Chemomechanically Tuned Li–In/Sn Intermetallic Anodes for Sulfide SSBs: Composition–Transport Coupling and Pressure-Stabilized Interfaces

Authors

  • Samarth Patel Independent Researcher, USA. Author

DOI:

https://doi.org/10.63282/3050-922X.IJERET-V7I1P109

Keywords:

Solid-State Batteries, Intermetallic Anodes, Li-In Alloys, Li-Sn Alloys, Interfacial Chemomechanics, Stack Pressure, Migration Barriers, Sulfide Electrolytes

Abstract

Intermetallic Li–In and Li–Sn anodes with high lithium content are engineered to sustain intimate, crack-resistant contact with Li6PS5Cl under optimized stack pressure, en- abling dendrite-free cycling at 1 mA cm−2 over thousand-hour timescales. The paper links composition-dependent lithium mi- gration barriers to measured overpotentials through combined atomistic modeling and electrochemical testing, revealing how phase selection (e.g., Li13In3, Li17Sn4) governs transport and interfacial kinetics. Controlled synthesis and fabrication routes yield robust chemomechanical coupling at the alloy–sulfide inter- face, suppressing interfacial degradation pathways that typically initiate filament growth. These materials-centric insights provide a design map connecting alloy stoichiometry, interphase stability, and processing pressure to durable solid-state battery operation, emphasizing scalable materials processing and interface engineer- ing over cell-level optimization.

References

[1] M. D. Tikekar, S. Choudhury, Z. Tu, And L. A. Archer, “Design Prin- Ciples For Electrolytes And Interfaces For Stable Lithium-Metal Batteries,” Nature Energy, Vol. 1, P. 16114, 2016.

[2] K. B. Hatzell, X. C. Chen, C. L. Cobb, N. P. Dasgupta, M. B. Dixit, L. E. Marbella, M. T. Mcdowell, P. P. Mukherjee, A. Verma, V. Viswanathan,

[3] S. Westover, And W. G. Zeier, “Challenges In Lithium Metal Anodes For Solid-State Batteries,” Acs Energy Letters, Vol. 5, Pp. 922–934, 2020.

[4] T. Krauskopf, F. H. Richter, W. G. Zeier, And J. Janek, “Physicochemical concepts of the lithium metal anode in solid-state batteries,” Chemical Reviews, vol. 120, pp. 7745–7794, 2020.

[5] J. A. Lewis, F. J. Q. Cortes, Y. Liu, J. C. Miers, A. Verma, B. S. Vishnugopi, J. Tippens, D. Prakash, T. S. Marchese, S. Y. Han, C. Lee,

[6] P. P. Shetty, H. Lee, P. Shevchenko, F. De Carlo, C. Saldana, P. P. Mukherjee, and M. T. McDowell, “Linking void and interphase evo- lution to electrochemistry in solid-state batteries using operando x-ray tomography,” Nature Materials, vol. 20, pp. 503–510, 2021.

[7] W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim, and G. Ceder, “Interface stability in solid-state batteries,” Chemistry of Materials, vol. 28, pp. 266–273, 2016.

[8] T. K. Schwietert, V. Arszelewska, C. Wang, C. Yu, A. Vasileiadis,

[9] N. J. J. de Klerk, J. Hageman, T. Hupfer, I. Kerkamm, Y. Xu, E. van der Maas, E. M. Kelder, S. Ganapathy, and M. Wagemaker, “Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes,” Nature Materials, vol. 19, pp. 428–435, 2020.

[10] A. L. Santhosha, L. Medenbach, J. R. Buchheim, and P. Adelhelm, “The indium–lithium electrode in solid-state lithium-ion batteries: Phase for- mation, redox potentials, and interface stability,” Batteries & Supercaps, vol. 2, pp. 524–529, 2019.

[11] L. Zhou, K. Park, X. Sun, F. Lalere, T. Adermann, P. Hartmann, and

[12] L. F. Nazar, “Solvent-engineered design of argyrodite li6ps5x (x = cl, br, i) solid electrolytes with high ionic conductivity,” ACS Energy Letters, vol. 4, pp. 265–270, 2018.

[13] T. T. Werner, G. M. Mudd, and S. M. Jowitt, “Indium: Key issues in assessing mineral resources and long-term supply from recycling,” Applied Earth Science, vol. 124, pp. 213–226, 2015.

[14] A. Agarwal, “A unified machine learning framework for enterprise portfolio forecasting, risk detection, and automated reporting,” Preprints, 2025.

[15] “Energy-guided counterfactual generation for faithful model in- terpretation,” Preprints, 2025.

[16] “Neurofusionx: A scalable multi-modal deep learning framework with attention based fusion across healthcare, finance, and cybersecu- rity,” International Journal of Applied Mathematics, vol. 38, no. 4s, 2025.

[17] M. A. Nadeem, “Optimizing fairness in machine learning: A hyperpa- rameter tuning approach,” in 2025 IEEE Conference on Innovations in Software Engineering (COINS), 2025.

[18] C. Hansel and D. Kundu, “The stack pressure dilemma in sulfide electrolyte based li metal solid-state batteries: A case study with li6ps5cl solid electrolyte,” Advanced Materials Interfaces, vol. 8, p. 2100206, 2021.

[19] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek,

[20] S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The materials project: A materials genome approach to accelerating materials innovation,” APL Materials, vol. 1, p. 011002, 2013.

Downloads

Published

2026-01-21

Issue

Section

Articles

How to Cite

1.
Patel S. Chemomechanically Tuned Li–In/Sn Intermetallic Anodes for Sulfide SSBs: Composition–Transport Coupling and Pressure-Stabilized Interfaces. IJERET [Internet]. 2026 Jan. 21 [cited 2026 Feb. 4];7(1):62-5. Available from: https://ijeret.org/index.php/ijeret/article/view/420