, 2022. |Google Scholar| Publisher Site|

[17] B. Ammanath, “Trustworthy AI: A Business Guide for Navigating Trust and Ethics in AI,” John Wiley & Sons, 2022. |Google Scholar| Publisher Site|

[18] A.Y. Ding, M. Janssen, and J. Crowcroft, “Trustworthy and Sustainable Edge AI: A Research Agenda,” IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pp. 164-172, 2021. |Google Scholar| Publisher Site|

[19] Yiran Xu et al., “Explainable Object-induced Action Decision for Autonomous Vehicles,” IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9523-9532, 2020. |Google Scholar| Publisher Site|

[20] Sundar G. Bharadwaj, P. Rajan Varadarajan, and John Fahy, “Sustainable Competitive Advantage in Service Industries: A Conceptual Model and Research Propositions,” Journal of Marketing, vol. 57, no. 4, pp. 83-99, 1993.|Google Scholar| Publisher Site|

[21] Waldemar Hummer et al., “Modelops: Cloud-based Lifecycle Management for Reliable and Trusted AI,” IEEE International Conference on Cloud Engineering (IC2E) pp. 113-120, 2019.|Google Scholar| Publisher Site|

[22] Arunkumar Thirunagalingam, “Enhancing Data Governance Through Explainable AI: Bridging Transparency and Automation.” SSRN, 2022. |Google Scholar| Publisher Site|

[23] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105

[24] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[25] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104

[26] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106

[27] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108

[28] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

[29] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108

[30] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107

[31] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

[32] Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03

[33] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109

[34] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[35] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

[36] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109

[37] Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107

[38] Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108

[39] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111

[40] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[41] Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109

[42] Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107

[43] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[44] Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107

[45] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106

[46] Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108

[47] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

[48] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

[49] Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106

[50] Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Role of Artificial Intelligence and Machine Learning in IoT Device Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 77-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108

[51] Anasuri, S. (2022). Next-Gen DNS and Security Challenges in IoT Ecosystems. International Journal of Emerging Research in Engineering and Technology, 3(2), 89-98. https://doi.org/10.63282/3050-922X.IJERET-V3I2P110

[52] Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107

[53] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

[54] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110

[55] Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-V4I3P109

[56] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2023). Develop and Adapt a Salesforce User Experience Design Strategy that Aligns with Business Objectives. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 53-61. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P107

[57] Anasuri, S. (2023). Confidential Computing Using Trusted Execution Environments. International Journal of AI, BigData, Computational and Management Studies, 4(2), 97-110. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111

[58] Pedda Muntala, P. S. R., & Jangam, S. K. (2023). Context-Aware AI Assistants in Oracle Fusion ERP for Real-Time Decision Support. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 75-84. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P109

[59] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[60] Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111

[61] Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103

[62] Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106

[63] Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107

[64] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Real-time Decision-Making in Fusion ERP Using Streaming Data and AI. International Journal of Emerging Research in Engineering and Technology, 2(2), 55-63. https://doi.org/10.63282/3050-922X.IJERET-V2I2P108

[65] Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-V2I3P108

[66] Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI, BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107

[67] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2022). Advanced API Security Techniques and Service Management. International Journal of Emerging Research in Engineering and Technology, 3(4), 63-74. https://doi.org/10.63282/3050-922X.IJERET-V3I4P108

[68] Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 64-76. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107

[69] Pedda Muntala, P. S. R., & Karri, N. (2022). Using Oracle Fusion Analytics Warehouse (FAW) and ML to Improve KPI Visibility and Business Outcomes. International Journal of AI, BigData, Computational and Management Studies, 3(1), 79-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109

[70] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[71] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109

[72] Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108

[73] Jangam, S. K. (2023). Importance of Encrypting Data in Transit and at Rest Using TLS and Other Security Protocols and API Security Best Practices. International Journal of AI, BigData, Computational and Management Studies, 4(3), 82-91. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109

[74] Anasuri, S., & Pappula, K. K. (2023). Green HPC: Carbon-Aware Scheduling in Cloud Data Centers. International Journal of Emerging Research in Engineering and Technology, 4(2), 106-114. https://doi.org/10.63282/3050-922X.IJERET-V4I2P111

[75] Reddy Pedda Muntala , P. S. (2023). Process Automation in Oracle Fusion Cloud Using AI Agents. International Journal of Emerging Research in Engineering and Technology, 4(4), 112-119. https://doi.org/10.63282/3050-922X.IJERET-V4I4P111

[76] Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore Strategies for Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 104-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112

[77] Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108

[78] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration Cloud. International Journal of Emerging Research in Engineering and Technology, 2(4), 59-67. https://doi.org/10.63282/3050-922X.IJERET-V2I4P107

[79] Jangam, S. K. (2022). Role of AI and ML in Enhancing Self-Healing Capabilities, Including Predictive Analysis and Automated Recovery. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 47-56. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106

[80] Anasuri, S. (2022). Formal Verification of Autonomous System Software. International Journal of Emerging Research in Engineering and Technology, 3(1), 95-104. https://doi.org/10.63282/3050-922X.IJERET-V3I1P110

[81] Pedda Muntala, P. S. R. (2022). Natural Language Querying in Oracle Fusion Analytics: A Step toward Conversational BI. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 81-89. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P109

[82] Jangam, S. K., & Karri, N. (2023). Robust Error Handling, Logging, and Monitoring Mechanisms to Effectively Detect and Troubleshoot Integration Issues in MuleSoft and Salesforce Integrations. International Journal of Emerging Research in Engineering and Technology, 4(4), 80-89. https://doi.org/10.63282/3050-922X.IJERET-V4I4P108

[83] Anasuri, S., Rusum, G. P., & Pappula, K. K. (2023). AI-Driven Software Design Patterns: Automation in System Architecture. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 78-88. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P109

[84] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for ERP-Related Use Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-97. https://doi.org/10.63282/3050-922X.IJERET-V4I3P110

[85] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

Downloads

Published

2024-03-30

Issue

Section

Articles

How to Cite

1.
Rusum GP. Trustworthy AI in Software Systems: From Explainability to Regulatory Compliance. IJERET [Internet]. 2024 Mar. 30 [cited 2025 Oct. 28];5(1):71-8. Available from: https://ijeret.org/index.php/ijeret/article/view/285